Preprint
Article

This version is not peer-reviewed.

Modified Adversarial Hierarchical Task Network Planning in Real-Time Strategy Games

A peer-reviewed article of this preprint also exists.

Submitted:

18 April 2017

Posted:

19 April 2017

You are already at the latest version

Abstract
Real-time strategy (RTS) game has proposed many challenges for AI research for its large state spaces, enormous branch factors, limited decision time and dynamic adversarial environment. To tackle above problems, the method called Adversarial Hierarchical Task Network planning (AHTN) has been proposed and achieves favorable performance. However, the HTN description it used cannot express complex relationships among tasks and impacts of environment on tasks. Moreover, the AHTN cannot handle task failures during plan execution. In this paper, we propose a modified AHTN planning algorithm named AHTNR. The algorithm introduces three elements essential task, phase and exit condition to extend the HTN description. To deal with possible task failures, the AHTNR first uses the extended HTN description to identify failed tasks. And then a novel task repair strategy is proposed based on historical information to maintain the validity of previous plan. Finally, empirical results are presented for the μRTS game, comparing AHTNR to the state-of-the-art search algorithms for RTS games.
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated