Preprint
Article

This version is not peer-reviewed.

Approximate Information and Accelerating for High-throughput Heterogeneous Data Analysis with Linear Mixed Models

Submitted:

06 April 2017

Posted:

07 April 2017

You are already at the latest version

Abstract
Linear mixed models are frequently used for analysing heterogeneous data in a broad range of applications. The restricted maximum likelihood method is often preferred to estimate co-variance parameters in such models due to its unbiased estimation of the underlying variance parameters. The restricted log-likelihood function involves log determinants of a complicated co-variance matrix. An efficient statistical estimate of the underlying model parameters and quantifying the accuracy of the estimation requires the first derivatives and the second derivatives of the restricted log-likelihood function, i.e., the observed information. Standard approaches to compute the observed information and its expectation, the Fisher information, is computationally prohibitive for linear mixed models with thousands random and fixed effects. Customized algorithms are of highly demand to keep mixed models analysis scalable for increasing high-throughput heterogeneous data sets. In this paper, we explore how to leverage an averaged information splitting technique and dedicate matrix transform to significantly reduce computations and to accelerate computing. Together with a fill-in reducing multi-frontal sparse direct solver, the averaged information splitting approach improves the performance of the computation process.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated