Preprint
Article

Predicting Some Physicochemical Properties of Octane Isomers: A Topological Approach Using ev-Degree and ve-Degree Zagreb Indices

This version is not peer-reviewed.

Submitted:

23 January 2017

Posted:

23 January 2017

You are already at the latest version

Abstract
Topological indices have important role in theoretical chemistry for QSPR researches. Among the all topological indices the Randić and the Zagreb indices have been used more considerably than any other topological indices in chemical and mathematical literature. Most of the topological indices as in the Randić and the Zagreb indices are based on the degrees of the vertices of a connected graph. Recently novel two degree concepts have been defined in graph theory; ev-degrees and ve-degrees. In this study we define ev-degree Zagreb index, ve-degree Zagreb indices and ve-degree Randić index by using these new graph invariants as parallel to their corresponding classical degree versions. We compare these new group ev-degree and ve-degree indices with the other well-known and most used topological indices in literature such as; Wiener, Zagreb and Randić indices by modelling some physicochemical properties of octane isomers. We show that the ev-degree Zagreb index, the ve-degree Zagreb and the ve-degree Randić indices give better correlation than Wiener, Zagreb and Randić indices to predict the some specific physicochemical properties of octanes. We investigate the relations between the second Zagreb index and ev-degree and ve-degree Zagreb indices and some mathematical properties of ev-degree and ve-degree Zagreb indices.
Keywords: 
;  ;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

826

Views

968

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated