Preprint
Article

This version is not peer-reviewed.

A MEMS Device for Quantitative in situ Mechanical Testing in Electron Microscope

A peer-reviewed article of this preprint also exists.

Submitted:

29 December 2016

Posted:

30 December 2016

You are already at the latest version

Abstract
In this work, we designed a MEMS device which allows simultaneous direct measurement of mechanical properties during deformation under external stress and characterization of the evolution of microstructure of nanomaterials within a transmission electron microscope. This MEMS device makes it easy to establish the correlation between microstructure and mechanical properties of nanomaterials. The device uses piezoresistive sensors to qualitatively measure the force and displacement of nanomaterials, e.g., in wire and thin plate forms. The device has a theoretical displacement resolution of 0.19 nm and a force resolution of 2.1 μN. The device has a theoretical displacement range limit of 2.74 μm and a load range limit of 27.75 mN.
Keywords: 
;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated