Preprint
Article

A MEMS Device for Quantitative in situ Mechanical Testing in Electron Microscope

Submitted:

29 December 2016

Posted:

30 December 2016

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
In this work, we designed a MEMS device which allows simultaneous direct measurement of mechanical properties during deformation under external stress and characterization of the evolution of microstructure of nanomaterials within a transmission electron microscope. This MEMS device makes it easy to establish the correlation between microstructure and mechanical properties of nanomaterials. The device uses piezoresistive sensors to qualitatively measure the force and displacement of nanomaterials, e.g., in wire and thin plate forms. The device has a theoretical displacement resolution of 0.19 nm and a force resolution of 2.1 μN. The device has a theoretical displacement range limit of 2.74 μm and a load range limit of 27.75 mN.
Keywords: 
piezoresistive sensor; electron microscope; in situ mechanical test
Subject: 
Chemistry and Materials Science  -   Nanotechnology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

1315

Views

1108

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated