Preprint
Article

Remote Sensing for Detection and Monitoring of Vegetation Affected by Oil Spills

Altmetrics

Downloads

3067

Views

1323

Comments

0

This version is not peer-reviewed

Submitted:

22 September 2016

Posted:

23 September 2016

You are already at the latest version

Alerts
Abstract
This study is aimed at demonstrating application of vegetation spectral techniques for detection and monitoring of impact of oil spills on vegetation. Vegetation spectral reflectance from Landsat 8 data were used in the calculation of five vegetation indices (normalized difference vegetation index (NDVI), soil adjusted vegetation index (SAVI), adjusted resistant vegetation index 2 (ARVI2), green-infrared index (G/NIR) and green-shortwave infrared (G/SWIR) from the spill sites (SS) and non-spill (NSS) sites in 2013 (pre-oil spill), 2014 (oil spill date) and 2015 (post-oil spill) for statistical comparison. The result shows that NDVI, SAVI, ARVI2, G/NIR and G/SWIR indicated certain level difference between vegetation condition at the SS and the NSS were significant with p-value <0.5 in December 2013. In December 2014 vegetation conditions indicated higher level of significant difference between the vegetation at the SS and NSS as follows where NDVI, SAVI and ARVI2 with p-value 0.005, G/NIR - p-value 0.01 and GSWIR p-value 0.05. Similarly, in January 2015 a very significant difference with p-value <0.005. Three indices NDVI, ARVI2 and G/NIR indicated highly significant difference in vegetation conditions with p-value <0.005 between December 2013 and December 2014 at the same sites. Post—spill analysis show that NDVI and ARVI2 indicated low level of significance difference p-value <0.05 suggesting subtle change in vegetation conditions between December 2014 and January 2015. This technique is essential for real time detection, response and monitoring of oil spills from pipelines for mitigation of pollution at the affected sites in the mangrove forest.
Keywords: 
Subject: Environmental and Earth Sciences  -   Environmental Science
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated