Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

The Impact of Climate Change on Reservoir Inflows Using Multi Climate-Model under RCPs’ Including Extreme Events—A Case of Mangla Dam, Pakistan

Version 1 : Received: 23 August 2016 / Approved: 24 August 2016 / Online: 24 August 2016 (10:16:40 CEST)

A peer-reviewed article of this Preprint also exists.

Babur, M.; Babel, M.S.; Shrestha, S.; Kawasaki, A.; Tripathi, N.K. Assessment of Climate Change Impact on Reservoir Inflows Using Multi Climate-Models under RCPs—The Case of Mangla Dam in Pakistan. Water 2016, 8, 389. Babur, M.; Babel, M.S.; Shrestha, S.; Kawasaki, A.; Tripathi, N.K. Assessment of Climate Change Impact on Reservoir Inflows Using Multi Climate-Models under RCPs—The Case of Mangla Dam in Pakistan. Water 2016, 8, 389.

Abstract

Assessment of extreme events and climate change on reservoir inflow is important for water and power stressed countries. Projected climate is subject to uncertainties related to climate change scenarios and Global Circulation Models (GCMs’). Extreme climatic events will increase with the rise in temperature as mentioned in the AR5 of the IPCC. This paper discusses the consequences of climate change that include extreme events on discharge. Historical climatic and gauging data were collected from different stations within a watershed. The observed flow data was used for calibration and validation of SWAT model. Downscaling was performed on future GCMs’ temperature and precipitation data, and plausible extreme events were generated. Corrected climatic data was applied to project the influence of climate change. Results showed a large uncertainty in discharge using different GCMs’ and different emissions scenarios. The annual tendency of the GCMs’ is bi-vocal: six GCMs’ projected a rise in annual flow, while one GCM projected a decrease in flow. The change in average seasonal flow is more as compared to annual variations. Changes in winter and spring discharge are mostly positive, even with the decrease in precipitation. The changes in flows are generally negative for summer and autumn due to early snowmelt from an increase in temperature. The change in average seasonal flows under RCPs’ 4.5 and 8.5 are projected to vary from -29.1 to 130.7% and -49.4 to 171%, respectively. In the medium range (RCP 4.5) impact scenario, the uncertainty range of average runoff is relatively low. While in the high range (RCP 8.5) impact scenario, this range is significantly larger. RCP 8.5 covered a wide range of uncertainties, while RCP 4.5 covered a short range of possibilities. These outcomes suggest that it is important to consider the influence of climate change on water resources to frame appropriate guidelines for planning and management.

Keywords

climate change; GCMs’; RCPs’; downscaling; temperature; precipitation; extreme events; SWAT; discharge

Subject

Engineering, Civil Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.