Preprint
Article

This version is not peer-reviewed.

Lobatto-Milstein Numerical Method in Application of Uncertainty Investment of Solar Power Projects

Submitted:

29 January 2017

Posted:

30 January 2017

You are already at the latest version

Abstract
Recently, there has been a growing interest in the production of electricity from renewable energy sources (RES). The RES investment is characterized by uncertainty, which is long-term, costly, depend on feed-in-tariff and support schemes. In this paper, we address the real option valuation (ROV) of a solar power plant investment. The real option framework is investigated. This framework considers the renewable certificate price, furthermore the cost of delay between establishing and operating the solar power plant. The optimal time of launching the project and assess the value of deferred option are discussed. The new three stage numerical methods are constructed, the Lobatto3C-Milstein (L3CM) methods. The numerical methods are integrated with concept of Black-Scholes option pricing theory, and applied in option valuation for solar energy investment with uncertainty. The numerical results of L3CM, finite difference and Monte Carlo methods are compared to show the efficiency of our methods. Our data set refers to the Arab Republic of Egypt.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated