Submitted:
28 January 2026
Posted:
28 January 2026
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Efficient Synthesis of Cyclic Olefin Copolymers (COCs)
3. Ethylene Copolymerization with Sterically Encumbered Olefins

| cat. (µmol) |
solvent | Al cocat. | borate | comonomer | activityb |
Mnc ×10-4 |
Mw/ Mnc |
Tmd / °C |
cont.e / mol% |
| CGC (1.0) | MCH | AliBu3f | B1 | 2M1P | 149 | 6.88 | 3.09 | 131 | |
| CGC (1.0) | MCH | AliBu3f | B2 | 2M1P | 3770 | 38.9 | 5.88 | 122 | |
| CGC (1.0) | MCH | AliBu3f | B3 | 2M1P | 6810 | 44.9 | 6.42 | 120 | 0.4 |
| CGC (1.0) | MCH | AliBu3f | B5 | 2M1P | 2660 | 32.0 | 5.66 | 122 | |
| CGC (1.0) | MCH | AliBu3f | B6 | 2M1P | 768 | 26.1 | 5.23 | 126 | |
| CGC (0.1) | toluene | MAO | --- | 2M1P | 5090 | 32.4 | 3.66 | 129 | trace |
| 1a’ (1.0) | MCH | AliBu3 | B3 | 2M1P | 4210 | 6.28 | 1.93 | 99.0 | 5.5 |
| 1a’ (1.0) | MCH | AliBu3 | B4 | 2M1P | 1280 | 7.87 | 1.84 | 96.9, 122 | |
| 1a’ (1.0) | MCH | AliBu3 | B5 | 2M1P | 4260 | 5.76 | 1.76 | 93.6 | 6.8 |
| 1a’ (1.0) | MCH | AliBu3 | B6 | 2M1P | 1870 | 4.93 | 1.89 | 94.5 | |
| 1a’ (0.05) | toluene | MAO | --- | 2M1P | 11200 | 8.41 | 2.25 | 111 | 2.6 |
| 1b’ (1.0) | MCH | AliBu3 | B1 | 2M1P | 547 | 7.04 | 2.47 | 99.5, 121 | |
| 1b’ (1.0) | MCH | AliBu3 | B2 | 2M1P | 2680 | 3.82 | 1.96 | 98.7 | |
| 1b’ (1.0) | MCH | AliBu3 | B3 | 2M1P | 4040 | 4.11 | 1.90 | 101 | 5.0 |
| 1b’ (1.0) | MCH | AliBu3 | B4 | 2M1P | 3980 | 3.21 | 2.41 | 98.4 | |
| 1b’ (1.0) | MCH | AliBu3 | B5 | 2M1P | 5060 | 5.41 | 1.84 | 97.9 | 6.0 |
| 1b’ (0.05) | toluene | MAO | --- | 2M1P | 18600 | 8.34 | 2.05 | 109 | 3.1 |
| CGC (0.05) | MCH | AliBu3 | B2 | VCH | 16800 | 7.70 | 1.70 | 87.5 | 8.8 |
| CGC (0.05) | MCH | AliBu3 | B3 | VCH | 44000 | 6.31 | 1.65 | 86.0 | 9.0 |
| CGC (0.05) | MCH | AliBu3 | B4 | VCH | 10600 | 5.93 | 1.75 | 87.0 | 8.7 |
| CGC (0.05) | MCH | AliBu3 | B5 | VCH | 69000 | 8.65 | 1.98 | 81.4 | 9.7 |
| CGC (0.05) | toluene | MAO | --- | VCH | 39400 | 21.4 | 3.38 | 92.5 | 6.0 |
| CGC (0.05) | toluene | AliBu3 | B1 | VCH | 1090 | 10.8 | 2.28 | 98.6 | |
| CGC (0.05) | toluene | AliBu3 | B2 | VCH | 16500 | 13.0 | 2.30 | 96.3 | 5.6 |
| CGC (0.05) | toluene | AliBu3 | B3 | VCH | 14100 | 13.1 | 2.59 | 96.9 | 5.6 |
| CGC (0.05) | toluene | AliBu3 | B4 | VCH | 21100 | 8.55 | 2.21 | 97.0 | 5.4 |
| CGC (0.05) | toluene | AliBu3 | B5 | VCH | 31000 | 13.8 | 3.07 | 94.2 | 5.8 |
| 1b’ (0.01) | toluene | MAO | --- | VCH | 224000 | 17.5 | 2.43 | (-15.1) | 24.1 |
4. Synthesis of Biobased Polyolefins: Copolymerization of Biobased Conjugated Dienes
5. Analysis of Catalytically Active Species Through XAS (X-Ray Absorption Spectra)
5.1. Introduction: XAS for Analysis of Catalytically Active Species
5.2. Basics in XANES Spectra
5.3. XAS Analysis for Exploring Active Species in Olefin Polymerization and Syndiospecific Styrene Polymerization by Half-Titanocene Catalysts
6. Concluding Remarks and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plastics Europe. Plastics the Fast Facts 2025 . Available online: https://plasticseurope.org/knowledge-hub/plastics-the-fast-facts-2025/ (accessed on January 2026).
- Selected recent reviews and book chapter, see refs 2–8: Baier, M. C.; Zuideveld, M. A.; Mecking S. Post-metallocenes in the industrial production of polyolefins. Angew. Chem. Int. Ed. 2014, 53, 9722–9744. [CrossRef]
- Stürzel, M.; Mihan, S.; Mülhaupt, R. From multisite polymerization catalysis to sustainable materials and all-polyolefin composites. Chem. Rev. 2016, 116, 1398–1433. [Google Scholar] [CrossRef] [PubMed]
- van Doremaele, G.; van Duin, M.; Valla, M.; Berthoud, A. On the development of titanium κ1-amidinate complexes, commercialized as keltan ACETM technology, enabling the production of an unprecedented large variety of EPDM polymer structures. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 2877–2891. [Google Scholar] [CrossRef]
- Handbook of Transition Metal Polymerization Catalysts, 2nd Ed.; Hoff, R., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Nomura, K.; Kitphaitun, S. Catalysis for a Sustainable Environment: Reactions, Processes and Applied Technologies; Pombeiro, A. J. L., Sutradhar, M., Alegria, E. C. B. A., Eds.; John Wiley & Sons, Ltd.: Chichester, West Sussex, UK, 2024; pp. 323–338. [Google Scholar] [CrossRef]
- Tan, C.; Zhou, C.; Chen, C. Material properties of functional polyethylenes from transition-metal-catalyzed ethylene–polar monomer copolymerization. Macromolecules 2022, 55, 1910–1922. [Google Scholar] [CrossRef]
- Chen, C. Designing catalysts for olefin polymerization and copolymerization: Beyond electronic and steric tuning. Nat. Rev. Chem. 2018, 2, 6–14. [Google Scholar] [CrossRef]
- Selected pioneering reviews for metallocene catalysts, see refs 9–12: Brintzinger, H. H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth R. M. Stereospecific olefin polymerization with chiral metallocene catalysts. Angew. Chem., Int. Ed. Engl. 1995, 34, 1143–1170. [CrossRef]
- Kaminsky, W. New polymers by metallocene catalysis. Macromol. Chem. Phys. 1996, 197, 3907–3945. [Google Scholar] [CrossRef]
- Kaminsky, W.; Arndt, M. Metallocenes for polymer catalysis. Adv. Polym. Sci. 1997, 127, 143–187. [Google Scholar] [CrossRef]
- Suhm, J.; Heinemann, J.; Wörner, C.; Müller, P.; Stricker, F.; Kressler, J.; Okuda, J.; Mülhaupt, R. Novel polyolefin materials via catalysis and reactive processing. Macromol. Symp. 1998, 129, 1–28. [Google Scholar] [CrossRef]
- Pioneering reviews for linked half-titanocene catalysts, see refs 12,13: McKnight, A. L.; Waymouth, R. M. Group 4 ansa-cyclopentadienyl-amido catalysts for olefin polymerization. Chem. Rev. 1998, 98, 2587–2598. [CrossRef]
- Selected reviews for modified half-titanocene catalysts, refs. 4,6,14–17: Nomura, K.; Liu, J.; Padmanabhan, S.; Kitiyanan, B. Nonbridged half-metallocenes containing anionic ancillary donor ligands: New promising candidates as catalysts for precise olefin polymerization. J. Mol. Catal. A: Chem. 2007, 267, 1–29. [CrossRef]
- Nomura, K. Half-titanocenes containing anionic ancillary donor ligands as promising new catalysts for precise olefin polymerization. Dalton Trans. 2009, 8811–8823. [Google Scholar] [CrossRef] [PubMed]
- Nomura, K.; Liu, J. Half-titanocenes for precise olefinpolymerisation: Effects of ligand substituents and some mechanistic aspects. Dalton Trans. 2011, 40, 7666–7682. [Google Scholar] [CrossRef] [PubMed]
- Nomura, K.; Liu, J. In Organometallic Reactions and Polymerisation; Osakada, K., Ed.; The Lecture Notes in Chemistry, vol. 85; Springer: Berlin, 2014; pp 51–88.
- Selected reviews for called post metallocene catalysts, refs. 2,7,8,18–20: Britovsek, G. J. P.; Gibson, V. C.; Wass, D. F. The search for new-generation olefin polymerization catalysts: Life beyond metallocenes. Angew. Chem., Int. Ed. Engl. 1999, 38, 428–447. [CrossRef]
- Gibson, V. C.; Spitzmesser, S. K. Advances in non-metallocene olefin polymerization catalysis. Chem. Rev. 2003, 103, 283–316. [Google Scholar] [CrossRef]
- Coates, G. W.; Hustad, P. D.; Reinartz, S. Catalysts for the living insertion polymerization of alkenes: Access to new polyolefin architectures using Ziegler-Natta chemistry. Angew. Chem. Int. Ed. 2002, 41, 2236–2257. [Google Scholar] [CrossRef]
- Delferro, M.; Marks, T. J. Multinuclear olefin polymerization catalysts. Chem. Rev. 2011, 111, 2450–2485. [Google Scholar] [CrossRef]
- McInnis, J. P.; Delferro, M.; Marks, T. J. Multinuclear group 4 catalysis: Olefin polymerization pathways modified by strong metal–metal cooperative effects. Acc. Chem. Res. 2014, 47, 2545–2557. [Google Scholar] [CrossRef]
- Valente, A.; Mortreux, A.; Visseaux, M.; Zinck, P. Coordinative chain transfer polymerization. Chem. Rev. 2013, 113, 3836–3857. [Google Scholar] [CrossRef]
- Macchioni, A. Ion pairing in transition-metal organometallic chemistry. Chem. Rev. 2005, 105, 2039–2074. [Google Scholar] [CrossRef]
- Bochmann, M. The chemistry of catalyst activation: The case of group 4 polymerization catalysts. Organometallics 2010, 29, 4711–4740. [Google Scholar] [CrossRef]
- Kaminsky, W. Discovery of methylaluminoxane as cocatalyst for olefin polymerization. Macromolecules 2012, 45, 3289–3297. [Google Scholar] [CrossRef]
- Yi, J.; Nakatani, N.; Nomura, K. Solution XANES and EXAFS analysis of active species of titanium, vanadium complex catalysts in ethylene polymerisation/dimerisation and syndiospecific styrene polymerization. Dalton Trans. 2020, 49, 8008–8028. [Google Scholar] [CrossRef]
- Suhm, J.; Schneider, M. J.; Mülhaupt, R. Influence of metallocene structures on ethene copolymerization with 1-butene and 1-octene. J. Mol. Catal. A: Chem. 1998, 128, 215–227. [Google Scholar] [CrossRef]
- Suhm, J.; Schneider, M. J.; Mülhaupt, R. Temperature dependence of copolymerization parameters in ethene/1-octene copolymerization using homogeneous rac-Me2Si(2-MeBenz[e]Ind)2ZrCl2/MAO catalyst. J. Polym. Sci. A 1997, 35, 735–740. [Google Scholar] [CrossRef]
- For example, see refs 30-33: Canich, J. A. M.; Hlatky, G. G.; Turner, H. W. U.S. Patent 5,422,236, 1990.
- Canich, J. A. M. U.S. Patent 5,026,798, 1991.
- Stevens, J. C.; Timmers, F. J.; Wilson, D. R.; Schmidt, G. F.; Nickias, P. N.; Rosen, R. K.; Knight, G. W.; Lai, S.-Y. Eur. Pat. Appl. 416,815, 1991.
- Stevens, J. C.; Neithamer, D. R. Eur. Pat. Appl. 418,022, 1991.
- Nomura, K. Syndiotactic Polystyrene: Synthesis, Characterization, Processing, and Applications; Schellenberg, J., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, 2010; pp. 60–91. [Google Scholar]
- Arriola, D. J.; Bokota, M.; Campbell, R. E., Jr.; Klosin, J.; LaPointe, R. E.; Redwine, O. D.; Shankar, R. B.; Timmers, F. J.; Abboud, K. A. Penultimate effect in ethylene−styrene copolymerization and the discovery of highly active ethylene−styrene catalysts with increased styrene reactivity. J. Am. Chem. Soc. 2007, 129, 7065–7076. [Google Scholar] [CrossRef]
- Guo, N.; Li, L.; Marks, T. J. Bimetallic catalysis for styrene homopolymerization and ethylene−styrene copolymerization: Exceptional comonomer selectivity and insertion regiochemistry. J. Am. Chem. Soc. 2004, 126, 6542–6543. [Google Scholar] [CrossRef]
- Guo, N.; Stern, C. L.; Marks, T. J. Bimetallic effects in homopolymerization of styrene and copolymerization of ethylene and styrenic comonomers: Scope, kinetics, and mechanism. J. Am. Chem. Soc. 2008, 130, 2246–2261. [Google Scholar] [CrossRef]
- Tomotsu, N.; Ishihara, N. Novel catalysts for syndiospecific polymerization of styrene. Catal. Surv. Jpn. 1997, 1, 89–110. [Google Scholar] [CrossRef]
- Tomotsu, N.; Ishihara, N.; Newman, T. H.; Malanga, M. T. Syndiospecific polymerization of styrene. J. Mol. Catal. A 1998, 128, 167–190. [Google Scholar] [CrossRef]
- Schellenberg, J. Recent transition metal catalysts for syndiotactic polystyrene. Prog. Polym. Sci. 2009, 34, 688–718. [Google Scholar] [CrossRef]
- Zhang, H.; Nomura, K. Living copolymerization of ethylene with styrene catalyzed by (cyclopentadienyl)(ketimide)titanium(IV) complex−MAO catalyst system: Effect of anionic ancillary donor ligand. Macromolecules 2006, 39, 5266–5274. [Google Scholar] [CrossRef]
- Nomura, K.; Naga, N.; Miki, M.; Yanagi, K.; Imai, A. Synthesis of various non-bridged Cp-aryloxy titanium(IV) complexes of the type CpTi(OAr)X2, and the catalytic alkene polymerization: Important role of substituents on both aryloxy and cyclopentadienyl groups. Organometallics 1998, 17, 2152–2154. [Google Scholar] [CrossRef]
- Nomura, K.; Naga, N.; Miki, M.; Yanagi, K. Olefin polymerization by (cyclopentadienyl)(aryloxy)titanium(IV) complexes–cocatalyst system. Macromolecules 1998, 31, 7588–7597. [Google Scholar] [CrossRef]
- Kitphaitun, S.; Yan, Q.; Nomura, K. Effect of SiMe3, SiEt3 para-substituents for exhibiting high activity, introduction of hydroxy group in ethylene copolymerization catalyzed by phenoxide-modified half-titanocenes. Angew. Chem. Int. Ed. 2020, 59, 23072–23076. [Google Scholar] [CrossRef]
- Gao, J.; Sun, W.-H.; Nomura, K. Synthesis of new phenoxide modified half-titanocene catalysts for ethylene polymerization. Catalysts 2025, 15, 840–851. [Google Scholar] [CrossRef]
- Zhang, S.; Piers, W. E.; Gao, X.; Parvez, M. The mechanism of methane elimination in B(C6F5)3-initiated monocyclopentadienyl-ketimide titanium and related olefin polymerization catalysts. J. Am. Chem. Soc. 2000, 122, 5499–5509. [Google Scholar] [CrossRef]
- McMeeking, J.; Gao, X.; Spence, R. E. v. H.; Brown, S. J.; Jerermic, D. U.S. Patent 6,114,481, Sept 5, 2000.
- Nomura, K.; Fujita, K.; Fujiki, M. Effects of cyclopentadienyl fragment in ethylene, 1-hexene, and styrene polymerizations catalyzed by half-titanocenes containing ketimide ligand of the type, Cp′TiCl2(NCtBu2). Catal. Commun. 2004, 5, 413–417. [Google Scholar] [CrossRef]
- Nomura, K.; Fujita, K.; Fujiki, M. Olefin polymerization by (cyclopentadienyl)(ketimide)titanium(IV) complexes of the type, Cp′TiCl2(NCtBu2)-methylaluminoxane (MAO) catalyst systems. J. Mol. Catal. A 2004, 220, 133–144. [Google Scholar] [CrossRef]
- Dias, A. R.; Duarte, M. T.; Fernandes, A. C.; Fernandes, S.; Marques, M. M.; Martins, A. M.; da Silva, J. F.; Rodrigues, S. S. Titanium ketimide complexes as α-olefin homo- and copolymerisation catalysts: X-ray diffraction structures of [TiCp′(NCtBu2)Cl2] (Cp′=Ind, Cp*). J. Organomet. Chem. 2004, 689, 203–213. [Google Scholar] [CrossRef]
- Martins, A. M.; Marques, M. M.; Ascenso, J. R.; Dias, A. R.; Duarte, M. T.; Fernandes, A. C.; Fernandes, S.; Ferreira, M. J.; Matos, I.; Oliveira, M. C.; Rodrigues, S. S.; Wilson, C. J. Titanium and zirconium ketimide complexes: synthesis and ethylene polymerisation catalysis. Organomet. Chem. 2005, 690, 874–884. [Google Scholar] [CrossRef]
- Ferreira, M. J.; Martins, A. M. Group 4 ketimide complexes: Synthesis, reactivity and catalytic applications. Coord. Chem. Rev. 2006, 250, 118–132. [Google Scholar] [CrossRef]
- Ijpeij, E. G.; Zuideveld, M. A.; Arts, H. J.; van der Burgt, F.; van Doremaele, G. H. J. WO Patent 2007, 031, 295, 2007.
- Ijpeij, E. G.; Windmuller, P. J. H.; Arts, H. J.; van der Burgt, F.; van Doremaele, G. H. J.; Zuideveld, M. A. WO Patent 2005, 090, 418, 2005.
- Ijpeij, E. G.; Coussens, B.; Zuideveld, M. A.; van Doremaele, G. H. J.; Mountford, P.; Lutzc, M.; Spek, A. L. Synthesis, solid state and DFT structure and olefin polymerization capability of a unique base-free dimeric methyl titanium dication. Chem. Commun. 2010, 46, 3339–3341. [Google Scholar] [CrossRef]
- Nomura, K.; Komatsu, T.; Imanishi, Y. Syndiospecific styrene polymerization and efficient ethylene/styrene copolymerization catalyzed by (cyclopentadienyl)(aryloxy)titanium(IV) complexes−MAO system. Macromolecules 2000, 33, 8122–8124. [Google Scholar] [CrossRef]
- Byun, D. J.; Fudo, A.; Tanaka, A.; Fujiki, M.; Nomura, K. Effect of cyclopentadienyl and anionic ancillary ligand in syndiospecific styrene polymerization catalyzed by nonbridged half-titanocenes containing aryloxo, amide, and anilide ligands: Cocatalyst systems. Macromolecules 2004, 37, 5520−5530. [Google Scholar] [CrossRef]
- Nomura, K.; Okumura, H.; Komatsu, T.; Naga, N. Ethylene/styrene copolymerization by various (cyclopentadienyl)(aryloxy)titanium(IV) complexes−MAO catalyst systems. Macromolecules 2002, 35, 5388−5395. [Google Scholar] [CrossRef]
- Aoki, H.; Nomura, K. Synthesis of amorphous ethylene copolymers with 2-vinylnaphthalene, 4-vinylbiphenyl and 1-(4-vinylphenyl)naphthalene. Macromolecules 2021, 54, 83−93. [Google Scholar] [CrossRef]
- Nomura, K.; Tsubota, M.; Fujiki, M. Efficient ethylene/norbornene copolymerization by (Aryloxo)(indenyl)titanium(IV) complexes−MAO catalyst system. Macromolecules 2003, 36, 3797–3799. [Google Scholar] [CrossRef]
- Nomura, K.; Wang, W.; Fujiki, M.; Liu, J. Notable norbornene (NBE) incorporation in ethylene–NBE copolymerization catalysed by nonbridged half-titanocenes: Better correlation between NBE incorporation and coordination energy. Chem. Commun. 2006, 2659–2661. [Google Scholar] [CrossRef] [PubMed]
- Apisuk, W.; Trambitas, A. G.; Kitiyanan, B.; Tamm, M.; Nomura, K. Efficient ethylene/norbornene copolymerization by half-titanocenes containing imidazolin-2-iminato ligands and MAO catalyst systems. J. Polym. Sci. Part A: Polym. Chem. 2013, 51, 2575–2580. [Google Scholar] [CrossRef]
- Kawatsu, M.; Fujioka, T.; Losio, S.; Tritto, I.; Nomura, K. Trialkylsilyl-cyclopentadienyl)titanium(IV) dichloride complexes containing ketimide ligands, Cp′TiCl2(N=CtBu2) (Cp′ = Me3SiC5H4, Et3SiC5H4), as efficient catalysts for ethylene copolymerisation with norbornene and tetracyclododecene. Catal. Sci. Technol. 2024, 15, 2757–2765. [Google Scholar] [CrossRef]
- Apisuk, W.; Ito, H.; Nomura, K. Efficient synthesis of cyclic olefin copolymers with high glass transition temperatures by ethylene copolymerization with tetracyclododecene using (tert-BuC5H4)TiCl2(N=CtBu2)–MAO Catalyst. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 2662–2667. [Google Scholar] [CrossRef]
- Zhao, W.; Nomura, K. Copolymerizations of norbornene and tetracyclododecene with α-olefins by half-titanocene catalysts: Efficient synthesis of highly transparent, thermal resistance polymers. Macromolecules 2016, 49, 59–70. [Google Scholar] [CrossRef]
- Okabe, M.; Nomura, K. Propylene/cyclic olefin copolymers with cyclopentene, cyclohexene, cyclooctene, tricyclo[6.2.1.0(2,7)]undeca-4-ene, and tetracyclododecene: The synthesis and effect of cyclic structure on thermal properties. Macromolecules 2023, 56, 81–91. [Google Scholar] [CrossRef]
- Harakawa, H.; Okabe, M.; Nomura, K. The synthesis of cyclic olefin copolymers (COCs) by ethylene copolymerisations with cyclooctene, cycloheptene, and with tricyclo[6.2.1.0(2,7)]undeca-4-ene: The effect of cyclic monomer structures on thermal properties. Polym. Chem. 2020, 11, 5590–5600. [Google Scholar] [CrossRef]
- Wang, W.; Fujiki, M.; Nomura, K. Copolymerization of ethylene with cyclohexene (CHE) catalyzed by nonbridged half-titanocenes containing aryloxo ligand: Notable effect of both cyclopentadienyl and anionic donor ligand for efficient CHE incorporation. J. Am. Chem. Soc. 2005, 127, 4582–4583. [Google Scholar] [CrossRef]
- Kitphaitun, S.; Chaimongkolkunasin, S.; Manit, J.; Makino, R.; Kadota, J.; Hirano, H.; Nomura, K. Ethylene/myrcene copolymers as new bio-based elastomers prepared by coordination polymerization using titanium catalysts. Macromolecules 2021, 54, 10049–10058. [Google Scholar] [CrossRef]
- Guo, L.; Makino, R.; Shimoyama, D.; Kadota, J.; Hirano, H.; Nomura, K. Synthesis of ethylene/isoprene copolymers containing cyclopentane/cyclohexane units as unique elastomers by half-titanocene catalysts. Macromolecules 2023, 56, 899–914. [Google Scholar] [CrossRef]
- Nomura, K.; Itagaki, K.; Fujiki, M. Efficient incorporation of 2-methyl-1-pentene in copolymerization of ethylene with 2-methyl-1-pentene catalyzed by nonbridged half-titanocenes. Macromolecules 2005, 38, 2053–2055. [Google Scholar] [CrossRef]
- Nomura, K.; Itagaki, K. Efficient incorporation of vinylcylohexane in ethylene/vinylcyclohexane copolymerization catalyzed by nonbridged half-titanocenes. Macromolecules 2005, 38, 8121–8123. [Google Scholar] [CrossRef]
- Itagaki, K.; Fujiki, M.; Nomura, K. Effect of cyclopentadienyl and anionic donor ligands on monomer reactivities in copolymerization of ethylene with 2-methyl-1-pentene by nonbridged half-titanocenes−cocatalyst systems. Macromolecules 2007, 40, 6489–6499. [Google Scholar] [CrossRef]
- Khan, F. Z.; Kakinuki, K.; Nomura, K. Copolymerization of ethylene with tert-butylethylene using nonbridged half-titanocene-cocatalyst systems. Macromolecules 2009, 42, 3767–3773. [Google Scholar] [CrossRef]
- Kitphaitun, S.; Fujimoto, T.; Ochi, Y.; Nomura, K. Effect of borate cocatalysts toward activity and comonomer incorporation in ethylene copolymerization by half-titanocene catalysts in methylcyclohexane. ACS Org. Inorg. Au. 2022, 2, 386–391. [Google Scholar] [CrossRef]
- Nomura, K.; Izawa, I.; Yi, J.; Nakatani, N.; Aoki, H.; Ina, T.; Mitsudome, T.; Tomotsu, N.; Yamazoe, S. Solution XAS analysis for exploring active species in syndiospecific styrene polymerization and 1-hexene polymerization using half-titanocene–MAO catalysts: Significant changes in the oxidation state in the presence of styrene. Organometallics 2019, 38, 4497–4507. [Google Scholar] [CrossRef]
- Sun, Z.; Unruean, P.; Aoki, H.; Kitiyanan, B.; Nomura, K. Phenoxide-modified half-titanocenes supported on star-shaped ROMP polymers as efficient catalyst precursors for ethylene copolymerization. Organometallics 2020, 39, 2998–3009. [Google Scholar] [CrossRef]
- Cherdron, H.; Brekner, M. -J.; Osan, F. Cycloolefin-copolymere: Eine neue klasse transparenter thermoplaste. Angew. Makromol. Chem. 1994, 223, 121–133. [Google Scholar] [CrossRef]
- Tritto, I.; Boggioni, L.; Ferro, D. R. Metallocene catalyzed ethene- and propene-co-norbornene polymerization: Mechanisms from a detailed microstructural analysis. Coord. Chem. Rev. 2006, 250, 212–241. [Google Scholar] [CrossRef]
- Nomura, K. Nonbridged half-titanocenes containing anionic ancillary donor ligands: Promising new catalysts for precise synthesis of cyclic olefin copolymers (COCs). Chin. J. Polym. Sci. 2008, 26, 513–523. [Google Scholar] [CrossRef]
- Li, X.; Hou, Z. Organometallic catalysts for copolymerization of cyclic olefins. Coord. Chem. Rev. 2008, 252, 1842–1869. [Google Scholar] [CrossRef]
- Zhao, W.; Nomura, K. Design of efficient molecular catalysts for synthesis of cyclic olefin copolymers (COC) by copolymerization of ethylene and α-olefins with norbornene or tetracyclododecene. Catalysts 2016, 6, 175–190. [Google Scholar] [CrossRef]
- Boggioni, L.; Tritto, I. State of the art of cyclic olefin polymers. MRS Bull. 2013, 38, 245–251. [Google Scholar] [CrossRef]
- Nomura, K. Development of half-titanocene catalysts for synthesis of cyclic olefin copolymers. Polyolefin J. 2023, 10, 59–70. [Google Scholar] [CrossRef]
- Wang, W.; Qu, S.; Li, X.; Chen, J.; Guo, Z.; Sun, W.-H. Transition metal complex catalysts promoting copolymers of cycloolefin with propylene/higher olefins. Coord. Chem. Rev. 2023, 494, 215351. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, J.; Zhang, Y.; Cui, L.; Chi, Y.; Jian, Z. Advances in high refractive index cycloolefin-containing polymeric materials. Macromolecules 2025, 58, 10949–10962. [Google Scholar] [CrossRef]
- Polyplastics, *!!! REPLACE !!!*. Topas: High-Performance Cyclic Olefin Copolymer. Available online: https://www.polyplastics.com/en/product/topas.vm (accessed on January 2026).
- Mitsui Chemicals. ApelTM Cyclic Olefin Copolymer. Available online: https://jp.mitsuichemicals.com/en/special/apel/ (accessed on January 2026).
- Selected initial reports, refs. 89-95: Ruchatz, D.; Fink, G. Ethene-norbornene copolymerization using homogeneous metallocene and half-sandwich catalysts: Kinetics and relationships between catalyst structure and polymer structure: 1. Kinetics of the ethene-norbornene copolymerization using the [(isopropylidene)(η5-inden-1-ylidene-η5-cyclopentadienyl)]zirconium dichloride/methylaluminoxane catalyst. Macromolecules 1998, 31, 4669–4673. [CrossRef]
- Ruchatz, D.; Fink, G. Ethene−norbornene copolymerization using homogenous metallocene and half-sandwich catalysts: Kinetics and relationships between catalyst structure and polymer structure: 2. Comparative study of different metallocene- and half-sandwich/methylaluminoxane catalysts and analysis of the copolymers by 13C nuclear magnetic resonance spectroscopy. Macromolecules 1998, 31, 4674–4680. [Google Scholar] [CrossRef]
- Arndt, M.; Beulich, I. C1-Symmetric metallocenes for olefin polymerisation, 1. Catalytic performance of [Me2C(3-tertBuCp)(Flu)]ZrCl2 in ethene/norbornene copolymerisation. Macromol. Chem. Phys. 1998, 199, 1221–1232. [Google Scholar] [CrossRef]
- Provasoli, A.; Ferro, D. R.; Tritto, I.; Boggioni, L. The conformational characteristics of ethylene-norbornene copolymers and their influence on the 13C NMR spectra. Macromolecules 1999, 32, 6697–6706. [Google Scholar] [CrossRef]
- Tritto, I.; Marestin, C.; Boggioni, L.; Zetta, L.; Provasoli, A.; Ferro, D. R. Ethylene-norbornene copolymer microstructure: Assessment and advances based on assignments of 13C NMR spectra. Macromolecules 2000, 33, 8931–8944. [Google Scholar] [CrossRef]
- Tritto, I.; Marestin, C.; Boggioni, L.; Brintzinger, H. H.; Ferro, D. R. Stereoregular and stereoirregular alternating ethylene-norbornene copolymers. Macromolecules 2001, 34, 5770–5777. [Google Scholar] [CrossRef]
- Tritto, I.; Boggioni, L.; Ferro, D. R. Alternating isotactic ethylene−norbornene copolymers by C1-symmetric metallocenes: Determination of the copolymerization parameters and mechanistic considerations on the basis of pentad analysis. Macromolecules 2004, 37, 9681–9693. [Google Scholar] [CrossRef]
- Selected initial reports, refs. 96-99: Harrington, B. A.; Crowther, D. J. Stereoregular, alternating ethylene–norbornene copolymers from monocyclopentadienyl catalysts activated with non-coordinating discrete anions. J. Mol. Catal. A: Chem. 1998, 128, 79–84. [CrossRef]
- McKnight, A. L.; Waymouth, R. M. Ethylene/norbornene copolymerizations with titanium CpA catalysts. Macromolecules 1999, 32, 2816–2825. [Google Scholar] [CrossRef]
- Thorshaug, K.; Mendichi, R.; Tritto, I.; Trinkle, S.; Friedrich, C.; Mülhaupt, R. Poly(ethene-co-norbornene) obtained with a constrained geometry catalyst. A study of reaction kinetics and copolymer properties. Macromolecules 2002, 35, 2903–2911. [Google Scholar] [CrossRef]
- Hasan, T.; Ikeda, T.; Shiono, T. Ethene−norbornene copolymer with high norbornene content produced by ansa-fluorenylamidodimethyltitanium complex using a suitable activator. Macromolecules 2004, 37, 8503–8509. [Google Scholar] [CrossRef]
- Selected initial reports, refs. 100-105: Altamura, P.; Grassi, A. Crystalline alternating sequences identified in ethylene-co-norbornene polymers produced by the (η5-C2B9H11)Zr(NEt2)2(NHEt2)-AliBu3 catalyst. Macromolecules 2001, 34, 9197–9200. [CrossRef]
- Yoshida, Y.; Mohri, J.; Ishii, S.; Mitani, M.; Saito, J.; Matsui, S.; Makio, H.; Nakano, T.; Tanaka, H.; Onda, M.; Yamamoto, Y.; Mizuno, A.; Fujita, T. Living copolymerization of ethylene with norbornene catalyzed by bis(pyrrolide−imine) titanium complexes with MAO. J. Am. Chem. Soc. 2004, 126, 12023–12032. [Google Scholar] [CrossRef]
- Li, X.-F.; Dai, K.; Ye, W.-P.; Pan, L.; Li, Y.-S. New titanium complexes with two β-enaminoketonato chelate ligands: Syntheses, structures, and olefin polymerization activities. Organometallics 2004, 23, 1223–1230. [Google Scholar] [CrossRef]
- Marconi, R.; Ravasio, A.; Boggioni, L.; Tritto, I. Silyl-terminated ethylene-co-norbornene copolymers by organotitanium-based catalysts. Macromol. Rapid Commun. 2009, 30, 39–44. [Google Scholar] [CrossRef]
- He, L. P.; Liu, J. L.; Li, Y. G.; Liu, S. R.; Li, Y. S. High-temperature living copolymerization of ethylene with norbornene by titanium complexes bearing bidentate [O, P] ligands. Macromolecules 2009, 42, 8566–8570. [Google Scholar] [CrossRef]
- Yang, X. H.; Wang, Z.; Sun, X. L.; Tang, Y. Synthesis, characterization, and catalytic behaviours of β-carbonylenamine-derived [O−NS]TiCl3 complexes in ethylene homo- and copolymerization. Dalton Trans. 2009, 8945–8954. [Google Scholar] [CrossRef] [PubMed]
- For example, Mitsui Chemicals Co. Production of Cyclic Olefin Copolymers with Tetracyclododecene (TCD) Using Vanadium Catalysts. Jpn. Pat. JP 2001-106730, 2001; Jpn. Pat. JP 2006-022266, 2006; Jpn. Pat. JP 2008-248171, 2008.
- Kaminsky, W.; Bark, A. Copolymerization of ethene and dimethanooctahydronaphthalene with aluminoxane containing catalysts. Polym. Int. 1992, 28, 251–253. [Google Scholar] [CrossRef]
- Kaminsky, W.; Engehausen, R.; Kopf, J. A tailor-made metallocene for the copolymerization of ethene with bulky cycloalkenes. Angew. Chem. Int. Ed. Engl. 1995, 34, 2273–2275. [Google Scholar] [CrossRef]
- Goodall, B. L.; McIntosh, L. H.; Rhodes, L. F. New catalysts for the polymerization of cyclic olefins. Macromol. Symp. 1995, 89, 421–432. [Google Scholar] [CrossRef]
- Donner, M.; Fernandes, M.; Kaminsky, W. Synthesis of copolymers with sterically hindered and polar monomers. Macromol. Symp. 2006, 236, 193–202. [Google Scholar] [CrossRef]
- Selected initial reports, see refs 111-114: Hasan, T.; Ikeda, T.; Shiono, T. Random Copolymerization of propene and norbornene with ansa-fluorenylamidodimethyltitanium-based catalysts. Macromolecules 2005, 38, 1071–1074. [CrossRef]
- Cai, Z.; Nakayama, Y.; Shiono, T. Living random copolymerization of propylene and norbornene with ansa-fluorenylamidodimethyltitanium complex: Synthesis of novel syndiotactic polypropylene-b-poly(propylene-ran-norbornene). Macromolecules 2006, 39, 2031–2033. [Google Scholar] [CrossRef]
- Shiono, T.; Sugimoto, M.; Hasan, T.; Cai, Z.; Ikeda, T. Random copolymerization of norbornene with higher 1-alkene with ansa-fluorenylamidodimethyltitanium catalyst. Macromolecules 2008, 41, 8292–8294. [Google Scholar] [CrossRef]
- Cai, Z.; Harada, R.; Nakayama, Y.; Shiono, T. Highly active living random copolymerization of norbornene and 1-alkene with ansa-fluorenylamidodimethyltitanium derivative: Substituent effects on fluorenyl ligand. Macromolecules 2010, 43, 4527–4531. [Google Scholar] [CrossRef]
- Pino, P.; Giannini, U.; Porri, L. Encyclopedia of Polymer Science and Engineering, 2nd ed.; Mark, H. F., Bikales, N. M., Overberger, C. C., Menges, G., Eds.; Wiley-Interscience: New York, 1987; Vol. 8, pp. 155–179. [Google Scholar]
- Kaminsky, W.; Bark, A.; Spiehl, R.; Möller-Linderhof, N.; Niedoba, S. Transition Metals and Organometallics as Catalysts for Olefin Polymerization; Kaminsky, W., Sinn, H., Eds.; Springer-Verlag: Berlin, 1988; pp. 291–301. [Google Scholar]
- Shaffer, T. D.; Canich, J. A. M.; Squire, K. R. metallocene-catalyzed copolymerization of ethylene and isobutylene to substantially alternating copolymers. Macromolecules 1998, 31, 5145–5147. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, Y.; Sogo, Y.; Cai, Z.; Shiono, T. Copolymerization of ethylene with 1,1-disubstituted olefins catalyzed by ansa-(fluorenyl)(cyclododecylamido)dimethyltitanium complexes. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 1223–1229. [Google Scholar] [CrossRef]
- Li, H.; Li, L.; Marks, T. J.; Liable-Sands, L.; Rheingold, A. L. Catalyst/cocatalyst nuclearity effects in single-site olefin polymerization. significantly enhanced 1-octene and isobutene comonomer enchainment in ethylene polymerizations mediated by binuclear catalysts and cocatalysts. J. Am. Chem. Soc. 2003, 125, 10788–10789. [Google Scholar] [CrossRef]
- Li, H.; Li, L.; Schwartz, D. J.; Metz, M. V.; Marks, T. J.; Liable-Sands, L.; Rheingold, A. L. Coordination copolymerization of severely encumbered isoalkenes with ethylene: enhanced enchainment mediated by binuclear catalysts and cocatalysts. J. Am. Chem. Soc. 2005, 127, 14756–14768. [Google Scholar] [CrossRef]
- Nomura, K.; Kakinuki, K.; Fujiki, M.; Itagaki, K. Direct precise functional group introduction into polyolefins: Efficient incorporation of vinyltrialkylsilanes in ethylene copolymerizations by nonbridged half-titanocenes. Macromolecules 2008, 41, 8974–8976. [Google Scholar] [CrossRef]
- Gao, Y.; Chen, J.; Wang, Y.; Pickens, D. B.; Motta, A.; Wang, Q. J.; Chung, Y.-W.; Lohr, T. L.; Marks, T. J. Highly branched polyethylene oligomers via group IV-catalysed polymerization in very nonpolar media. Nat. Catal. 2019, 2, 236–242. [Google Scholar] [CrossRef]
- Sian, L.; Dall’Anese, A.; Macchioni, A.; Tensi, L.; Busico, V.; Cipullo, R.; Goryunov, G. P.; Uborsky, D.; Voskoboynikov, A. Z.; Ehm, C.; Rocchigiani, L.; Zuccaccia, C. Role of solvent coordination on the structure and dynamics of ansa-zirconocenium ion pairs in aromatic hydrocarbons. Organometallics 2022, 41, 547–560. [Google Scholar] [CrossRef]
- Baumann, R.; Davis, W. M.; Schrock, R. R. Synthesis of titanium and zirconium complexes that contain the tridentate diamido ligand, [((t-Bu-d6)N-o-C6H4)2O]2- ([NON]2-) and the living polymerization of 1-hexene by activated [NON]ZrMe2. J. Am. Chem. Soc. 1997, 119, 3830–3831. [Google Scholar] [CrossRef]
- Gandini, A. Polymers from renewable resources: A challenge for the future of macromolecular materials. Macromolecules 2008, 41, 9491–9504. [Google Scholar] [CrossRef]
- Coates, G. W.; Hillmyer, M. A. A virtual issue of Macromolecules: Polymers from renewable resources. Macromolecules 2009, 42, 7987–7989. [Google Scholar] [CrossRef]
- Yao, K.; Tang, C. Controlled polymerization of next-generation renewable monomers and beyond. Macromolecules 2013, 46, 1689–1712. [Google Scholar] [CrossRef]
- Satoh, K. Controlled/living polymerization of renewable vinyl monomers into bio-based polymers. Polym. J. 2015, 47, 527–536. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, L.; Tang, C. Sustainable elastomers from renewable biomass. Acc. Chem. Res. 2017, 50, 1762–1773. [Google Scholar] [CrossRef]
- Polymers from Plant Oils, 2nd ed.; Gandini, A., Lacerda, T. M., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ; Scrivener Publishing LLC: Beverly, MA, 2019. [Google Scholar]
- Fagnani, D. E.; Tami, J. L.; Copley, G.; Clemons, M. N.; Getzler, Y. D. Y. L.; McNeil, A. J. 100th Anniversary of macromolecular science viewpoint: Redefining sustainable polymers. ACS Macro Lett. 2021, 10, 41–53. [Google Scholar] [CrossRef]
- Haque, F. M.; Ishibashi, J. S. A. A.; Lidston, C. A. L. L.; Shao, H.; Bates, F. S.; Chang, A. B.; Coates, G. W.; Cramer, C. J.; Dauenhauer, P. J.; Dichtel, W. R.; Ellison, C. J.; Gormong, E. A.; Hamachi, L. S.; Hoye, T. R.; Jin, M; Kalow, J. A. Kim, H. J.; Kumar, G.; LaSalle, C. J.; Liffland, S.; Lipinski, B. M.; Pang, Y.; Parveen, R.; Peng, X.; Popowski, V.; Prebihalo, E. A.; Reddi, Y.; Reineke, T. M.; Sheppard, D. T.; Swartz, J. L.; Tolman, W. B.; Vlaisavljevich, B.; Wissinger, J.; Xu, S.; Hillmyer, M. A. Defining the macromolecules of tomorrow through synergistic sustainable polymer research. Chem. Rev. 2022, 122, 6322–6373. [CrossRef]
- Wilbon, P. A.; Chu, F.; Tang, C. Progress in renewable polymers from natural terpenes, terpenoids, and rosin. Macromol. Rapid Comm. 2013, 34, 8–37. [Google Scholar] [CrossRef]
- Thomsett, M. R.; Storr, T. E.; Monaphan, O. R.; Stockman, R. A.; Howdle, S. M. Progress in the synthesis of sustainable polymers from terpenes and terpenoids. Green Materials 2016, 4, 115–134. [Google Scholar] [CrossRef]
- Kawamura, K.; Nomura, K. Ethylene copolymerization with limonene and β-pinene: new bio-based polyolefins prepared by coordination polymerization. Macromolecules 2021, 54, 4693–4703. [Google Scholar] [CrossRef]
- Ren, X.; Guo, F.; Fu, H.; Song, Y.; Li, Y.; Hou, Z. Scandium-catalyzed copolymerization of myrcene with ethylene and propylene: Convenient syntheses of versatile functionalized polyolefins. Polym. Chem. 2018, 9, 1223–1233. [Google Scholar] [CrossRef]
- For example, refs. 137-143: Georges, S.; Touré, A. O.; Visseaux, M.; Zinck, P. Coordinative chain transfer copolymerization and terpolymerization of conjugated dienes. Macromolecules 2014, 47, 4538–4547. [CrossRef]
- Liu, B.; Li, L.; Sun, G.; Liu, D.; Li, S.; Cui, D. Isoselective 3,4-(co)polymerization of bio-renewable myrcene using NSN-ligated rare-earth metal precursor: an approach to a new elastomer. Chem. Commun. 2015, 51, 1039–1041. [Google Scholar] [CrossRef] [PubMed]
- Naddeo, M.; Buonerba, A.; Luciano, E.; Grassi, A.; Proto, A.; Capacchione, C. Stereoselective polymerization of biosourced terpenes β-myrcene and β-ocimene and their copolymerization with styrene promoted by titanium catalysts. Polymer 2017, 131, 151–159. [Google Scholar] [CrossRef]
- Laur, E.; Welle, A.; Vantomme, A.; Brusson, J.-M.; Carpentier, J.-F.; Kirillov, E. Stereoselective copolymerization of styrene with terpenes catalyzed by an ansa-lanthanidocene catalyst: Access to new syndiotactic polystyrene-based materials. Catalysts 2017, 7, 361–372. [Google Scholar] [CrossRef]
- Li, W.; Zhao, J.; Zhang, X.; Gong, D. Capability of PN3-type cobalt complexes toward selective (co-)polymerization of myrcene, butadiene, and isoprene: Access to biosourced polymers. Ind. Eng. Chem. Res. 2019, 58, 2792–2800. [Google Scholar] [CrossRef]
- González-Zapata, J. L.; Enríquez-Medrano, F. J.; López González, H. R.; Revilla-Vázquez, J.; Carrizales, R. M.; Georgouvelas, D.; Valencia, L.; Díaz de León Gómez, R. E. Introducing random bio-terpene segments to high cis-polybutadiene: making elastomeric materials more sustainable. RSC Adv. 2020, 10, 44096–44102. [Google Scholar] [CrossRef]
- Lamparelli, D. H.; Paradiso, V.; Monica, F. D.; Proto, A.; Guerra, S.; Giannini, L.; Capacchione, C. Toward more sustainable elastomers: Stereoselective copolymerization of linear terpenes with butadiene. Macromolecules 2020, 53, 1665–1673. [Google Scholar] [CrossRef]
- Talsi, E.; Bryliakov, K. Application of EPR and NMR Spectroscopy in Homogeneous Catalysis; CRC Press, Taylor & Francis: Boca Raton, FL, USA, 2017. [Google Scholar]
- Goswami, M.; Chirila, A.; Rebreyend, C.; de Bruin, B. EPR spectroscopy as a tool in homogeneous catalysis research. Top Catal. 2015, 58, 719–750. [Google Scholar] [CrossRef]
- Boča, R. Zero-field splitting in metal complexes. Coord. Chem. Rev. 2004, 248, 757–815. [Google Scholar] [CrossRef]
- Krzystek, J.; Ozarowski, A.; Telser, J.; Crans, D. C. High-frequency and -field electron paramagnetic resonance of vanadium(IV, III, and II) complexes. Coord. Chem. Rev. 2015, 301–302, 123–133. [Google Scholar] [CrossRef]
- Selected initial reports, see refs 148-159: Nomura, K.; Mitsudome, T.; Yamazoe, S. Direct observation of catalytically active species in reaction solution by x-ray absorption spectroscopy (XAS). Jpn. J. Appl. Phys. 2019, 58, 100502. [CrossRef]
- Nomura, K. Solution x-ray absorption spectroscopy (XAS) for analysis of catalytically active species in reactions with ethylene by homogeneous (imido)vanadium(V) complexes–Al cocatalyst systems. Catalysts 2019, 9, 1016. [Google Scholar] [CrossRef]
- Bartlett, S. A.; Moulin, J.; Tromp, M.; Reid, G.; Dent, A. J.; Cibin, G.; McGuinness, D. S.; Evans, J. Activation of [CrCl3{R-SN(H)S-R}] catalysts for selective trimerization of ethene: A freeze-quench Cr K-edge XAFS study. ACS Catal. 2014, 4, 4201–4204. [Google Scholar] [CrossRef]
- Takaya, H.; Nakajima, S.; Nakagawa, N.; Isozaki, K.; Iwamoto, T.; Imayoshi, R.; Gower, N. J.; Adak, L.; Hatakeyama, T.; Honma, T.; Takagaki, M.; Sunada, Y.; Nagashima, H.; Hashizume, D.; Takahashi, O.; Nakamura, M. Bull. Chem. Soc. Jpn. 2015, 88, 410–418. [CrossRef]
- Nomura, K.; Mitsudome, T.; Igarashi, A.; Nagai, G.; Tsutsumi, K.; Ina, T.; Omiya, T.; Takaya, H.; Yamazoe, S. Synthesis of (adamantylimido)vanadium(V) dimethyl complex containing (2-anilidomethyl)pyridine ligand and selected reactions: Exploring the oxidation state of the catalytically active species in ethylene dimerization. Organometallics 2017, 36, 530–542. [Google Scholar] [CrossRef]
- Nagai, G.; Mitsudome, T.; Tsutsumi, K.; Sueki, S.; Ina, T.; Tamm, M.; Nomura, K. Effect of Al cocatalyst in ethylene and ethylene/norbornene (co)polymerization by (imido)vanadium dichloride complexes containing anionic N-heterocyclic carbenes having weakly coordinating borate moiety. J. Jpn. Petrol. Inst. 2017, 60, 256–262. [Google Scholar] [CrossRef]
- Nomura, K.; Oshima, M.; Mitsudome, T.; Harakawa, H.; Hao, P.; Tsutsumi, K.; Nagai, G.; Ina, T.; Takaya, H.; Sun, W. -H.; Yamazoe, S. Synthesis and structural analysis of (imido)vanadium dichloride complexes containing 2-(2’-benz-imidazolyl)pyridine ligands: effect of al cocatalyst for efficient ethylene (co)polymerization. ACS Omega 2017, 2, 8660−8673. [Google Scholar] [CrossRef]
- Nomura, K.; Tsutsumi, K.; Nagai, G.; Omiya, T.; Ina, T.; Yamazoe, S.; Mitsudome, T. S. Solution XAS analysis of various (imido)vanadium(V) dichloride complexes containing monodentate anionic ancillary donor ligands: Effect of aluminium cocatalyst in ethylene/norbornene (co)polymerization. J. Jpn. Petrol. Inst. 2018, 61, 282−287. [Google Scholar] [CrossRef]
- Kuboki, M.; Nomura, K. (Arylimido)niobium(V) complexes containing 2-pyridylmethylanilido ligand as catalyst precursors for ethylene dimerization that proceeds via cationic Nb(V) species. Organometallics 2019, 38, 1544−1559. [Google Scholar] [CrossRef]
- Hirano, M.; Sano, K.; Kanazawa, Y.; Komine, N.; Maeno, Z.; Mitsudome, T.; Takaya, H. Mechanistic insights on pd/cu-catalyzed dehydrogenative coupling of dimethyl phthalate. ACS Catal. 2018, 8, 5827−5841. [Google Scholar] [CrossRef]
- Nomura, K.; Nagai, G.; Izawa, I.; Mitsudome, T.; Tamm, M.; Yamazoe, S. XAS analysis of reactions of (arylimido)vanadium(v) dichloride complexes containing anionic NHC that contains a weakly coordinating B(C6F5)3 moiety (WCA-NHC) or phenoxide ligands with Al alkyls: A Potential ethylene polymerization catalyst with WCA-NHC ligands. ACS Omega 2019, 4, 18833−18845. [Google Scholar] [CrossRef]
- Agata, R.; Takaya, H.; Matsuda, H.; Nakatani, N.; Takeuchi, K.; Iwamoto, T.; Hatakeyama, T.; Nakamura, N. Iron-catalyzed cross coupling of aryl chlorides with alkyl grignard reagents: Synthetic scope and FeII/FeIV Mechanism supported by x-ray absorption spectroscopy and density functional theory calculations. Bull. Chem. Soc. Jpn. 2019, 92, 381−390. [Google Scholar] [CrossRef]
- For examples, refs. 160-164: Thomas, J. M.; Sankar, G. J. The role of XAFS in the in situ and ex situ elucidation of active sites in designed solid catalysts. Synch. Rad. 2001, 8, 55−60. [CrossRef]
- Dent, A. J. Development of time-resolved XAFS instrumentation for quick EXAFS and energy-dispersive EXAFS measurements on catalyst systems. Top. Catal. 2002, 18, 27−35. [Google Scholar] [CrossRef]
- Thomas, J. M.; Catlow, C. R. A.; Sankar, G. Determining the structure of active sites, transition states and intermediates in heterogeneously catalysed reactions. Chem. Commun. 2002, 24, 2921−2925. [Google Scholar] [CrossRef]
- Bare, S. R.; Ressler, T. Chapter 6 characterization of catalysts in reactive atmospheres by X-ray absorption spectroscopy. Adv. Catal. 2009, 52, 339−465. [Google Scholar] [CrossRef]
- XAFS Techniques for Catalysts, Nanomaterials, and Surfaces; Iwasawa, Y., Asakura, K., Tada, M., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Srivastava, U. C.; Nigam, H. L. X-ray absorption edge-structure of compounds of some transition elements. Coord. Chem. Rev. 1973, 9, 275–310. [Google Scholar] [CrossRef]
- Wong, J.; Lytle, F. W.; Messmer, R. P.; Maylotte, D. H. K-edge absorption spectra of selected vanadium compounds. Phys. Rev. B 1984, 30, 5596−5610. [Google Scholar] [CrossRef]
- Wu, Z.; Xian, D. C.; Natoli, C. R.; Marceli, A.; Paris, E.; Mottana, A. Symmetry dependence of x-ray absorption near-edge structure at the metal edge of transition metal compounds. Appl. Phys. Lett. 2001, 79, 1918−1920. [Google Scholar] [CrossRef]
- Rehr, J. J.; Ankudinov, A. L. Progress in the theory and interpretation of XANES. Coord. Chem. Rev. 2005, 249(1−2), 131−140. [Google Scholar] [CrossRef]
- Yamamoto, T. Assignment of pre-edge peaks in K-edge x-ray absorption spectra of 3d transition metal compounds: electric dipole or quadrupole? X-Ray Spectrom. 2008, 37, 572−584. [Google Scholar] [CrossRef]
- Glatzel, P.; Smolentsev, G.; Bunker, G. The electronic structure in 3d transition metal complexes: Can we measure oxidation states? J. Phys.: Conf. Ser. 2009, 190, 012046. [Google Scholar] [CrossRef]
- Yi, J.; Nakatani, N.; Nomura, K.; Hada, M. Time-dependent DFT study of the K-edge spectra of vanadium and titanium complexes: effects of chloride ligands on pre-edge features. Phys. Chem. Chem. Phys. 2020, 22, 674−682. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, T.; Kosugi, N.; Kuroda, H. Polarized xanes spectra of CuCl2 · 2H2O: Further evidence for shake-down phenomena. Chem. Phys. 1986, 103, 101−109. [Google Scholar] [CrossRef]
- Bair, R. A.; Goddard, W. A., III. Ab initio studies of the x-ray absorption edge in copper complexes: I. Atomic Cu2+ and Cu(II)Cl2. Phys. Rev. B 1980, 22, 2767−2776. [Google Scholar] [CrossRef]
- Hu, P.; Hu, P.; Vu, T. D.; Li, M.; Wang, S.; Ke, Y.; Zeng, X.; Mai, L.; Long, Y. Vanadium oxide: Phase diagrams, structures, synthesis, and applications. Chem.Rev 2023, 123, 4353−4415. [Google Scholar] [CrossRef]
- Asakura, H.; Shishido, T.; Yamazoe, S.; Teramura, K.; Tanaka, T. Structural analysis of group V, VI, and VII metal compounds by XAFS. J. Phys. Chem. C 2011, 115, 23653−23663. [Google Scholar] [CrossRef]
- Yamamoto, T. What is the origin of pre-edge peaks in K-edge XANES spectra of 3d transition metals: electric dipole or quadrupole? Adv. X-Ray. Chem. Anal. Japan 2007, 38, 45−65. [Google Scholar]
- Grassi, A.; Zambelli, A.; Laschi, F. Reductive decomposition of cationic half-titanocene(IV) complexes, precursors of the active species in syndiospecific styrene polymerization. Organometallics 1996, 15, 480−482. [Google Scholar] [CrossRef]
- Minieri, G.; Corradini, P.; Guerra, G.; Zambelli, A.; Cavallo, L. A theoretical study of syndiospecific styrene polymerization with Cp-based and Cp-free titanium catalysts: 2. Mechanism of chain-end stereocontrol. Macromolecules 2001, 34, 5379−5385. [Google Scholar] [CrossRef]
- Mahanthappa, M. K.; Waymouth, R. M. Titanium-mediated syndiospecific styrene polymerizations: Role of oxidation state. J. Am. Chem. Soc. 2001, 123, 12093−12094. [Google Scholar] [CrossRef]
- Tomotsu, N.; Shozaki, H.; Aida, M.; Takeuchi, M.; Yokota, K.; Aoyama, Y.; Ikeuchi, S.; Inoue, T. Future Technology for Polyolefin and Olefin Polymerization Catalysis; Terano, M., Shiono, T., Eds.; Technology and Education Publishers: Tokyo, 2002; pp. 49–54. [Google Scholar]
- Zhang, H.; Byun, D.-J.; Nomura, K. Tuning the active species from syndiospecific styrene polymerisation to ethylene/styrene copolymerisation by (aryloxo)(cyclopentadienyl)titanium complexes–MAO catalysts. Dalton Trans 2007, 1802–1806. [CrossRef]
- Nomura, K.; Komatsu, T.; Imanishi, Y. Polymerization of 1-hexene, 1-octene catalyzed by Cp′TiCl2(O-2,6-iPr2C6H3)–MAO system: Unexpected increase of the catalytic activity for ethylene/1-hexene copolymerization by (1,3-tBu2C5H3)TiCl2(O-2,6-iPr2C6H3)–MAO catalyst system. J. Mol. Catal. A: Chem. 2000, 152, 249‒252. [Google Scholar] [CrossRef]
- Yi, J.; Nakatani, N.; Tomotsu, N.; Nomura, K.; Hada, M. Theoretical study of reaction mechanism for half-titanocene-catalyzed styrene polymerization, ethylene polymerization, and styrene-ethylene copolymerization: Roles of the neutral Ti(III) and the cationic Ti(IV) species. Organometallics 2021, 40, 643‒653. [Google Scholar] [CrossRef]
- Jantawan, K.; Groth, L.; Frank, R.; Chatchaipaiboon, K.; Tamm, M.; Nomura, K. Half-titanocenes bearing unsymmetric imidazolin-2-iminato ligand that exhibit efficient cyclic olefin incorporation in ethylene copolymerization. ACS Polym. Au submitted revision.















| cat. (μmol) | temp. / ºC |
E / atm |
NBEb / M |
activityc |
Mnd ×10-4 |
Mw/ Mnd |
Tge / ºC |
NBEf / mol% |
| SBI (0.10) | 25 | 4 | 0.2 | 28900 | 23.1 | 2.02 | 10.8 | |
| SBI (0.10) | 25 | 4 | 1.0 | 4860 | 22.9 | 2.37 | 29.5 | |
| CGC (0.50) | 25 | 4 | 0.2 | 2460 | 21.1 | 1.88 | 9.6 | |
| CGC (0.50) | 25 | 4 | 1.0 | 2000 | 12.8 | 2.15 | 26.5 | |
| 2a (0.02) | 80 | 4 | 1.0 | 133000 | 33.8 | 2.34 | 61.7 | |
| 2a (0.02) | 60 | 4 | 1.0 | 194000 | 47.5 | 2.20 | 51.2 | |
| 2a (0.02) | 40 | 4 | 1.0 | 48900 | 62.0 | 2.37 | 45.9 | |
| 2a (0.02) | 25 | 4 | 1.0 | 40200 | 71.9 | 2.92 | 40.7 | |
| 2a (0.02)g | 25 | 4 | 1.0 | 59700 | 61.3 | 2.18 | 41.0 | |
| 2a (0.01)h | 25 | 2 | 2.5 | 90000 | 32.3 | 2.09 | 58.8 | |
| 2a (0.01)h | 25 | 2 | 5.0 | 85800 | 34.0 | 2.00 | 65.8 | |
| 2a (0.01)h | 25 | 2 | 10.0 | 31500 | 44.4 | 2.01 | 73.5 | |
| 2b (0.01)i | 25 | 4 | 1.0 | 68400 | 62.4 | 2.78 | 38.2 | |
| 2b (0.10)i | 25 | 4 | 5.0 | 15000 | 17.5 | 2.05 | 52.7 | |
| 2c (0.02)i | 25 | 4 | 1.0 | 28300 | 79.5 | 1.82 | 99.6 | 36.2 |
| 2c (0.05)i | 50 | 2 | 6.0 | 32700 | 55.2 | 2.04 | 238 | 72.7j |
| 2d (0.01)i | 25 | 4 | 1.0 | 49800 | 82.9 | 2.06 | 94.1 | 37.5j |
| 2d (0.01)i | 50 | 4 | 1.0 | 91400 | 110 | 1.94 | 113 | 42.1j |
| 4 (0.20) | 25 | 4 | 1.0 | 6180 | 108 | 2.53 | 31.4 | |
| 4 (0.20) | 80 | 4 | 1.0 | 5780 | 80.0 | 2.35 | 36.9 |
| cat. (μmol) | E / atm |
TCDb / M |
temp. / ºC |
activityc |
Mnd ×10-5 |
Mw /Mnd |
Tge / ºC |
TCDf / mol% |
| CGC (0.05) | 6 | 1.0 | 25 | 13900 | 14.3 | 1.58 | 56 | |
| 2a (0.80) | 6 | 2.0 | 25 | 1650 | 1.92 | 1.41 | 150 | |
| 2b (0.02) | 6 | 1.0 | 25 | 43700 | 5.88 | 1.60 | 108 | 25.6 |
| 2b (0.02) | 6 | 2.0 | 25 | 23900 | 6.38 | 1.50 | 153 | 32.8 |
| 2b (0.02) | 6 | 2.0 | 40 | 27800 | 6.43 | 1.67 | 170 | 33.5g |
| 2b (0.02) | 6 | 2.0 | 60 | 33300 | 6.53 | 1.72 | 177 | 35.3 |
| 2b (0.02) | 6 | 3.0 | 25 | 16800 | 6.43 | 1.61 | 171 | 33.6g |
| 2b (0.02) | 6 | 4.0 | 60 | 22400 | 6.08 | 1.61 | 203 | 36.7 |
| 2c (0.02) | 6 | 1.0 | 25 | 33400 | 17.3 | 2.03 | 102 | 23.7g |
| 2c (0.05) | 6 | 4.0 | 25 | 7710 | 6.41 | 2.03 | 202 | 42.5g |
| 2c (0.10) | 4 | 4.0 | 50 | 2560 | 3.90 | 1.95 | 255 | 52.3g |
| 2d (0.02) | 6 | 1.0 | 25 | 55900 | 7.29 | 1.88 | 119 | 26.9g |
| 2d (0.04) | 6 | 4.0 | 25 | 15700 | 5.40 | 2.41 | 203 | 41.9 |
| 2d (0.10) | 4 | 2.0 | 50 | 9550 | 5.76 | 1.53 | 186 | 38.3 |
| 2d (0.20) | 4 | 3.0 | 50 | 7790 | 3.98 | 1.72 | 234 | 48.3g |
| 2d (0.10) | 4 | 4.0 | 50 | 3790 | 2.79 | 1.79 | 244 | 50.3g |
| cat. (μmol) | E/ atm | comonomer/ Mb | activityc | Mnd×10-4 | Mw/Mnd | cont.e/ mol% | |
| 1a (0.10) | 4 | --- | - | 12100 | 40.0 | 3.70 | |
| 1a (0.50) | 6 | 2M1P | 1.35 | 6980 | 13.0 | 1.70 | |
| 1a (0.50)f | 6 | 2M1P | 1.35 | 8460 | 12.0 | 2.10 | 3.3 |
| 1a (0.50)f | 6 | 2M1P | 2.70 | 5760 | 10.0 | 1.80 | 5.7 |
| 1a (0.50)f | 4 | 2M1P | 1.35 | 4240 | 6.50 | 2.00 | 5.0 |
| 1a (0.50)f | 4 | 2M1P | 2.70 | 2680 | 4.90 | 1.60 | 9.4 |
| 1d (2.0) | 6 | 2M1P | 1.35 | 573 | 5.80 | 2.00 | |
| 2a (0.20) | 6 | 2M1P | - | 19100 | 53.0 | 2.10 | |
| 2a (0.20) | 6 | 2M1P | 1.35 | 10100 | 43.0 | 2.00 | |
| 2a (0.20) | 6 | 2M1P | 2.70 | 6960 | 34.0 | 1.80 | 0.3 |
| CGC (1.0)g | 6 | 2M1P | 2.70 | 1840 | 12.0 | 2.40 | 0.3 |
| CGC (1.0)g | 4 | 2M1P | 1.35 | 1420 | 9.70 | 2.50 | |
| CGC (1.0)g | 4 | 2M1P | 2.70 | 1320 | 7.40 | 2.40 | 0.4 |
| 1a (0.20) | 6 | TBE | 1.29 | 14100 | 15.5 | 2.00 | trace |
| 1a (0.50) | 6 | VTMS | 1.15 | 1870 | 30.5 | 1.90 | 5.1 |
| 1d (1.0) | 6 | TBE | 2.58 | 3310 | 11.7 | 2.50 | 1.3 |
| 1d (1.0)h | 4 | TBE | 1.60 | 2020 | 8.17 | 2.40 | 3.3 |
| 1d (2.0)h | 2 | TBE | 1.60 | 918 | 7.27 | 2.10 | 4.4 |
| 1d (2.0)h | 2 | TBE | 3.90 | 756 | 4.04 | 2.00 | 6.8 |
| 1d (0.20) | 6 | VTMS | 1.15 | 92 | 1.41 | 2.80 | 13.6 |
| 2a (0.20) | 6 | TBE | 1.29 | 7830 | 71.1 | 1.90 | trace |
| 2a (0.20) | 6 | TBE | 2.58 | 6000 | 68.7 | 1.90 | trace |
| 2a (1.0) | 6 | VTMS | 1.15 | 3730 | 57.3 | 2.30 | 11.9 |
| 2a (1.0) | 4 | VTMS | 1.15 | 1560 | 42.2 | 2.30 | 18.7 |
| CGC (0.25) | 6 | TBE | 1.29 | 3020 | 32.0 | 2.00 | none |
| CGC (0.25) | 6 | VTMS | 1.15 | 2280 | 36.7 | 2.50 | 10.4 |
| atoma | Cp*TiCl2(OAr) (1a) | 1a + 10 equiv MAOe | 1a + 50 equiv MAOe | ||||||
| C.N.b | r (Å)c | D.W.d | C.N.b | r (Å)c | D.W.d | C.N.b | r (Å)c | D.W.d | |
| O | 1.3(1) | 1.803(6) | 0.0013(10) | 2.3(2) | 1.81(1) | 0.0035 (12) | 3.4(6) | 1.87(1) | 0.0059(25) |
| C | 4.7(9) | 2.42(1) | 0.0030(19) | 5.5(9) | 2.13(2) | 0.0047(22) | 4.5(9) | 2.14(1) | 0.0040(30) |
| Cl | 2.4(3) | 2.269(7) | 0.0047(13) | 0.9(3) | 2.18(3) | 0.0062(49) | |||
| atoma | (tBuC5H4)TiCl2(OAr)e (1d) | 1d + 50 equiv MAO + 200 equiv styrenee | ||||
| C.N.b | r (Å)c | D.W.d | C.N.b | r (Å)c | D.W.d | |
| O | 1.3(1) | 1.76(1) | 0.0010(5) | 0.7(4) | 1.80(2) | 0.0064(54) |
| Cl | 1.7(1) | 2.25(1) | 0.0012(4) | --- | --- | --- |
| C1 | 5.2(9) | 2.41(2) | 0.0055(45) | 5.2(3) | 2.40(1) | 0.0040(15) |
| C2 | --- | --- | --- | 1.3(6) | 1.95(3) | 0.0034(28) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
