Submitted:
25 November 2025
Posted:
26 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Sarcopenia
2.1. Definition
2.2. Prevalence
2.3. Sarcopenia in Relation with Malnutrition and Frailty
3. Techniques for the Assessment of Muscle Mass
3.1. Creatinine Kinetics (CK)
3.2. Anthropometry
3.3. Imaging Techniques
3.4. Bioimpedance Spectroscopy
3.5. Modified Creatinine Index (MCrI)
4. Challenges and Further Directions
Author Contributions
Funding
Ethics and Consent to Participate Declarations
Consent to Publish Declaration
Competing Interests
References
- Bello AK: Okpechi IG, Osman MA, Cho Y, Cullis B, Htay H, et al. Epidemiology of peritoneal dialysis outcomes. Nat Rev Nephrol. 2022;18(12):779-93. Epub 20220916. [CrossRef] [PubMed] [PubMed Central]
- Shammas A, Joshi S, Shah AD. Nutrition in Peritoneal Dialysis. Adv Kidney Dis Health. 2023;30(6):537-45. [CrossRef] [PubMed]
- Duarte MP, Almeida LS, Neri SGR, Oliveira JS, Wilkinson TJ, Ribeiro HS, et al. Prevalence of sarcopenia in patients with chronic kidney disease: a global systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2024;15(2):501-12. Epub 20240124. [CrossRef] [PubMed] [PubMed Central]
- Powers SK, Lynch GS, Murphy KT, Reid MB, Zijdewind I. Disease-Induced Skeletal Muscle Atrophy and Fatigue. Med Sci Sports Exerc. 2016;48(11):2307-19. [CrossRef] [PubMed] [PubMed Central]
- Chen LK, Woo J, Assantachai P, Auyeung TW, Chou MY, Iijima K, et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc. 2020;21(3):300-7 e2. Epub 20200204. [CrossRef] [PubMed]
- Carrero JJ, Johansen KL, Lindholm B, Stenvinkel P, Cuppari L, Avesani CM. Screening for muscle wasting and dysfunction in patients with chronic kidney disease. Kidney Int. 2016;90(1):53-66. Epub 20160506. [CrossRef] [PubMed]
- Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. 2010;39(4):412-23. Epub 20100413. [CrossRef] [PubMed] [PubMed Central]
- Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16-31. [CrossRef] [PubMed] [PubMed Central]
- Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011;12(4):249-56. Epub 20110304. [CrossRef] [PubMed] [PubMed Central]
- Lee WJ, Liu LK, Peng LN, Lin MH, Chen LK, Group IR. Comparisons of sarcopenia defined by IWGS and EWGSOP criteria among older people: results from the I-Lan longitudinal aging study. J Am Med Dir Assoc. 2013;14(7):528 e1-7. Epub 20130510. [CrossRef] [PubMed]
- Carvalho do Nascimento PR, Bilodeau M, Poitras S. How do we define and measure sarcopenia? A meta-analysis of observational studies. Age and Ageing. 2021;50(6):1906-13. [CrossRef]
- Shu X, Lin T, Wang H, Zhao Y, Jiang T, Peng X, et al. Diagnosis, prevalence, and mortality of sarcopenia in dialysis patients: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2022;13(1):145-58. Epub 20220105. [CrossRef] [PubMed] [PubMed Central]
- Wathanavasin W, Banjongjit A, Avihingsanon Y, Praditpornsilpa K, Tungsanga K, Eiam-Ong S, et al. Prevalence of Sarcopenia and Its Impact on Cardiovascular Events and Mortality among Dialysis Patients: A Systematic Review and Meta-Analysis. Nutrients. 2022;14(19):4077. PubMed PMID:. [CrossRef]
- Mori K, Nishide K, Okuno S, Shoji T, Emoto M, Tsuda A, et al. Impact of diabetes on sarcopenia and mortality in patients undergoing hemodialysis. BMC Nephrol. 2019;20(1):105. Epub 20190328. [CrossRef] [PubMed] [PubMed Central]
- Ding Y, Chang L, Zhang H, Wang S. Predictive value of phase angle in sarcopenia in patients on maintenance hemodialysis. Nutrition. 2022;94:111527. Epub 20211029. [CrossRef] [PubMed]
- Umakanthan M, Li JW, Sud K, Duque G, Guilfoyle D, Cho K, et al. Prevalence and Factors Associated with Sarcopenia in Patients on Maintenance Dialysis in Australia-A Single Centre, Cross-Sectional Study. Nutrients. 2021;13(9). Epub 20210920. [CrossRef] [PubMed] [PubMed Central]
- Shen Yiwei SX, Liu Miao, Yu Zanzhe, Yan Hao, Ma Dahua, Yuan Jiangzi, Ni Zhaohui, Fang Wei. Prevalence and risk factors of sarcopenia in peritoneal dialysis patients. Chinese Journal of Nephrology. 2019;35(4):268-74. [CrossRef]
- Yoowannakul S, Tangvoraphonkchai K, Davenport A. The prevalence of muscle wasting (sarcopenia) in peritoneal dialysis patients varies with ethnicity due to differences in muscle mass measured by bioimpedance. Eur J Clin Nutr. 2018;72(3):381-7. Epub 20171121. [CrossRef] [PubMed]
- Chen Y, Wu J, Ran L, Yu D, Chen X, Liu M. The combination of phase angle and age has a good diagnostic value for sarcopenia in continuous ambulatory peritoneal dialysis patients. Front Nutr. 2022;9:1036796. Epub 20221115. [CrossRef] [PubMed] [PubMed Central]
- Qiao YS, Chai YH, Gong HJ, Zhuldyz Z, Stehouwer CDA, Zhou JB, et al. The Association Between Diabetes Mellitus and Risk of Sarcopenia: Accumulated Evidences From Observational Studies. Front Endocrinol (Lausanne). 2021;12:782391. Epub 20211223. [CrossRef] [PubMed] [PubMed Central]
- Pacifico J, Geerlings MAJ, Reijnierse EM, Phassouliotis C, Lim WK, Maier AB. Prevalence of sarcopenia as a comorbid disease: A systematic review and meta-analysis. Exp Gerontol. 2020;131:110801. Epub 20191228. [CrossRef] [PubMed]
- Cederholm T, Jensen GL, Correia M, Gonzalez MC, Fukushima R, Higashiguchi T, et al. GLIM criteria for the diagnosis of malnutrition - A consensus report from the global clinical nutrition community. J Cachexia Sarcopenia Muscle. 2019;10(1):207-17. [CrossRef] [PubMed] [PubMed Central]
- Bilski J, Pierzchalski P, Szczepanik M, Bonior J, Zoladz JA. Multifactorial Mechanism of Sarcopenia and Sarcopenic Obesity. Role of Physical Exercise, Microbiota and Myokines. Cells. 2022;11(1). Epub 20220104. [CrossRef] [PubMed] [PubMed Central]
- Wilkinson TJ, Miksza J, Yates T, Lightfoot CJ, Baker LA, Watson EL, et al. Association of sarcopenia with mortality and end-stage renal disease in those with chronic kidney disease: a UK Biobank study. J Cachexia Sarcopenia Muscle. 2021;12(3):586-98. Epub 20210505. [CrossRef] [PubMed] [PubMed Central]
- Ng JK-C, Than WH, Szeto CC. Obesity, Weight Gain, and Fluid Overload in Peritoneal Dialysis. Frontiers in Nephrology (Online). 2022;2:880097-. [CrossRef]
- Donini LM, Busetto L, Bischoff SC, Cederholm T, Ballesteros-Pomar MD, Batsis JA, et al. Definition and Diagnostic Criteria for Sarcopenic Obesity: ESPEN and EASO Consensus Statement. Obes Facts. 2022;15(3):321-35. Epub 20220223. [CrossRef] [PubMed] [PubMed Central]
- James K, Jamil Y, Kumar M, Kwak MJ, Nanna MG, Qazi S, et al. Frailty and Cardiovascular Health. Journal of the American Heart Association. 2024;13(15):e031736. doi: doi:10.1161/JAHA.123.031736.
- Rolland Y, Abellan van Kan G, Benetos A, Blain H, Bonnefoy M, Chassagne P, et al. Frailty, osteoporosis and hip fracture: causes, consequences and therapeutic perspectives. J Nutr Health Aging. 2008;12(5):335-46. [CrossRef] [PubMed]
- Mutz J, Choudhury U, Zhao J, Dregan A. Frailty in individuals with depression, bipolar disorder and anxiety disorders: longitudinal analyses of all-cause mortality. BMC Med. 2022;20(1):274. Epub 20220830. [CrossRef] [PubMed] [PubMed Central]
- Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. Lancet. 2013;381(9868):752-62. Epub 20130208. [CrossRef] [PubMed] [PubMed Central]
- Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146-56. [CrossRef] [PubMed]
- Martin FC, Ranhoff AH. Frailty and Sarcopenia. In: Falaschi P, Marsh D, editors. Orthogeriatrics: The Management of Older Patients with Fragility Fractures. 2nd ed. Cham (CH)2021. p. 53-65.
- Forbes GB, Bruining GJ. Urinary creatinine excretion and lean body mass. Am J Clin Nutr. 1976;29(12):1359-66. [CrossRef] [PubMed]
- Szeto CC, Kong J, Wu AK, Wong TY, Wang AY, Li PK. The role of lean body mass as a nutritional index in Chinese peritoneal dialysis patients--comparison of creatinine kinetics method and anthropometric method. Perit Dial Int. 2000;20(6):708-14. PubMed PMID: 11216564.
- Kopple JD. National kidney foundation K/DOQI clinical practice guidelines for nutrition in chronic renal failure. Am J Kidney Dis. 2001;37(1 Suppl 2):S66-70. [CrossRef] [PubMed]
- Konings CJ, Kooman JP, Schonck M, van Kreel B, Heidendal GA, Cheriex EC, et al. Influence of fluid status on techniques used to assess body composition in peritoneal dialysis patients. Perit Dial Int. 2003;23(2):184-90. PubMed PMID: 12713087.
- Bhatla B, Moore H, Emerson P, Keshaviah P, Prowant B, Nolph KD, et al. Lean body mass estimation by creatinine kinetics, bioimpedance, and dual energy x-ray absorptiometry in patients on continuous ambulatory peritoneal dialysis. ASAIO J. 1995;41(3):M442-6. [CrossRef] [PubMed]
- Keshaviah PR, Nolph KD, Moore HL, Prowant B, Emerson PF, Meyer M, et al. Lean body mass estimation by creatinine kinetics. J Am Soc Nephrol. 1994;4(7):1475-85. [CrossRef] [PubMed]
- de Fijter WM, de Fijter CW, Oe PL, ter Wee PM, Donker AJ. Assessment of total body water and lean body mass from anthropometry, Watson formula, creatinine kinetics, and body electrical impedance compared with antipyrine kinetics in peritoneal dialysis patients. Nephrol Dial Transplant. 1997;12(1):151-6. [CrossRef] [PubMed]
- Yoowannakul S, Davenport A. Estimation of lean body mass by creatinine kinetics increases the prevalence of muscle wasting in peritoneal dialysis patients compared to bioimpedance. Eur J Clin Nutr. 2018;72(10):1455-7. Epub 20180112. [CrossRef] [PubMed]
- Xu L, Ng JK-C, Chan GC-K, Fung WW-S, Chow K-M, Szeto C-C. Comparing Bioimpedance Spectrometry and Traditional Creatinine Kinetics Methods for the Assessment of Muscle Mass in Peritoneal Dialysis Patients. Clinical Kidney Journal. 2024. [CrossRef]
- McNairn M, Brito A, Dillard K, Heath H, Pantaleon M, Fanter R, et al. Postprandial Dried Blood Spot-Based Nutritional Metabolomic Analysis Discriminates a High-Fat, High-Protein Meat-Based Diet from a High Carbohydrate Vegan Diet: A Randomized Controlled Crossover Trial. J Acad Nutr Diet. 2021;121(5):931-41 e2. Epub 20201203. [CrossRef] [PubMed]
- Szeto CC, Lai KN, Wong TY, Law MC, Li PK. Measured-to-predicted creatinine generation ratio increases with time and decline in residual renal function in continuous ambulatory peritoneal dialysis. Am J Kidney Dis. 1999;34(2):235-41. [CrossRef] [PubMed]
- Madden AM, Smith S. Body composition and morphological assessment of nutritional status in adults: a review of anthropometric variables. J Hum Nutr Diet. 2016;29(1):7-25. Epub 20141125. [CrossRef] [PubMed]
- Ling CHY, Meskers CGM, Maier AB. Can anthropometric measures be used as proxies for body composition and physical function in geriatric outpatients? Arch Gerontol Geriatr. 2021;94:104379. Epub 20210212. [CrossRef] [PubMed]
- Yoshikoshi S, Suzuki Y, Yamamoto S, Imamura K, Harada M, Osada S, et al. Effects of anthropometric changes on hospitalization and mortality among patients on hemodialysis. J Nephrol. 2023;36(7):1983-90. Epub 20230626. [CrossRef] [PubMed]
- Wen X, Wang M, Jiang CM, Zhang YM. Anthropometric equation for estimation of appendicular skeletal muscle mass in Chinese adults. Asia Pac J Clin Nutr. 2011;20(4):551-6. PubMed PMID: 22094840.
- Alarcon-Rivera M, Cornejo-Mella C, Caceres-Aravena C, Concha-Cisternas Y, Fernandez-Valero P, Guzman-Munoz E. Relationship between appendicular muscular mass index and physical function in older people. AIMS Public Health. 2024;11(1):130-40. Epub 20240111. [CrossRef] [PubMed] [PubMed Central]
- Ulijaszek SJ, Kerr DA. Anthropometric measurement error and the assessment of nutritional status. Br J Nutr. 1999;82(3):165-77. [CrossRef] [PubMed]
- Qazi SL, Rikkonen T, Kroger H, Honkanen R, Isanejad M, Airaksinen O, et al. Relationship of body anthropometric measures with skeletal muscle mass and strength in a reference cohort of young Finnish women. J Musculoskelet Neuronal Interact. 2017;17(3):192-6. PubMed PMID: 28860421; PubMed Central PMCID: PMC5601264.
- Friedman JM. Obesity: Causes and control of excess body fat. Nature. 2009;459(7245):340-2. [CrossRef] [PubMed]
- Bellafronte NT, Vega-Piris L, Cuadrado GB, Chiarello PG. Performance of Bioelectrical Impedance and Anthropometric Predictive Equations for Estimation of Muscle Mass in Chronic Kidney Disease Patients. Front Nutr. 2021;8:683393. Epub 20210521. [CrossRef] [PubMed] [PubMed Central]
- Tzamaloukas AH, Murata GH, Vanderjagt DJ, Glew RH. Estimates of body water, fat-free mass, and body fat in patients on peritoneal dialysis by anthropometric formulas. Kidney Int. 2003;63(5):1605-17. [CrossRef] [PubMed]
- Ten Dam L, van der Kooi AJ, Verhamme C, Wattjes MP, de Visser M. Muscle imaging in inherited and acquired muscle diseases. Eur J Neurol. 2016;23(4):688-703. [CrossRef] [PubMed]
- Tagliafico AS, Bignotti B, Torri L, Rossi F. Sarcopenia: how to measure, when and why. La radiologia medica. 2022;127(3):228-37. [CrossRef]
- Bruno VD, Zakkar M. Psoas muscle index: a novel instrument in planning the treatment of severe aortic stenosis in frail patients. J Thorac Dis. 2018;10(Suppl 33):S4156-S8. [CrossRef] [PubMed] [PubMed Central]
- Poltronieri TS, de Paula NS, Chaves GV. Assessing skeletal muscle radiodensity by computed tomography: An integrative review of the applied methodologies. Clin Physiol Funct Imaging. 2020;40(4):207-23. Epub 20200414. [CrossRef] [PubMed]
- Liu J, Ye Z, Xiang J, Wang Q, Zhao W, Qin W, et al. Association of muscle mass and radiodensity assessed by chest CT with all-cause and cardiovascular mortality in hemodialysis patients. Int Urol Nephrol. 2024. Epub 20240612. [CrossRef] [PubMed]
- Hirata M, Ito K, Ookawara S, Tanno K, Morino J, Minato S, et al. Factors Affecting Psoas Muscle Mass Index in Patients Undergoing Peritoneal Dialysis. Cureus. 2024;16(3):e56347. Epub 20240317. [CrossRef] [PubMed] [PubMed Central]
- Wu CH, Chao CT, Liang PC, Shih TTF, Huang JW. Computed tomography-based sarcopenia in patients receiving peritoneal dialysis: Correlation with lean soft tissue and survival. J Formos Med Assoc. 2022;121(2):500-9. Epub 20210714. [CrossRef] [PubMed]
- Sabatino A, D'Alessandro C, Regolisti G, di Mario F, Guglielmi G, Bazzocchi A, et al. Muscle mass assessment in renal disease: the role of imaging techniques. Quant Imaging Med Surg. 2020;10(8):1672-86. [CrossRef] [PubMed] [PubMed Central]
- Engelke K, Museyko O, Wang L, Laredo JD. Quantitative analysis of skeletal muscle by computed tomography imaging-State of the art. J Orthop Translat. 2018;15:91-103. Epub 20181028. [CrossRef] [PubMed] [PubMed Central]
- Lee SY, Gallagher D. Assessment methods in human body composition. Curr Opin Clin Nutr Metab Care. 2008;11(5):566-72. [CrossRef] [PubMed] [PubMed Central]
- Freda PU, Shen W, Reyes-Vidal CM, Geer EB, Arias-Mendoza F, Gallagher D, et al. Skeletal muscle mass in acromegaly assessed by magnetic resonance imaging and dual-photon x-ray absorptiometry. J Clin Endocrinol Metab. 2009;94(8):2880-6. Epub 20090602. [CrossRef] [PubMed] [PubMed Central]
- Johansen KL, Shubert T, Doyle J, Soher B, Sakkas GK, Kent-Braun JA. Muscle atrophy in patients receiving hemodialysis: effects on muscle strength, muscle quality, and physical function. Kidney Int. 2003;63(1):291-7. [CrossRef] [PubMed]
- Delgado C, Doyle JW, Johansen KL. Association of frailty with body composition among patients on hemodialysis. J Ren Nutr. 2013;23(5):356-62. Epub 20130503. [CrossRef] [PubMed] [PubMed Central]
- Alayli G, Ozkaya O, Bek K, Calmasur A, Diren B, Bek Y, et al. Physical function, muscle strength and muscle mass in children on peritoneal dialysis. Pediatr Nephrol. 2008;23(4):639-44. Epub 20080116. [CrossRef] [PubMed]
- Sahinoz M, Tintara S, Deger SM, Alsouqi A, Crescenzi RL, Mambungu C, et al. Tissue sodium stores in peritoneal dialysis and hemodialysis patients determined by 23-sodium magnetic resonance imaging. Nephrol Dial Transplant. 2020;36(7):1307-17. Epub 20201222. [CrossRef] [PubMed] [PubMed Central]
- Qirjazi E, Salerno FR, Akbari A, Hur L, Penny J, Scholl T, et al. Tissue sodium concentrations in chronic kidney disease and dialysis patients by lower leg sodium-23 magnetic resonance imaging. Nephrol Dial Transplant. 2020. Epub 20200406. [CrossRef] [PubMed]
- Lentine KL, Guest SS. Diabetic muscle infarction in end-stage renal disease. Nephrol Dial Transplant. 2004;19(3):664-9. [CrossRef] [PubMed]
- Florkow MC, Willemsen K, Mascarenhas VV, Oei EHG, van Stralen M, Seevinck PR. Magnetic Resonance Imaging Versus Computed Tomography for Three-Dimensional Bone Imaging of Musculoskeletal Pathologies: A Review. J Magn Reson Imaging. 2022;56(1):11-34. Epub 20220119. [CrossRef] [PubMed] [PubMed Central]
- Reyes-Santias F, Garcia-Garcia C, Aibar-Guzman B, Garcia-Campos A, Cordova-Arevalo O, Mendoza-Pintos M, et al. Cost Analysis of Magnetic Resonance Imaging and Computed Tomography in Cardiology: A Case Study of a University Hospital Complex in the Euro Region. Healthcare (Basel). 2023;11(14). Epub 20230721. [CrossRef] [PubMed] [PubMed Central]
- Stecco A, Saponaro A, Carriero A. Patient safety issues in magnetic resonance imaging: state of the art. Radiol Med. 2007;112(4):491-508. Epub 20070611. [CrossRef] [PubMed]
- Lambell KJ, Tierney AC, Wang JC, Nanjayya V, Forsyth A, Goh GS, et al. Comparison of Ultrasound-Derived Muscle Thickness With Computed Tomography Muscle Cross-Sectional Area on Admission to the Intensive Care Unit: A Pilot Cross-Sectional Study. JPEN J Parenter Enteral Nutr. 2021;45(1):136-45. Epub 20200415. [CrossRef] [PubMed]
- Nijholt W, Scafoglieri A, Jager-Wittenaar H, Hobbelen JSM, van der Schans CP. The reliability and validity of ultrasound to quantify muscles in older adults: a systematic review. J Cachexia Sarcopenia Muscle. 2017;8(5):702-12. Epub 20170712. [CrossRef] [PubMed] [PubMed Central]
- Benatti de Oliveira G, Vilar Fernandes L, Summer Chen X, Drumond Andrade FC, Scarlazzari Costa L, Junqueira Vasques AC, et al. Intra- and inter-rater reliability of muscle and fat thickness measurements obtained using portable ultrasonography in older adults. Clin Nutr ESPEN. 2024;60:65-72. Epub 20240116. [CrossRef] [PubMed]
- Yang Q, Zhang C, Zhang Z, Su B. Muscle ultrasound to diagnose sarcopenia in chronic kidney disease: a systematic review and bayesian bivariate meta-analysis. BMC Nephrol. 2024;25(1):12. Epub 20240104. [CrossRef] [PubMed] [PubMed Central]
- Elgenidy A, Sapoor S, Abdelrhem H, Ali AS, Sulliman S, Hedawy S, et al. Utility of ultrasound in measuring quadriceps muscle thickness in patients receiving maintenance hemodialysis: comprehensive systematic review and meta-analysis. Clin Exp Nephrol. 2024. Epub 20241004. [CrossRef] [PubMed]
- Guner M, Girgin S, Ceylan S, Ozcan B, Ozturk Y, Okyar Bas A, et al. The Role of Muscle Ultrasonography to Diagnose Malnutrition and Sarcopenia in Maintenance Hemodialysis. J Ren Nutr. 2024;34(4):330-6. Epub 20231219. [CrossRef] [PubMed]
- Zhang XY, Yang Y. The value of multi-modal ultrasound in the assessment of sarcopenia in maintenance hemodialysis patients. Rev Clin Esp (Barc). 2024;224(7):437-44. Epub 20240605. [CrossRef] [PubMed]
- Nagy E, Samaan E, El-Gamal M, Shamsuddin M, Tharwat S. Concordance between muscle mass assessed by bioelectrical impedance analysis and by muscle ultrasound: a cross-sectional study in a cohort of patients on chronic hemodialysis. BMC Nephrol. 2024;25(1):49. Epub 20240206. [CrossRef] [PubMed] [PubMed Central]
- Sabatino A, Kooman J, Avesani CM, Gregorini M, Bianchi S, Regolisti G, et al. Sarcopenia diagnosed by ultrasound-assessed quadriceps muscle thickness and handgrip strength predicts mortality in patients on hemodialysis. J Nephrol. 2024;37(4):993-1003. Epub 20240124. [CrossRef] [PubMed]
- Geneen LJ, Kinsella J, Zanotto T, Naish PF, Mercer TH. Validity and reliability of high-resolution ultrasound imaging for the assessment of regional body composition in stage 5 chronic kidney disease patients undergoing continuous ambulatory peritoneal dialysis. Perit Dial Int. 2022;42(1):57-64. Epub 20210330. [CrossRef] [PubMed]
- Nagae M, Umegaki H, Yoshiko A, Fujita K. Muscle ultrasound and its application to point-of-care ultrasonography: a narrative review. Ann Med. 2023;55(1):190-7. [CrossRef] [PubMed] [PubMed Central]
- Branco MG, Mateus C, Capelas ML, Pimenta N, Santos T, Makitie A, et al. Bioelectrical Impedance Analysis (BIA) for the Assessment of Body Composition in Oncology: A Scoping Review. Nutrients. 2023;15(22). Epub 20231115. [CrossRef] [PubMed] [PubMed Central]
- Ng JK, Lau SL, Chan GC, Tian N, Li PK. Nutritional Assessments by Bioimpedance Technique in Dialysis Patients. Nutrients. 2023;16(1). Epub 20231220. [CrossRef] [PubMed] [PubMed Central]
- Sergi G, De Rui M, Stubbs B, Veronese N, Manzato E. Measurement of lean body mass using bioelectrical impedance analysis: a consideration of the pros and cons. Aging Clin Exp Res. 2017;29(4):591-7. Epub 20160827. [CrossRef] [PubMed]
- Kim EY, Kim SR, Won DD, Choi MH, Lee IK. Multifrequency Bioelectrical Impedance Analysis Compared With Computed Tomography for Assessment of Skeletal Muscle Mass in Primary Colorectal Malignancy: A Predictor of Short-Term Outcome After Surgery. Nutr Clin Pract. 2020;35(4):664-74. Epub 20190624. [CrossRef] [PubMed]
- Kim D, Sun JS, Lee YH, Lee JH, Hong J, Lee JM. Comparative assessment of skeletal muscle mass using computerized tomography and bioelectrical impedance analysis in critically ill patients. Clin Nutr. 2019;38(6):2747-55. Epub 20181208. [CrossRef] [PubMed]
- Looijaard W, Stapel SN, Dekker IM, Rusticus H, Remmelzwaal S, Girbes ARJ, et al. Identifying critically ill patients with low muscle mass: Agreement between bioelectrical impedance analysis and computed tomography. Clin Nutr. 2020;39(6):1809-17. Epub 20190810. [CrossRef] [PubMed]
- de Luis Roman D, Lopez Gomez JJ, Munoz M, Primo D, Izaola O, Sanchez I. Evaluation of Muscle Mass and Malnutrition in Patients with Colorectal Cancer Using the Global Leadership Initiative on Malnutrition Criteria and Comparing Bioelectrical Impedance Analysis and Computed Tomography Measurements. Nutrients. 2024;16(17). Epub 20240908. [CrossRef] [PubMed] [PubMed Central]
- Zuo J, Zhou D, Zhang L, Zhou X, Gao X, Hou W, et al. Comparison of bioelectrical impedance analysis and computed tomography for the assessment of muscle mass in patients with gastric cancer. Nutrition. 2024;121:112363. Epub 20240122. [CrossRef] [PubMed]
- Romejko K, Szamotulska K, Rymarz A, Tomasz R, Niemczyk S. The association of appendicular skeletal muscle mass with anthropometric, body composition, nutritional, inflammatory, and metabolic variables in non-dialysis-dependent chronic kidney disease men. Front Med (Lausanne). 2024;11:1380026. Epub 20240725. [CrossRef] [PubMed] [PubMed Central]
- Kim C, Kim JK, Lee HS, Kim SG, Song YR. Longitudinal changes in body composition are associated with all-cause mortality in patients on peritoneal dialysis. Clin Nutr. 2021;40(1):120-6. Epub 20200430. [CrossRef] [PubMed]
- Lin TY, Peng CH, Hung SC, Tarng DC. Body composition is associated with clinical outcomes in patients with non-dialysis-dependent chronic kidney disease. Kidney Int. 2018;93(3):733-40. [CrossRef] [PubMed]
- Visser WJ, de Geus M, van Ruijven IM, van Egmond-de Mik AME, Venrooij L, Minnee RC, et al. Fat-Free Mass Derived From Bioimpedance Spectroscopy and Computed Tomography are in Good Agreement in Patients With Chronic Kidney Disease. J Ren Nutr. 2024. Epub 20240605. [CrossRef] [PubMed]
- Lin TY, Wu MY, Chen HS, Hung SC, Lim PS. Development and validation of a multifrequency bioimpedance spectroscopy equation to predict appendicular skeletal muscle mass in hemodialysis patients. Clin Nutr. 2021;40(5):3288-95. Epub 20201104. [CrossRef] [PubMed]
- Broers NJH, Canaud B, Dekker MJE, van der Sande FM, Stuard S, Wabel P, et al. Three compartment bioimpedance spectroscopy in the nutritional assessment and the outcome of patients with advanced or end stage kidney disease: What have we learned so far? Hemodial Int. 2020;24(2):148-61. Epub 20200122. [CrossRef] [PubMed] [PubMed Central]
- Davies SJ, Davenport A. The role of bioimpedance and biomarkers in helping to aid clinical decision-making of volume assessments in dialysis patients. Kidney Int. 2014;86(3):489-96. Epub 20140611. [CrossRef] [PubMed]
- Norman K, Stobaus N, Pirlich M, Bosy-Westphal A. Bioelectrical phase angle and impedance vector analysis--clinical relevance and applicability of impedance parameters. Clin Nutr. 2012;31(6):854-61. Epub 20120612. [CrossRef] [PubMed]
- Fein PA, Gundumalla G, Jorden A, Matza B, Chattopadhyay J, Avram MM. Usefulness of bioelectrical impedance analysis in monitoring nutrition status and survival of peritoneal dialysis patients. Adv Perit Dial. 2002;18:195-9. PubMed PMID: 12402618.
- Deana C, Gunst J, De Rosa S, Umbrello M, Danielis M, Biasucci DG, et al. Bioimpedance-assessed muscle wasting and its relation to nutritional intake during the first week of ICU: a pre-planned secondary analysis of Nutriti Study. Ann Intensive Care. 2024;14(1):29. Epub 20240217. [CrossRef] [PubMed] [PubMed Central]
- Maggiore Q, Nigrelli S, Ciccarelli C, Grimaldi C, Rossi GA, Michelassi C. Nutritional and prognostic correlates of bioimpedance indexes in hemodialysis patients. Kidney Int. 1996;50(6):2103-8. [CrossRef] [PubMed]
- Piccoli A, Rossi B, Pillon L, Bucciante G. A new method for monitoring body fluid variation by bioimpedance analysis: the RXc graph. Kidney Int. 1994;46(2):534-9. [CrossRef] [PubMed]
- Norman K, Smoliner C, Valentini L, Lochs H, Pirlich M. Is bioelectrical impedance vector analysis of value in the elderly with malnutrition and impaired functionality? Nutrition. 2007;23(7):564-9. [CrossRef]
- Santomauro F, Olimpi N, Baggiani L, Comodo N, Mantero S, Bonaccorsi G. Bioelectrical Impedance Vector Analysis and Mini Nutritional Assessment in elderly nursing home residents. J Nutr Health Aging. 2011;15(3):163-7. [CrossRef] [PubMed]
- Formenti P, Coppola S, Umbrello M, Froio S, Caccioppola A, De Giorgis V, et al. Time course of the Bioelectrical Impedance Vector Analysis and muscular ultrasound in critically ill patients. J Crit Care. 2022;68:89-95. Epub 20211221. [CrossRef] [PubMed]
- Norman K, Pirlich M, Sorensen J, Christensen P, Kemps M, Schütz T, et al. Bioimpedance vector analysis as a measure of muscle function. Clinical Nutrition. 2009;28(1):78-82. [CrossRef]
- Norman K, Stobäus N, Pirlich M, Bosy-Westphal A. Bioelectrical phase angle and impedance vector analysis – Clinical relevance and applicability of impedance parameters. Clinical Nutrition. 2012;31(6):854-61. [CrossRef]
- Canaud B, Garred LJ, Argiles A, Flavier JL, Bouloux C, Mion C. Creatinine kinetic modelling: a simple and reliable tool for the assessment of protein nutritional status in haemodialysis patients. Nephrol Dial Transplant. 1995;10(8):1405-10. PubMed PMID: 8538933.
- Desmeules S, Levesque R, Jaussent I, Leray-Moragues H, Chalabi L, Canaud B. Creatinine index and lean body mass are excellent predictors of long-term survival in haemodiafiltration patients. Nephrol Dial Transplant. 2004;19(5):1182-9. Epub 20040219. [CrossRef] [PubMed]
- Terrier N, Jaussent I, Dupuy AM, Morena M, Delcourt C, Chalabi L, et al. Creatinine index and transthyretin as additive predictors of mortality in haemodialysis patients. Nephrol Dial Transplant. 2008;23(1):345-53. Epub 20070922. [CrossRef] [PubMed]
- Canaud B, Granger Vallee A, Molinari N, Chenine L, Leray-Moragues H, Rodriguez A, et al. Creatinine index as a surrogate of lean body mass derived from urea Kt/V, pre-dialysis serum levels and anthropometric characteristics of haemodialysis patients. PLoS One. 2014;9(3):e93286. Epub 20140326. [CrossRef] [PubMed] [PubMed Central]
- Tsai MT, Tseng WC, Ou SM, Lee KH, Yang CY, Tarng DC. Comparison of Simplified Creatinine Index and Systemic Inflammatory Markers for Nutritional Evaluation of Hemodialysis Patients. Nutrients. 2021;13(6). Epub 20210530. [CrossRef] [PubMed] [PubMed Central]
- Tian R, Chang L, Liu D, Luo F, Zhang Y, Cheng L, et al. Association of the modified creatinine index with muscle strength and mortality in patients undergoing hemodialysis. Ren Fail. 2022;44(1):1732-42. [CrossRef] [PubMed] [PubMed Central]
- Yamada S, Taniguchi M, Tokumoto M, Yoshitomi R, Yoshida H, Tatsumoto N, et al. Modified Creatinine Index and the Risk of Bone Fracture in Patients Undergoing Hemodialysis: The Q-Cohort Study. Am J Kidney Dis. 2017;70(2):270-80. Epub 20170425. [CrossRef] [PubMed]
- Yamamoto S, Matsuzawa R, Hoshi K, Suzuki Y, Harada M, Watanabe T, et al. Modified Creatinine Index and Clinical Outcomes of Hemodialysis Patients: An Indicator of Sarcopenia? J Ren Nutr. 2021;31(4):370-9. Epub 20200918. [CrossRef] [PubMed]
- Ng JK, Fung WW, Chan GC, Cheng PM, Pang WF, Chow KM, et al. Modified creatinine index as a marker of skeletal muscle mass in peritoneal dialysis patients. Clin Kidney J. 2024;17(10):sfae297. Epub 20240930. [CrossRef] [PubMed] [PubMed Central]
- Dodds RM, Syddall HE, Cooper R, Benzeval M, Deary IJ, Dennison EM, et al. Grip strength across the life course: normative data from twelve British studies. PLoS One. 2014;9(12):e113637. Epub 20141204. [CrossRef] [PubMed] [PubMed Central]
- Sayer AA. Sarcopenia. BMJ. 2010;341:c4097. Epub 20100810. [CrossRef] [PubMed]
- Jones CJ, Rikli RE, Beam WC. A 30-s chair-stand test as a measure of lower body strength in community-residing older adults. Res Q Exerc Sport. 1999;70(2):113-9. [CrossRef] [PubMed]
- Sawada S, Ozaki H, Natsume T, Deng P, Yoshihara T, Nakagata T, et al. The 30-s chair stand test can be a useful tool for screening sarcopenia in elderly Japanese participants. BMC Musculoskelet Disord. 2021;22(1):639. Epub 20210724. [CrossRef] [PubMed] [PubMed Central]
| Method | Advantages | Disadvantages | Cost-Effectiveness | Convenience | Validated Prognostic Significance |
|---|---|---|---|---|---|
| Creatinine Kinetics | Simple, suitable for routine clinical tests | Rely on creatinine generation, so its accuracy may be affected by the patient’s diet, residual renal function, and serum albumin levels | ★★★ | ★★ | ★★ |
| Anthropometry | Simple, and non-invasive, sutable for routine clinical tests | Limited accuracy due to subjective nature. Can’t distinguish fat and muscle very well | ★★★ | ★★★ | ★ |
| Bioimpedance spectroscopy | Quicky, simple, non-invasive, suitable for routine clinical tests | Its accuracy may be affected by the patient’s hydration status and different devices may yield inconsistent results | ★★ | ★★★ | ★★ |
| Computated tomography | Highly accurate for muscle mass assessment | Expensive, radiation exposure, requires special personnel and facilities. Not stuitable for routine clinical tests | ★ | ★ | ★★★ |
| Megnestic resonance imaging | Highly accurate and no radiation exposure | Very expensive, requires special personnel and facilities. Not suitable for routine clinical tests | ★ | ★ | ★★★ |
| Ultrasound | Non-invasive, more cost-effective than other imaging technique | Inter- and intra-observer variability. No established cut-off and uncertain which muscle parameter shall be used. | ★★ | ★★ | ★★ |
| Modified creatinine index | Simple, suitable for routine clinical tests. More reliable than traditional CK | May still be affected by dietary intake and renal function. | ★★ | ★★ | ★★ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
