Submitted:
03 November 2025
Posted:
04 November 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
- In periodic case is locally well-posed for , where and globally well-posed in due to the conservation of the Hamiltonian.
- In nonperiodic case is locally well-posed for , where and globally well-posed in due to the conservation law.
- to denote with a constant depending on . If c is an absolute constant, we shall write .
- means that a and b are asymptotically equivalent.
- means that a and b are comparable in size, typically with implicit constants independent of the parameters.
- means that a is much smaller than b, typically in the sense that the ratio is bounded by a small constant.
2. Linear Estimates
3. Multilinear Estimates
4. Local Well-Posedness
References
- Yan, W., Yang, M., & Duan, J. (2019). White noise driven Ostrovsky equation. Journal of Differential Equations, 267(10), 5701–5735. [CrossRef]
- Oh, T. (2009). Diophantine conditions in well-posedness theory of coupled KdV-type systems: local theory. International Mathematics Research Notices, 2009(18), 3516–3556. [CrossRef]
- Carvajal, X., & Panthee, M. (2019). Sharp well-posedness for a coupled system of mKdV-type equations. Journal of Evolution Equations, 19(4), 1167–1197. [CrossRef]
- Da Prato, G., & Zabczyk, J. (2014). Stochastic equations in infinite dimensions (2nd ed.). Cambridge University Press.
- de Bouard, A., & Debussche, A. (1998). On the stochastic Korteweg-de Vries equation. Journal of Functional Analysis, 154(1), 215–251. [CrossRef]
- Yan, W., Yang, M., & Duan, J. (2019). White noise driven Ostrovsky equation. Journal of Differential Equations, 267(10), 5701–5735. [CrossRef]
- Grujić, Z., & Kalisch, H. (2002). Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions. [CrossRef]
- Da Prato, G., & Zabczyk, J. (2014). Stochastic Equations in Infinite Dimensions. Cambridge University Press.
- Hairer, M. (2015). Introduction to Regularity Structures. Springer.
- Röckner, M., & Liu, W. (2010). Stochastic Partial Differential Equations: An Introduction. Springer.
- Korteweg, D. J., & de Vries, G. (1895). On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39(240), 422–443. [CrossRef]
- Gardner, C. S., Greene, J. M., Kruskal, M. D., & Miura, R. M. (1967). Method for solving the Korteweg-deVries equation. Physical Review Letters, 19(19), 1095. [CrossRef]
- Benney, D. J. (1966). Nonlinear wave packets in the Korteweg-de Vries equation. Journal of Mathematical Physics, 45(1-4), 52–63.
- Nishikawa, K., Hojo, H., Mima, K., & Ikezi, H. (1974). Three-wave interaction in a plasma. Physical Review Letters, 33(3), 148.
- Agrawal, G. P. (2013). Nonlinear Fiber Optics. Academic Press.
- Tao, T. (2006). Nonlinear Dispersive Equations: Local and Global Analysis. American Mathematical Society.
- Saut, J. C., & Temam, R. (1979). Remarques sur les équations de Korteweg-de Vries. Comptes Rendus de l’Académie des Sciences, Série A, 288, 109–111.
- de Bouard, A., & Debussche, A. (2018). Global well-posedness for the stochastic Korteweg-de Vries equation. Journal of Differential Equations, 265(7), 2992–3030. [CrossRef]
- Miura, R. M. (1968). Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation. Journal of Mathematical Physics, 9(8), 1202–1204. [CrossRef]
- Debussche, A., & Printems, J. (2004). Aspects of the stochastic Korteweg-de Vries equation. Discrete and Continuous Dynamical Systems, 11(4), 761–774.
- Walsh, J. B. (1986). An introduction to stochastic partial differential equations. École d’Été de Probabilités de Saint-Flour XIV, 265–439.
- Da Prato, G., & Zabczyk, J. (1992). Stochastic Equations in Infinite Dimensions. Cambridge University Press.
- Ginibre, J. (1995). Le problème de Cauchy pour des EDP semi-linéaires périodiques en variables d’espace. Séminaire Bourbaki, 796, 163–187.
- Gomes, A., & Pastor, A. (2021). Solitary wave solutions and global well-posedness for a coupled system of gKdV equations. Journal of Evolution Equations, 21(2), 2167–2193. [CrossRef]
- Boukarou, A., Mirgani, S. M., Zennir, K., Bouhali, K., & Alodhaibi, S. S. (2025). White-Noise-Driven KdV-Type Boussinesq System. Mathematics, 13(11), 1758. [CrossRef]
- Amir, M., Boukarou, A., Mirgani, S. M., Kesri, M., Zennir, K., & Jeelani, M. B. (2025). Well-posedness for a coupled system of gKdV equations in analytic spaces. Electronic Research Archive, 33(7), 4119–4134. [CrossRef]
- Boukarou, A., & Biomy, M. (2025). A coupled Majda Biello type system with damping. Mathematical Structures and Computational Modeling, 1, 60–72.
- Atmani, A., Boukarou, A., Benterki, D., & Zennir, K. (2024). Spatial analyticity of solutions for a coupled system of generalized KdV equations. Mathematical Methods in the Applied Sciences, 47(12), 10351–10372. [CrossRef]
- Boukarou, A., Guerbati, K., Zennir, K., Alodhaibi, S., & Alkhalaf, S. (2020). Well-posedness and time regularity for a system of modified Korteweg-de Vries-type equations in analytic Gevrey spaces. Mathematics, 8(5), 809. [CrossRef]
- Majda, A. J., & Biello, J. A. (2003). The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves. Journal of the atmospheric sciences, 60(15), 1809-1821.
- Ablowitz, M. J., Kaup, D. J., Newell, A. C., & Segur, H. (1973). Nonlinear-evolution equations of physical significance. Physical Review Letters, 31(2), 125. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
