Submitted:
22 October 2025
Posted:
23 October 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Research Progress
2.1. Background
2.2. Combustible Material Parameter Estimation Technology and Practice of Forest Fire Prediction Model
2.2.1. Theoretical Basis and Technological Evolution of Forest Fire Forecasting
2.2.2. Domestic practice in estimating Combustible material Parameters and developing fire risk models
2.3. Remote Sensing Identification Technology and Satellite Application in Forest Fire Smoke Areas
2.3.1. The correlation between the formation mechanism of smoke zones and forest fire monitoring
2.3.2. The Technical Advantages and Application Potential of China's High-Resolution Satellites in Smoke Zone Identification
2.4. Satellite Remote Sensing Detection technology and Application of Forest Fire Ignition Points
2.4.1. The Technical Principle and Core Advantages of Ignition Point Detection
2.4.2. The Development History of Forest Fire Ignition Point Detection Technology in China
2.4.3. The Classification of the Core Method System for Ignition Point Detection
2.4.3.1. Detection Method Based on Reflection Characteristics
2.4.3.2. Detection Method Based on Bright Temperature Characteristics
2.4.4. The Operational Application Achievements of Forest Fire Ignition Point Detection in China
2.5. Satellite Remote Sensing Monitoring Technology for the Burning Dynamics of Forest Fires
2.5.1. The Situation of Forest Fire Prevention and Control in China and the Necessity of Dynamic Monitoring
2.5.2. Technical Definition and Research Status of Dynamic Monitoring of Forest Fire Combustion
2.5.2.1. Technical Definition and Core Objectives
2.5.2.2. Research Progress and Limitations
2.5.3. The Influence Mechanism of Satellite Resolution on Fire Scene Characterization
2.5.4. Practical Application of Medium and High-Resolution Satellite Monitoring Technology
2.5.4.1. Technology Pre-Research Based on Simulated Data
2.5.4.2. Business Applications Based on GF-4 Satellites
2.6. Satellite Remote Sensing Mapping Technology for Forest Fire Sites
2.6.1. The Ecological Significance and Technical Requirements of Mapping Burned Areas
2.6.2. The Development Progress of International Satellite Remote Sensing Products for Burned Areas
2.6.3. The Core Method System of Optical Satellite Remote Sensing Mapping of Burned Areas
2.6.3.1. A Method for Extracting Burn Sites Based on Image Classification
2.6.3.2. A Method for Identifying Burned Areas Based on Vegetation Index
2.6.3.3. Modeling Method of Fire Cutting Ground Based on Logistic Regression
2.7. Remote Sensing Evaluation Technology and Practice for the Degree of Forest Fire Damage
2.7.1. The Ecological Significance and Practical Demands of Evaluating the Degree of Forest Fire Damage
2.7.2. The Core Method System of Optical Satellite Remote Sensing Evaluation
2.8. Satellite Remote Sensing Estimation Technology for Forest Burning Biomass
2.9. Satellite Remote Sensing Monitoring Technology for Post-Fire Vegetation Recovery
2.9.1. The Ecological Significance and Satellite Technology Advantages of Post-Fire Vegetation Recovery Monitoring
2.9.2. Core Method System for Satellite Remote Sensing Monitoring of Post-fire Vegetation Restoration
3. Existing Problems
3.1. Insufficient Systematicness and Innovation in Key Technology Research
3.1.1. Lack of Sustained Depth and Systematic Design in Basic Research
3.1.2. Gap Between Innovative Technologies and International Advanced Levels
3.1.3. Weak Adaptability to Complex Scenarios
3.2 Low Conversion Efficiency of Scientific Research Achievements to Operational Applications
3.2.1 Adaptability Gap Between Scientific Research Achievements and Operational Needs
3.2.2 Lack of Intermediate Links and Resource Support for Achievement Conversion
3.2.3 Lack of Collaboration Mechanism Between Operational Departments and Research Teams
3.3 Lagging Functions and Performance of Satellite Fire Monitoring Operational Systems
3.3.1 Insufficient Capacity for Massive High-Resolution Data Processing
3.3.2 Low Degree of Automatic Analysis and Reliance on Manual Interpretation
3.3.3 Unestablished Operational System for Forest Fire Disaster Assessment
4. Summary and Outlook
4.1 Construct a Hierarchical Space-Air-Ground Collaborative Early Warning and Monitoring System
4.2 Strengthen Key Technology R&D and Transformation of Scientific Research Achievements
4.2.1 Focus on the Integration of New Technologies and Break Through Core R&D Directions
4.2.2 Improve the Achievement Transformation Mechanism and Connect the Scientific Research-Operation Closed Loop
4.3 Upgrade the Forest Fire Early Warning and Monitoring Operational System to Enhance Intelligence and Collaboration
4.3.1 Optimize System Function Modules to Achieve Full-Process Automation
4.3.2 Strengthen Technical Support to Ensure Stable System Operation
4.3.3 Expand System Application Scenarios to Serve Full-Chain Prevention and Control Needs
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Akther, M.S.; Hassan, Q.K. Remote Sensing-Based Assessment of Fire Danger Conditions Over Boreal Forest. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2011, 4, 992-999. [CrossRef]
- Bargali, H.; Pandey, A.; Bhatt, D.; Sundriyal, R.C.; Uniyal, V.P. Forest fire management, funding dynamics, and research in the burning frontier: A comprehensive review. Trees Forests and People 2024, 16. [CrossRef]
- Yi, K.P.; Tani, H.; Zhang, J.Q.; Guo, M.; Wang, X.F.; Zhong, G.S. Long-Term Satellite Detection of Post-Fire Vegetation Trends in Boreal Forests of China. Remote Sensing 2013, 5, 6938-6957. [CrossRef]
- Kato, A.; Thau, D.; Hudak, A.T.; Meigs, G.W.; Moskal, L.M. Quantifying fire trends in boreal forests with Landsat time series and self-organized criticality. Remote Sensing of Environment 2020, 237. [CrossRef]
- Chou, T.C.; Zhu, X.; Reef, R. Pre- and post-fire forest canopy height mapping in Southeast Australia through the integration of multi-temporal GEDI data, satellite images, and Convolution Neural Network. International Journal of Remote Sensing 2024, 45, 3310-3331. [CrossRef]
- Giglio, L.; van der Werf, G.R.; Randerson, J.T.; Collatz, G.J.; Kasibhatla, P. Global estimation of burned area using MODIS active fire observations. Atmospheric Chemistry and Physics 2006, 6, 957-974. [CrossRef]
- Chowdhury, E.H.; Hassan, Q.K. Operational perspective of remote sensing-based forest fire danger forecasting systems. Isprs Journal of Photogrammetry and Remote Sensing 2015, 104, 224-236. [CrossRef]
- Biswajeet, P.; Hamid, A. Forest Fire Detection and Monitoring using High Temporal MODIS and NOAA AVHRR Satellite Images in Peninsular Malaysia. Disaster Advances 2010, 3, 18-23.
- Feng, T.; Duncanson, L.; Hancock, S.; Montesano, P.; Skakun, S.; Wulder, M.A.; White, J.C.; Minor, D.; Loboda, T. Characterizing Fire-Induced Forest Structure and Aboveground Biomass Changes in Boreal Forests Using Multitemporal Lidar and Landsat. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing 2024, 17, 10108-10125. [CrossRef]
- Ahmed, M.R.; Hassan, Q.K.; Abdollahi, M.; Gupta, A. Introducing a New Remote Sensing-Based Model for Forecasting Forest Fire Danger Conditions at a Four-Day Scale. Remote Sensing 2019, 11. [CrossRef]
- Balling, J.; Verbesselt, J.; De Sy, V.; Herold, M.; Reiche, J. Exploring Archetypes of Tropical Fire-Related Forest Disturbances Based on Dense Optical and Radar Satellite Data and Active Fire Alerts. Forests 2021, 12. [CrossRef]
- Chen, D.M.; Pereira, J.M.C.; Masiero, A.; Pirotti, F. Mapping fire regimes in China using MODIS active fire and burned area data. Applied Geography 2017, 85, 14-26. [CrossRef]
- Digavinti, J.; Manikiam, B. Satellite monitoring of forest fire impact and regeneration using NDVI and LST. Journal of Applied Remote Sensing 2021, 15. [CrossRef]
- Fraser, R.H.; Li, Z.; Landry, R. SPOT VEGETATION for characterizing boreal forest fires. International Journal of Remote Sensing 2000, 21, 3525-3532. [CrossRef]
- Bright, B.C.; Hudak, A.T.; Kennedy, R.E.; Braaten, J.D.; Khalyani, A.H. Examining post-fire vegetation recovery with Landsat time series analysis in three western North American forest types. Fire Ecology 2019, 15. [CrossRef]
- Chen, Y.; Morton, D.C.; Randerson, J.T. Remote sensing for wildfire monitoring: Insights into burned area, emissions, and fire dynamics. One Earth 2024, 7, 1022-1028. [CrossRef]
- Ewane, E.B.; Mohan, M.; Bajaj, S.; Galgamuwa, G.A.P.; Watt, M.S.; Arachchige, P.P.; Hudak, A.T.; Richardson, G.; Ajithkumar, N.; Srinivasan, S.; et al. Climate-Change-Driven Droughts and Tree Mortality: Assessing the Potential of UAV-Derived Early Warning Metrics. Remote Sensing 2023, 15. [CrossRef]
- Hua, L.Z.; Shao, G.F. The progress of operational forest fire monitoring with infrared remote sensing. Journal of Forestry Research 2017, 28, 215-229. [CrossRef]
- Guo, Y.B.; Hai, Q.S.; Bayarsaikhan, S. Utilizing Deep Learning and Spatial Analysis for Accurate Forest Fire Occurrence Forecasting in the Central Region of China. Forests 2024, 15. [CrossRef]
- He, C.; Gong, Y.X.; Zhang, S.Y.; He, T.F.; Chen, F.; Sun, Y.; Feng, Z.K. Forest Fire Division by Using MODIS Data Based on the Temporal-Spatial Variation Law. Spectroscopy and Spectral Analysis 2013, 33, 2472-2477. [CrossRef]
- Slingsby, J.A.; Moncrieff, G.R.; Wilson, A.M. Near-real time forecasting and change detection for an open ecosystem with complex natural dynamics. Isprs Journal of Photogrammetry and Remote Sensing 2020, 166, 15-25. [CrossRef]
- Li, F.J.; Zhang, X.Y.; Kondragunta, S.; Schmidt, C.C.; Holmes, C.D. A preliminary evaluation of GOES-16 active fire product using Landsat-8 and VIIRS active fire data, and ground-based prescribed fire records. Remote Sensing of Environment 2020, 237. [CrossRef]
- Jiang, B.H.; Chen, W.; Zou, Y.; Wu, C.Y.; Wu, Z.Y.; Kang, X.C.; Xiao, H.T.; Sakai, T. Post-fire vegetation dynamic patterns and drivers in Greater Hinggan Mountains: Insights from long-term remote sensing data analysis. Ecological Informatics 2024, 83. [CrossRef]
- Giglio, L.; Randerson, J.T.; van der Werf, G.R.; Kasibhatla, P.S.; Collatz, G.J.; Morton, D.C.; DeFries, R.S. Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeosciences 2010, 7, 1171-1186. [CrossRef]
- Gale, M.G.; Cary, G.J.; van Dijk, A.; Yebra, M. Untangling fuel, weather and management effects on fire severity: Insights from large-sample LiDAR remote sensing analysis of conditions preceding the 2019-20 Australian wildfires. Journal of Environmental Management 2023, 348. [CrossRef]
- Leon, J.R.R.; van Leeuwen, W.J.D.; Casady, G.M. Using MODIS-NDVI for the Modeling of Post-Wildfire Vegetation Response as a Function of Environmental Conditions and Pre-Fire Restoration Treatments. Remote Sensing 2012, 4, 598-621. [CrossRef]
- Zhang, W.H.; Liu, R.G.; He, J.Y.; Liu, Y.; Wu, C. Global Fire Season Types and Their Characteristics Based on MODIS Burned Area Data. Chinese Geographical Science 2025, 35, 374-383. [CrossRef]
- Singh, H.; Srivastava, S.K. From Firestick to Satellites: Technological Advancement and Indigenous Cultural Practice in Managing Forest Fires in Australia. Historic Environment-Policy & Practice 2025, 16, 143-166. [CrossRef]
- Zhang, Z.M.; Qi, B.Y.; He, G.J.; Wang, M.M.; Huang, S.G.; Long, T.F.; Wang, G.Z.; Xu, Z.K. High resolution global forest burned area changes monitoring using landsat 7/8 images. Geo-Spatial Information Science 2025. [CrossRef]
- Shao, X.Z.; Li, C.L.; Chang, Y.; Xiong, Z.P.; Chen, H.W. Modeling Natural Forest Fire Regimes Based on Drought Characteristics at Various Spatial and Temporal Scales in P. R. China. Forests 2025, 16. [CrossRef]
- Li, Y.Z.; Li, G.H.; Wang, K.F.; Wang, Z.M.; Chen, Y.Q. Forest Fire Risk Prediction Based on Stacking Ensemble Learning for Yunnan Province of China. Fire-Switzerland 2024, 7. [CrossRef]
- Chen, J.; Sheng, S.J.; Liu, Z.B. Detection of annual burned forest area using change metrics constructed from MODIS data in Manitoba, Canada. International Journal of Remote Sensing 2015, 36, 3913-3931. [CrossRef]
- Calle, A.; Romo, A.; Mocl谩n, C.; Casanova, J.L. Analysis of forest fire parameters using BIRD, MODIS & MSG-SEVIRI sensors. In Proceedings of the 24th Symposium of the European-Association-of-Remote-Sensing-Laboratories (EARSeL), Dubrovnik, CROATIA, May 25-27 2005, 2004; pp. 109-116.
- Ding, Y.H.; Wang, M.Y.; Fu, Y.J.; Wang, Q. Forest Smoke-Fire Net (FSF Net): A Wildfire Smoke Detection Model That Combines MODIS Remote Sensing Images with Regional Dynamic Brightness Temperature Thresholds. Forests 2024, 15. [CrossRef]
- Angelino, C.V.; Cicala, L.; Parrilli, S.; Fiscante, N.; Ullo, S.L.; Ieee. POST-FIRE ASSESSMENT OF BURNED AREAS WITH LANDSAT-8 AND SENTINEL-2 IMAGERY TOGETHER WITH MODIS AND VIIRS ACTIVE FIRE PRODUCTS. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), null, ELECTR NETWORK, Sep 26-Oct 02 2020, 2020; pp. 6770-6773.
- Gao, B.; Shan, Y.L.; Liu, X.Y.; Yin, S.A.; Yu, B.; Cui, C.X.; Cao, L.L. Prediction and driving factors of forest fire occurrence in Jilin Province, China. Journal of Forestry Research 2024, 35. [CrossRef]
- Acevedo-Cabra, R.; Wiersma, Y.; Ankerst, D.; Knoke, T. Assessment of Wildfire Hazards with a Semiparametric Spatial Approach A Case Study of Wildfires in South America. Environmental Modeling & Assessment 2014, 19, 533-546. [CrossRef]
- Hawbaker, T.J.; Radeloff, V.C.; Syphard, A.D.; Zhu, Z.L.; Stewart, S.I. Detection rates of the MODIS active fire product in the United States. Remote Sensing of Environment 2008, 112, 2656-2664. [CrossRef]
- Qin, X.L.; Zhang, Z.H.; Li, Z.Y.; Tian, Z.W.; Xiong, Y.Q.; Yang, D.F.; Zhang, R. Method of forecasting and implementation of forest fire early warning. Journal of Beijing Forestry University 2010, 32, 17-21. [CrossRef]
- Yang, X.Y.; Zhu, W.Q.; Wang, Q.; Pan, Y.Z.; Jia, K.; Yao, Y.J.; Qi, J.B.; Cao, B.; Liu, R.Y. Related concepts, research frameworks, and development prospects of immediate remote sensing detection of potential surface anomalies. Science China-Earth Sciences 2025, 68, 1805-1820. [CrossRef]
- Zhang, J.H.; Yao, F.M.; Liu, C.; Yang, L.M.; Boken, V.K. Detection, Emission Estimation and Risk Prediction of Forest Fires in China Using Satellite Sensors and Simulation Models in the Past Three Decades-An Overview. International Journal of Environmental Research and Public Health 2011, 8, 3156-3178. [CrossRef]
- Shao, Y.K.; Feng, Z.K.; Sun, L.H.; Yang, X.H.; Li, Y.D.; Xu, B.; Chen, Y. Mapping China's Forest Fire Risks with Machine Learning. Forests 2022, 13. [CrossRef]
- Yi, H.R.; Ji, P.; Qin, X.L. Study on forest fire danger forecast system and its operation in China. Scientia Silvae Sinicae 2004, 203-207, doi:Cnki:Sun:Lyke.0.2004-03-035.
- Roy, D.P.; De Lemos, H.; Huang, H.Y.; Giglio, L.; Houborg, R.; Miura, T. Multi-resolution monitoring of the 2023 maui wildfires, implications and needs for satellite-based wildfire disaster monitoring. Science of Remote Sensing 2024, 10. [CrossRef]
- Ji, P.; Yi, H.R.; Tang, X.M.; Xiao, Y.D. China Tropical Forest Fire Monitoring and Management System Based on Satellite Remote Sensing Data. In Proceedings of the 3rd International Symposium on Environmental Science and Technology (2011 ISEST), Dongguan, PEOPLES R CHINA, Jun 01-04 2011, 2011; pp. 347-352.
- Wang, L.T.; Zhou, Y.; Wang, S.X.; Chen, S.R.; ieee. Monitoring for grassland and forest fire danger using remote sensing data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, Sep 20-24 2004, 2004; pp. 2095-2098.
- Qin, X.L.; Li, Z.Y.; Tian, X.; Casanova, J.L.; Calle, A.; Mocl谩n, C.; Sanz, J. Forest fires identification using AATSR and MODIS data. In Proceedings of the 2nd Dragon Symposium, Santorini, GREECE, Jun 27-Jul 01 2006, 2005; pp. 293-+.
- Chen, X.X.; Vogelmann, J.E.; Rollins, M.; Ohlen, D.; Key, C.H.; Yang, L.M.; Huang, C.Q.; Shi, H. Detecting post-fire burn severity and vegetation recovery using multitemporal remote sensing spectral indices and field-collected composite burn index data in a ponderosa pine forest. International Journal of Remote Sensing 2011, 32, 7905-7927. [CrossRef]
- Flannigan, M.D.; Vonderhaar, T.H. FOREST-FIRE MONITORING USING NOAA SATELLITE AVHRR. Canadian Journal of Forest Research 1986, 16, 975-982. [CrossRef]
- Jiang, M.F.; Bai, M.; He, Z.H.; Fan, G.F.; Tang, M.H.; Liang, Z.R. A Technology of Forest Fire Smoke Detection Using Dual-Polarization Weather Radar. Forests 2025, 16. [CrossRef]
- Yin, J.Y.; He, R.R.; Zhao, F.J.; Ye, J.X. Research on Forest Fire Monitoring Based on Multi -Source Satellite Remote Sensing Images. Spectroscopy and Spectral Analysis 2023, 43, 917-926. [CrossRef]
- Xu, G.; Zhong, X. Real-time wildfire detection and tracking in Australia using geostationary satellite: Himawari-8. Remote Sensing Letters 2017, 8, 1052-1061. [CrossRef]
- Zhu, W.Y.; Niu, S.W.; Yue, J.X.; Zhou, Y.L. Multiscale wildfire and smoke detection in complex drone forest environments based on YOLOv8. Scientific Reports 2025, 15. [CrossRef]
- Wang, M.; Yue, P.; Jiang, L.C.; Yu, D.Y.; Tuo, T.Y.; Li, J. An open flame and smoke detection dataset for deep learning in remote sensing based fire detection. Geo-Spatial Information Science 2025, 28, 511-526. [CrossRef]
- Gao, B.Y.; Jia, W.W.; Wang, Q.; Yang, G. All-Weather Forest Fire Automatic Monitoring and Early Warning Application Based on Multi-Source Remote Sensing Data: Case Study of Yunnan. Fire-Switzerland 2025, 8. [CrossRef]
- Schroeder, W.; Oliva, P.; Giglio, L.; Quayle, B.; Lorenz, E.; Morelli, F. Active fire detection using Landsat-8/OLI data. Remote Sensing of Environment 2016, 185, 210-220. [CrossRef]
- Tian, Y.P.; Wu, Z.C.; Li, M.Z.; Wang, B.; Zhang, X.D. Forest Fire Spread Monitoring and Vegetation Dynamics Detection Based on Multi-Source Remote Sensing Images. Remote Sensing 2022, 14. [CrossRef]
- Liu, C.; Li, Y.J.; Zhao, C.H.; Yan, H.; Zhao, H.M. The method of evaluating sub-pixel size and temperature of fire spot in AVHRR data. Journal of Applied Meteorological Science 2004, 273-280, doi:Cnki:Sun:Yyqx.0.2004-03-002.
- Kalpoma, K.A.; Haramoto, Y.; Kudoh, J.; Ieee. A new approach for more effective fire detection method using NOAA AVHRR images. In Proceedings of the 25th IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2005), Seoul, SOUTH KOREA, Jul 25-29 2005, 2005; pp. 5714-5716.
- Roy, D.P.; Boschetti, L.; Justice, C.O.; Ju, J. The collection 5 MODIS burned area product - Global evaluation by comparison with the MODIS active fire product. Remote Sensing of Environment 2008, 112, 3690-3707. [CrossRef]
- Yi H R, B.L.N.a.J.P. Research method for remote sensing image processing using expert system. Forest Research 1994, 13-19, doi:Cnki:Sun:Lykx.0.1994-01-002.
- Qin, X.L.; Yi, H.R. A method to identify forest fire based on MODIS data. Fire Safety Science 2004, 83-89+60, doi:Cnki:Sun:Hzkx.0.2004-02-005.
- Liu, S.C.; Chen, X.Z.; Qin, X.L.; Sun, G.F.; Li, X.T. Remote sensing assessment of forest fire damage degree in Bilahe forest farm, Inner Mongolia. Forest Resources Management 2018, 90-95+140. [CrossRef]
- Chen, J.; Zheng, W.; Liu, C. Application of grassland fire monitoring based on Himawari-8 geostationary meteorological satellite data. Journal of Natural Disasters 2017, 26, 197-204. [CrossRef]
- Zhu, Y.J.; Xing, L.X.; Pan, J.; Meng, T.; Wen, J.C.; Wang, H.H.; Qiao, Z.M.; Huang, J.C. Method of identifying high-temperature target using shortwave infrared remote sensing data. Remote Sensing Information 2011, 33-36+41, doi:Cnki:Sun:Ygxx.0.2011-06-008.
- Yu, Y.F.; Pan, J.; Xing, L.X.; Jiang, L.J.; Meng, T.; Han, X.J.; Zhou, C.C. Identification of high temperature targets in remote sensing imagery based on mahalanobis distance. Remote Sensing Information 2013, 28, 90-94, doi:Cnki:Sun:Ygxx.0.2013-05-019.
- He, Y.; Yang, J.; Ma, Y.; Liu, J.B.; Chen, F.; Li, X.P.; Yang, Y.F. A method for fire detection using Landsat 8 data. Journal of Infrared and Millimeter Waves 2016, 35, 600-608+624, doi:Cnki:Sun:Hwyh.0.2016-05-017.
- Qin, X.L.; Zhang, Z.H.; Li, Z.Y. An automatic forest fires identification method using HJ-1B IRS data. Remote Sensing Technology and Application 2010, 25, 700-706, doi:Cnki:Sun:Ygjs.0.2010-05-017.
- Zhou, Y.; Wang, S.X.; Wang, L.T.; Chen, S.R.; Li, H.C. MODIS data-based automatic extraction of information on fire spot. Journal of Natural Disasters 2007, 88-93, doi:Cnki:Sun:Zrzh.0.2007-01-016.
- Wu, X.Q.; Qin, X.L.; Li, C.; Tian, Z.W.; Xiong, Y.Q.; Yang, D.F.; Zhang, R. Analysis of current forest fire monitoring system in China. Inner Mongolia Forestry Investigation and Design 2010, 33.
- Yang, W.; Zhang, S.W.; Tang, J.M.; Bu, K.; Yang, J.C.; Chang, L.P. A MODIS time series data based algorithm for mapping forest fire burned area. Chinese Geographical Science 2013, 23, 344-352. [CrossRef]
- Meng, Q.Y.; Cui, J.X.; Zou, J.H.; Li, J.Y.; Liu, X.; Zhu, B.G.; Qiu, L.; Yang, X.H.; Cai, L.J.; Gao, X.D.; et al. Research on Forest Fire Point Image Recognition of Agricultural and Forestry Satellites Based on the FRJLI Algorithm. In Proceedings of the International Conference on Machine Intelligence and Digital Applications (MIDA), Ningbo, PEOPLES R CHINA, May 30-31 2024, 2024; pp. 487-494.
- Li, X.D.; Zhang, H.Y.; Yang, G.B.; Ding, Y.L.; Zhao, J.J. Post-Fire Vegetation Succession and Surface Energy Fluxes Derived from Remote Sensing. Remote Sensing 2018, 10. [CrossRef]
- Yang, Y.H.; Shi, Y.; Sun, W.J.; Chang, J.F.; Zhu, J.X.; Chen, L.Y.; Wang, X.; Guo, Y.P.; Zhang, H.T.; Yu, L.F.; et al. Terrestrial carbon sinks in China and around the world and their contribution to carbon neutrality. Science China-Life Sciences 2022, 65, 861-895. [CrossRef]
- Hai, Q.S.; Han, X.F.; Vandansambuu, B.; Bao, Y.H.; Gantumur, B.; Bayarsaikhan, S.; Chantsal, N.; Sun, H.L. Predicting the Occurrence of Forest Fire in the Central-South Region of China. Forests 2024, 15. [CrossRef]
- Fu, Y.C.; Xu, S.J.; Chen, M. Extraction of forest fire edge line based on MODIS imagery gradient. Scientia Silvae Sinicae 2008, 56-61, doi:Cnki:Sun:Lyke.0.2008-07-014.
- Fu, Y.C.; Yuan, X.X.; Song, Y.; Chen, M.; Guo, T.S. Automatic extraction of forest fire line using MODIS data by multi-spectral image gradient technique. Journal of remote sensing 2009, 13, 542-548, doi:Cnki:Sun:Ygxb.0.2009-03-030.
- Qin, X.L.; Zhu, X.; Yang, F.; Zhao, K.R.; Pang, Y.; Li, Z.Y.; Z., L.X.; X., Z.J. Analysis of sensitive spectral bands for burning status detection using hyper-spectral images of Tiangong-01. Spectroscopy and Spectral Analysis 2013, 33, 1908-1911, doi:Cnki:Sun:Guan.0.2013-07-043.
- Qin, X.L.; Yang, F.; Zu, X.F.; Zhang, Z.H.; Li, Z.Y. Quantitative extraction of fine contour parameters for forest fire using satellite remote sensing. Journal of Infrared Millimeter Waves 2014, 33, 642-648, doi:Cnki:Sun:Hwyh.0.2014-06-013.
- Ba, R.; Song, W.G.; Lovallo, M.; Zhang, H.; Telesca, L. Informational analysis of MODIS NDVI and EVI time series of sites affected and unaffected by wildfires. Physica a-Statistical Mechanics and Its Applications 2022, 604. [CrossRef]
- Konkathi, P.; Shetty, A. Inter comparison of post-fire burn severity indices of Landsat-8 and Sentinel-2 imagery using Google Earth Engine. Earth Science Informatics 2021, 14, 645-653. [CrossRef]
- Nogueira, J.M.P.; Ruffault, J.; Chuvieco, E.; Mouillot, F. Can We Go Beyond Burned Area in the Assessment of Global Remote Sensing Products with Fire Patch Metrics? Remote Sensing 2017, 9. [CrossRef]
- Kim, Y.; Kim, B.R.; Park, S. Synergistic use of multi-satellite remote sensing to detect forest fires: A case study in South Korea. Remote Sensing Letters 2023, 14, 491-502. [CrossRef]
- Miller, J.D.; Quayle, B. CALIBRATION AND VALIDATION OF IMMEDIATE POST-FIRE SATELLITE-DERIVED DATA TO THREE SEVERITY METRICS. Fire Ecology 2015, 11, 12-30. [CrossRef]
- Long, T.F.; Zhang, Z.M.; He, G.J.; Jiao, W.L.; Tang, C.; Wu, B.F.; Zhang, X.M.; Wang, G.Z.; Yin, R.Y. 30 m Resolution Global Annual Burned Area Mapping Based on Landsat Images and Google Earth Engine. Remote Sensing 2019, 11. [CrossRef]
- Ichoku, C.; Kaufman, Y.J.; Giglio, L.; Li, Z.; Fraser, R.H.; Jin, J.Z.; Park, W.M. Comparative analysis of daytime fire detection algorithms using AVHRR data for the 1995 fire season in Canada: perspective for MODIS. International Journal of Remote Sensing 2003, 24, 1669-1690. [CrossRef]
- Wulder, M.A.; White, J.C.; Alvarez, F.; Han, T.; Rogan, J.; Hawkes, B. Characterizing boreal forest wildfire with multi-temporal Landsat and LIDAR data. Remote Sensing of Environment 2009, 113, 1540-1555. [CrossRef]
- Li, M.Z.; Kang, X.R.; Fan, W.Y. Burned area extraction in Huzhong Forests based on remote sensing and the spatial analysis of the burned severity. Scientia Silvae Sinicae 2017, 53, 163-174, doi:Cnki:Sun:Lyke.0.2017-03-018.
- Zu, X.F.; Qin, X.L.; Yin, L.Y.; Chen, X.Z.; Zhong, X.Q. Decision tree method for burned area identification based on the spectral index of GF-1 WFV image. Forest Resources Management 2015, 73-78+83. [CrossRef]
- Zhu, X.; Qin, X.L.; Liao, J. Remote sensing mapping for uni-temporal cross-region forest burned area based on fuzzy set theory. Remote Sensing for Land and Resources 2013, 25, 122-128, doi:Cnki:Sun:Gtyg.0.2013-04-021.
- Yi, H.R.; Ji, P. The methods of evaluating burned area of forest fire by using remote sensing. Remote Sensing Technology and Application 1998, 11-15, doi:Cnki:Sun:Ygjs.0.1998-02-001.
- Zhu, X.; Qin, X.L. Burned area mapping using HJ-1A/B CCD data based on two-phase algorithm. Remote Sensing Technology and Application 2013, 28, 72-77, doi:Cnki:Sun:Ygjs.0.2013-01-011.
- Sun, G.F.; Qin, X.L.; Liu, S.C.; Li, X.T.; Chen, X.Z.; Zhong, X.Q. Potential analysis of typical vegetation index for identifying burned area. Remote Sensing for Natural Resources 2019, 31, 204-211.
- Bekele, F. Application of remote sensing and importance of satellite communications in a National Meteorological Services Agency. In Proceedings of the International Symposium on Space of Service to Humanity - Preserving Earth and Improving Life, Strasbourg, France, Feb 05-071997, 1996; pp. 139-145.
- Moreno-Ruiz, J.A.; Garc铆a-L谩zaro, J.R.; Arbelo, M.; Ria帽o, D. A Comparison of Burned Area Time Series in the Alaskan Boreal Forests from Different Remote Sensing Products. Forests 2019, 10. [CrossRef]
- Chang, Y.; Chen, H.W.; Hu, Y.M.; Feng, Y.T.; Li, Y. Advances in the assessment of forest fire severity and its spatial heterogeneity. Journal of Natural Disasters 2012, 21, 28-34. [CrossRef]
- Roy, D.P.; Jin, Y.; Lewis, P.E.; Justice, C.O. Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote Sensing of Environment 2005, 97, 137-162. [CrossRef]
- Marsha, A.L.; Larkin, N.K. Evaluating Satellite Fire Detection Products and an Ensemble Approach for Estimating Burned Area in the United States. Fire-Switzerland 2022, 5. [CrossRef]
- Makineci, H.B. Investigation of burned areas with multiplatform remote sensing data on the Rhodes 2023 forest fires. Ain Shams Engineering Journal 2024, 15. [CrossRef]
- Chen, F.; Weber, K.T.; Anderson, J.; Gokhal, B. Assessing the susceptibility of semiarid rangelands to wildfires using Terra MODIS and Landsat Thematic Mapper data. International Journal of Wildland Fire 2011, 20, 690-701. [CrossRef]
- Lee, K.S.; van Leeuwen, W.J.D.; Gillan, J.K.; Falk, D.A. Examining the Impacts of Pre-Fire Forest Conditions on Burn Severity Using Multiple Remote Sensing Platforms. Remote Sensing 2024, 16. [CrossRef]
- Miao, Q.L.; Tian, X.R.; Zhao, F.J. NDVI recovery process for post-fire vegetation in Daxing’anling. Scientia Silvae Sinicae 2015, 51, 90-98, doi:Cnki:Sun:Lyke.0.2015-02-011.
- Wang, Z.; Ma, M.; Liu, Q.; He, Q.; Zheng, X.; Liu, L.; Calves, G.M. Application of the Tianwen-1 DOR Signals Observed by Very Long Baseline Interferometry Radio Telescopes in the Study of Solar Wind Plasma and a Coronal Mass Ejection. Astrophysical Journal Supplement Series 2023, 269. [CrossRef]
- Li, R.; Fu, Y.Y.; Bergeron, Y.; Valeria, O.; Chavard猫s, R.D.; Hu, J.H.; Wang, Y.P.; Duan, J.W.; Li, D.; Cheng, Y.X. Assessing forest fire properties in Northeastern Asia and Southern China with satellite microwave Emissivity Difference Vegetation Index (EDVI). Isprs Journal of Photogrammetry and Remote Sensing 2022, 183, 54-65. [CrossRef]
- Liu, H.; Shu, L.F.; Liu, X.D.; Cheng, P.L.; Wang, M.Y.; Huang, Y. Advancements in Artificial Intelligence Applications for Forest Fire Prediction. Forests 2025, 16. [CrossRef]
- Liu, S.J.; Xue, Y.; Chen, H.; Chen, Y.; Zhan, T.Y. Segmentation of Any Fire Event (SAFE): A Rapid and High-Precision Approach for Burned Area Extraction Using Sentinel-2 Imagery. Remote Sensing 2025, 17. [CrossRef]
| Resolution Type | Typical Satellite Data | Spatial Resolution | Fire Site Characterization Features | Applicable Scenarios | Limitations |
| Low Resolution | NOAA/AVHRR、MODIS | 1 km–250 m | Appears as isolated thermal anomaly points; unable to distinguish between fire fronts and burning areas | Preliminary judgment of large-scale fire conditions, fire point counting | Strong mixed pixel effect; severe loss of details |
| Medium Resolution | Landsat TM/OLI、GF-4 | 30 m–50 m | Capable of identifying linear features of fire fronts and areal features of burning areas | Regional-scale dynamic monitoring of fire sites | Long revisit cycle; insufficient real-time performance |
| High Resolution | GF-2、Sentinel-2A/B | 10 m–2 m | Capable of finely depicting the curvature of fire fronts and the fragmentation of burning areas | Small-scale detailed monitoring of fire sites | Small coverage area; high cost for large-scale applications |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
