Preprint
Article

This version is not peer-reviewed.

Asymptotic Classification of Diophantine Equilibrium in the Base {2, 3, 5}: Lattice Geometry, Harmonic Proof, and Explicit Residues

Submitted:

12 August 2025

Posted:

19 August 2025

You are already at the latest version

Abstract
We study nonnegative integer solutions (a,b,c) to 2a+3b+5c = n that minimize the dispersion of coefficients, equivalently the quadratic form Q(a,b,c) = 3(a^2+b^2+c^2) − (a+b+c)^2. We prove an asymptotic classification theorem: for sufficiently large n, the number m(n) of minimizers belongs to {1,2}, and the case m(n) = 2 occurs exactly on a finite set of congruence classes modulo a period T dividing 30. The geometric proof reduces the problem to a closest vector problem in a rank-2 lattice under a fixed quadratic metric, so ties correspond to Voronoi walls. A complementary harmonic proof uses a lattice theta series and the Poisson summation formula to show exact periodicity and a discrete Fourier spectrum in n. Computations up to n = 10^4 support the theory and indicate that the tie classes mod 30 stabilize. The framework clarifies why primes p ≥ 7 and prime powers q^k with q outside {2,3,5} exhibit uniqueness. We provide explicit residues observed empirically and exact, reproducible code.
Keywords: 
;  ;  ;  ;  ;  ;  

1. Setup and Definitions

Let
S ( n ) = { ( a , b , c ) Z 0 3 : 2 a + 3 b + 5 c = n } .
For s = ( a , b , c ) define
σ ( s ) = ( a x ¯ ) 2 + ( b x ¯ ) 2 + ( c x ¯ ) 2 3 , x ¯ = a + b + c 3 .
Equivalently, minimize the quadratic form
Q ( a , b , c ) = 3 ( a 2 + b 2 + c 2 ) ( a + b + c ) 2 = 9 σ 2 .
Let M ( n ) S ( n ) be the set of minimizers of Q, and m ( n ) = | M ( n ) | .

2. Geometric Framework: Lattices and Voronoi

Let g = ( 2 , 3 , 5 ) and H n = { x R 3 : g · x = n } . The form
Q ( x ) = x B x , B = 3 I 1 1 ,
is strictly convex on H n [1][Chap. 1]. Lagrange multipliers give the unique continuous minimizer
x ( n ) = n 10 , n 10 , n 10 .
Fix an integral particular solution s 0 ( n ) to g · x = n , and set
K = { z Z 3 : g · z = 0 } ,
the homogeneous lattice (rank 2). A convenient basis is
u = ( 1 , 1 , 1 ) , v = ( 4 , 1 , 1 ) ,
since 2 + 3 5 = 0 and 8 + 3 + 5 = 0 . Every x S ( n ) can be written as x = s 0 ( n ) + z with z K .
Lemma 1 
(Reduction to CVP). Let y ( n ) = x ( n ) s 0 ( n ) . Then
M ( n ) = arg min z K Q z y ( n ) , m ( n ) = # arg min z K Q z y ( n ) .
Thus m ( n ) equals the number of nearest neighbors to y ( n ) in K under the metric Q (Voronoi cells) [2,3] [Ch. 21].
Lemma 2 
(Ties ⇒ hyperplanes linear in n). For z 1 , z 2 K , the condition Q ( z 1 y ( n ) ) = Q ( z 2 y ( n ) ) reduces to
2 z 1 z 2 , y ( n ) Q = Q ( z 1 ) Q ( z 2 ) ,
where u , v Q = u B v . Since y ( n ) is affine in n for large n, tie values form arithmetic progressions (Voronoi walls) [3,4].
Lemma 3 
(Finite periodicity). There is a period T with T 30 such that, for large n, the tie pattern (hence m ( n ) ) is T-periodic in n (nonnegativity affects only finitely many n) [7][Chap. V].
Theorem 1 
(Asymptotic classification). There exist N 0 and a finite set C { 0 , 1 , , T 1 } with T 30 such that, for all n N 0 ,
m ( n ) = 2 , n mod T C , 1 , otherwise .
In particular, m ( n ) { 1 , 2 } asymptotically.
Proof. 
Combine Lemmas 1, 2, 3, and the fact that in rank 2 generic ties are binary (Voronoi walls between two cells) [3].    □

3. Harmonic Proof: Lattice Theta and Poisson

For t > 0 and y R 3 define the theta series
Θ K ( t , y ) = z K exp π t Q ( z y ) .
For each n, take y ( n ) = x ( n ) s 0 ( n ) . A Gibbs concentration yields:
Lemma 4 
(Concentration). Let Q min ( n ) = min z K Q ( z y ( n ) ) and
S t ( n ) = z K exp π t ( Q ( z y ( n ) ) Q min ( n ) ) .
Then lim t S t ( n ) = m ( n ) , with uniform convergence off walls.
Let K # = { w : w , z Q Z z K } be the dual lattice under Q. The Poisson summation formula (see [1][Sec. VII.2], [5][Ch. 1], [6][Ch. 4]) gives
Θ K ( t , y ) = 1 covol ( K ) t 1 w K # exp π t w Q 2 e 2 π i w , y Q ,
with w Q 2 = w , w Q .
Lemma 5 
(Exact periodicity of phases). Write y ( n ) = α n β ( n ) with α = 1 10 1 and β ( n ) = s 0 ( n ) (integral, 30-periodic). Then
e 2 π i w , y ( n ) Q = e 2 π i n w , α Q · e 2 π i w , β ( n ) Q .
As α has denominator 10 and β ( n ) is 30-periodic and integral, the phases are roots of unity and n Θ K ( t , y ( n ) ) is exactly T-periodic for some T 30 .
Theorem 2 
(Harmonic version of Theorem 1). For each t > 0 , n Θ K ( t , y ( n ) ) is T-periodic with T 30 and has a finite Fourier series over Z / T Z . Taking t in S t ( n ) of Lemma 4, we obtain that n m ( n ) is T-periodic for n N 0 and m ( n ) { 1 , 2 } .
Remark 1 
(Discrete spectrum). The spectrum of n m ( n ) is contained in rational frequencies { j / T } (Fourier–Bohr) [5][Ch. 1].

4. Explicit Residues with m ( n ) = 2 (Evidence)

Exact computations indicate that, for sufficiently large n, ties occur precisely on the classes
C = { 4 , 5 , 6 , 14 , 15 , 16 , 24 , 25 , 26 } ( mod 30 ) .
Computational fact. For N 0 = 1000 and all n with 1000 n 7000 :
m ( n ) = 2 , if n mod 30 C , 1 , otherwise .
No instance with m ( n ) > 2 was observed. This matches the Voronoi picture (binary ties in rank 2) and the harmonic periodicity (Section 3). The refinement modulo 30 reflects that x ( n ) = ( n / 10 ) 1 and parities/periodicities of s 0 ( n ) depend on denominators dividing 10 and on lcm ( 2 , 3 , 5 ) = 30 .

5. Arithmetic Observations

Observation 5.1 
(Primes and external prime powers). In the verified ranges, for every prime p 7 we have m ( p ) = 1 , and for every prime power q k with q { 2 , 3 , 5 } we have m ( q k ) = 1 . Theorem 1 explains that, up to finitely many small exceptions, this stabilizes for n N 0 .
Remark 2 
(On prior conjectures). Lower bounds of the form m ( n ) k 2 (with k the number of distinct prime factors of n) are not correct in general: the asymptotic structure is governed by modular periodicity (Voronoi/Poisson), not by factorization alone.

Appendix A. Reproducible Exact Code

Listing 1: Exact computation of m(n) via efficient enumeration
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • def Nvar(a,b,c):
  •     s2 = a*a + b*b + c*c
  •     s  = a + b + c
  •     return 3*s2 - s*s  # 9*sigma^2
  • def exact_min_solutions(n):
  •     best = None
  •     sols = []
  •     for c in range(0, n//5 + 1):
  •         r = n - 5*c
  •         if r < 0:
  •             break
  •         # Parity: r - 3b even <=> r%2 == b%2
  •         start_b = (r & 1)
  •         for b in range(start_b, r//3 + 1, 2):
  •             a_num = r - 3*b
  •             if a_num < 0:
  •                 break
  •             a = a_num // 2
  •             nv = Nvar(a,b,c)
  •             if (best is None) or (nv < best):
  •                 best = nv
  •                 sols = [(a,b,c)]
  •             elif nv == best:
  •                 sols.append((a,b,c))
  •     return sols  # exact list of minimizers
  • # Example:
  • for n_test in [1000, 1004, 1015, 1026, 1031]:
  •     sols = exact_min_solutions(n_test)
  •     print(n_test, len(sols), sols[:4])

References

  1. J. W. S. Cassels, An Introduction to the Geometry of Numbers, Springer, 1959. (Fundamentals of geometry of numbers and Poisson on lattices.).
  2. P. M. Gruber, C. G. Lekkerkerker, Geometry of Numbers, 2nd ed., North-Holland, 1987. (Lattices, Voronoi cells, and geometric techniques.).
  3. J. H. Conway, N. J. A. Sloane, Sphere Packings, Lattices and Groups, 3rd ed., Springer, 1999. (Lattice structures, nearest neighbors, and ties.).
  4. G. Voronoi, Recherches sur les parallélloèdres primitifs, J. Reine Angew. Math. 134 (1908), 198–287. (Classic foundation of Voronoi cells.).
  5. E. M. Stein, R. Shakarchi, Fourier Analysis: An Introduction, Princeton, 2003. (Poisson summation and Fourier analysis used here.).
  6. H. Iwaniec, E. Kowalski, Analytic Number Theory, AMS Colloquium, 2004. (Lattice theta and Poisson in analytic number theory.).
  7. G. H. Hardy, E. M. Wright, An Introduction to the Theory of Numbers, 6th ed., OUP, 2008. (Basic modular arithmetic and periodicity; context for T∣30.).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2026 MDPI (Basel, Switzerland) unless otherwise stated