Submitted:
13 August 2025
Posted:
14 August 2025
You are already at the latest version
Abstract
Water pollution poses a significant environmental challenge that has garnered considerable attention, primarily due to its role in depleting vital resources. The separation of oil from water presents a complex issue for industries, particularly when large quantities of stable oil/water emulsions are released. This article reviews recent advancements, particularly over the past seven years, in the membrane separation of oil-water mixtures utilizing nanofiber membranes through filtration and absorption methods. Among the various techniques for fabricating membranes, electrospinning has emerged as a favored approach due to its ease of mass production and the potential for integrating other functional materials at the nanoscale. This method has gained significant interest in developing innovative nanofibrous membranes characterized by selective wettability, optimized pore structures, and high specific surface areas. Electrospinning is recognized as the most versatile technique for producing nanofibers embedded with diverse active agents. Several strategies have been explored, including the electrospinning of polymer blends rather than single polymeric materials, surface modifications through coating or grafting, and the incorporation of nanofillers to create mixed matrix membranes. Notably, numerous efforts have been made to manipulate surface hydrophobicity and oleophobicity by designing hierarchical and Janus structures. The future of electrospinning technology appears promising for the design and fabrication of next-generation materials for oil-water separation.
Keywords:
1. Introduction
2. Fabrication Methods of Nanofibers
3. Membrane Design
3.1. ENMs (Electrospun Nanofiber Membranes) Without Modification
3.2. Chemical and Physical Surface Modification Techniques
3.2.1. Polymer Blending
3.2.2. Surface Grafting
3.2.3. Surface Coating
3.2.4. Mixed Matrix Membranes (MMM)
3.2.5. Janus Membranes
3.2.6. Nanofibers Membranes Developed for Oil/Water Separation
4. Summary
References
- Kamin, Z.; Sarbatly, R.; Krishnaiah, D.; Tanioka, A.; Takahashi, M. Melt blowing process conditions for nanofibers of polymers for oil-water separation in marine oil spills clean-up applications: a short review. J. Mecha. Eng. Res. Develop. 2019, 42, 205–210. [Google Scholar] [CrossRef]
- Lin, Y.M.; Rutledge, G.C. Separation of oil-in-water emulsions stabilized by different types of surfactants using electrospun fiber membrane. J. Membr. Sci. 2018, 563, 247–258. [Google Scholar] [CrossRef]
- Barani, M.; Bazgir, S.; Hosseini, M.K.; Hosseini, P.K. Eco-facile application of electrospun nanofibers to the oil-water emulsion separation via coalescing filtration in pilot- scale and beyond. Process Safety and Environmental Protection 2021, 148, 342–357. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, T.C.; Wei, B.; Chen, S.; Liang, Y.; Yuan, S. Durable CNTs reinforced porous electrospun superhydrophobic membrane for efficient gravity driven oil/water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 608, 1253. [Google Scholar] [CrossRef]
- Du, Q.; Chen, Z.; Jiang, X.; Pang, J.; Jiang, Z.; Luan, J. An oil/water separation nanofibrous membrane with a 3-D structure from the blending of PES and SPEEK. High Performance Polymers 2019, 31, 538–547. [Google Scholar] [CrossRef]
- Jiang, S.; Meng, X.; Chen, B.; Wang, N.; Chen, G. Electrospinning superhydrophobic–superoleophilic PVDF-SiO2 nanofibers membrane for oil–water separation. Applied Polymer 2020, 137, 49546. [Google Scholar] [CrossRef]
- Shakiba, M.; Nabavi, S.R.; Emadi, H.; Faraji, M. Development of a superhydrophilic nanofiber membrane for oil/water emulsion separation via modification of polyacrylonitrile/polyaniline composite. Polym. Advan. Technol. 2021, 32, 1301–1316. [Google Scholar] [CrossRef]
- Ma, W.; Zhao, J.; Oderinde, O.; Han, J.; Liu, Z.; Gao, B.; Xiong, R.; Zhang, Q.; Jiang, S.; Huang, C. Durable superhydrophobic and superoleophilic electrospun nanofibrous membrane for oil-water emulsion separation. J. Colloid and Interface Sci. 2018, 532, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, L.; Grishkewich, N.; Tam, K.C.; Yuan, J.; Mao, Z.; X. Sui. CO2-responsive cellulose nanofibers aerogels for switchable oil–water separation, ACS Appl. Mater. Interfaces 2019, 11, 9367–9373. [Google Scholar] [CrossRef]
- Yi, Y.; Tu, H.; Zhou, X.; Liu, R.; Wu, Y.; Li, D.; Wang, Q.; Shi, X.; H. Deng. Acrylic acid-grafted pre-plasma nanofibers for efficient removal of oil pollution from aquatic environment. J. Hazard. Mater. 2019, 371, 165–174. [Google Scholar] [CrossRef]
- Naseem, S.; Wu, C.M.; Xu, T.Z.; Lai, C.C.; S. P. Rwei. Oil-water separation of electrospun cellulose triacetate nanofiber membranes modified by electrophoretically deposited TiO2/graphene oxide. Polymers 2018, 10, 746. [Google Scholar] [CrossRef]
- Eang, C.; P. Opaprakasit. Electrospun nanofbers with superhydrophobicity derived from degradable polylactide for oil/water separation applications. J. Polym. Environ. 2020, 28, 1484–1491. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Y.; C. Li. R. Liu. Porous nanofibrous superhydrophobic membrane with embedded Au nanoparticles for the integration of oil/water separation and catalytic degradation. J. Membr. Sci. 2019, 582, 350–357. [Google Scholar] [CrossRef]
- Zhang, Z.M.; Gan, Z.Q.; Bao, R.Y.; Ke, K.; Liu, Z.Y.; Yang, M.B.; W. Yang. Green and robust superhydrophilic electrospun stereocomplex polylactide membranes: Multifunctional oil/water separation and self-cleaning. J. Membr. Sci. 2020, 593, 117420. [Google Scholar] [CrossRef]
- Moghaddasi, A.A.; Sobol, P.; Popelka, A.; I. Krupa. Separation of water/oil emulsions by an electrospun copolyamide mat covered with a 2D Ti3C2Tx MXene. Materials 2020, 13, 3171. [Google Scholar] [CrossRef] [PubMed]
- Makaremi, M.; De Silva, R.T.; P. Pasbakhsh. Electrospun nanofibrous membranes of polyacrylonitrile/halloysite with superior water filtration ability. J. Phys. Chem. C 2015, 119, 7949–7958. [Google Scholar] [CrossRef]
- Khalaf, D.M.; Elkatlawy, S.M.; Sakr, A.H.A.; S. M. Ebrahim. Enhanced oil/water separation via electrospun poly(acrylonitrile-co-vinyl acetate)/(single-wall carbon nanotubes) fibrous nanocomposite membrane. Appl. Polym. 2020, 137, 49033. [Google Scholar] [CrossRef]
- Ye, B.; Jia, C.; Li, Z.; Li, L.; Zhao, Q.; Wang, J.; H. Wu. Solution-blow spun PLA/SiO2 nanofiber membranes toward high efficiency oil/water separation. Appl. Polym. 2020, 137, 49103. [Google Scholar] [CrossRef]
- Xu, Z.; Zhou, H.; Tan, S.; Jiang, X.; Shi, W.W.J.; P. Chen. Ultralight super-hydrophobic carbon aerogels based on cellulose nanofibers/poly(vinyl alcohol)/graphene oxide (CNFs/PVA/GO) for highly effective oil–water separation. Beilstein J. Nanotechnol. 2018, 9, 508–519. [Google Scholar] [CrossRef]
- Xu, H.; Liu, H.; Huang, Y.; C. Xiao. Three-dimensional structure design of tubular polyvinyl chloride hybrid nanofiber membranes for water-in-oil emulsion. J. Membr. Sci. 2021, 620, 118905. [Google Scholar] [CrossRef]
- Duan, A.; Li, Z.; Wu, S. ; F. Huang. Highly reusable Cu2O/PP fibrous membranes for oil/water separation. Soft Materials, 2020. [Google Scholar] [CrossRef]
- Huo, L.; Luo, J.; Huang, X.; Zhang, S.; Gao, S.; Long, B.; J. Gao. Superhydrophobic and anti-ultraviolet polymer nanofiber composite with excellent stretchability and durability for efficient oil/water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020, 603, 125224. [Google Scholar] [CrossRef]
- Jiang, X.; Xu, C.; Du, J.; J. Wang. PVDF-based nanofiber membrane decorated with Z-scheme TiO2/MIL-100(Fe) heterojunction for efficient oil/water emulsion separation and dye photocatalytic degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 688, 133605. [Google Scholar] [CrossRef]
- Cheng, X.Q.; Sun, Z.; Yang, X.; Li, Z.; Zhang, Y.; Wang, P.; Liang, H.; Ma, J.; L. Shao. Construction of superhydrophilic hierarchical polyacrylonitrile nanofiber membranes by in situ asymmetry engineering for unprecedently ultrafast oil–water emulsion separation. J. Mater. Chem. A 2020, 8, 16933–16942. [Google Scholar] [CrossRef]
- Thota, K.; Araga, R.; Sabapathy, M.; M. Kakunuri. Polystyrene Nanofibrous Membrane Infused with TiO2 Nanoparticles by a One-Step Electrospinning Process for Effective Oil–Water Separation. Ind. Eng. Chem. Res. 2024, 63, 14249–14258. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Y.; C. Li. R. Liu. Porous nanofibrous superhydrophobic membrane with embedded Au nanoparticles for the integration of oil/water separation and catalytic degradation. J. Membr. Sci. 2019, 582, 350–357. [Google Scholar] [CrossRef]
- Chen, A.; Guo, H.; Zhou, J.; Li, Y.; He, X.; Chen, L.; Y. Zhang. Polyacrylonitrile nanofibers coated with covalent organic frameworks for oil/water separation. ACS Appl. Nano Mater. 2022, 5, 3925–3936. [Google Scholar]
- Li, S.; He, Y.; Zhang, L.; Li, J.; Nie, Y.; Li, H.; Yin, X.; Y. Bai. Designing nanofibrous membrane with biomimetic caterpillar-like structured for highly efficient and simultaneous removal of insoluble emulsified oils and soluble dyes towards sewage remediation. J. Hazard. Materials 2021, 414, 125442. [Google Scholar] [CrossRef]
- Fu, W.; Dai, Y.; Tian, J.; Huang, C.; Liu, Z.; Liu, K.; Yin, L.; Huang, F.; Lu, Y.; Y. Sun. In situ growth of hierarchical Al2O3 nanostructures onto TiO2 nanofibers surface: super-hydrophilicity, efficient oil/water separation and dye-removal. Nanotechn 2018, 29, 345607. [Google Scholar] [CrossRef]
- Fan, T.; Su, Y.; Fan, Q.; Li, Z.; Cui, W.; Yu, M.; Ning, X.; Ramakrishna, S.; Long, Y. Robust Graphene@PPS fibrous membrane for harsh environmental Oil/Water separation and all-Weather cleanup of crude oil spill by joule heat and photothermal effect. ACS Appl. Mater. Interfaces 2021, 13, 19377–19386. [Google Scholar] [CrossRef]
- Junaidi, N.F.D.; Othman, N.H.; Fuzil, N.S.; Shayuti, M.S.; Alias, N.H.; Shahruddin, M.Z.; Marpani, F.; Lau, W.J.; FauziIsmail, A.; N. F.D. Aba. Recent development of graphene oxide-based membranes for oil–water separation: A review. Sep Puri Tech 2021, 258, 118000. [Google Scholar] [CrossRef]
- Che, K.; Jiang, P.; Yin, F.H.; Li, Z.; Wang, X.; Yu, J.; S. Zhang. High-performance membranes based on spherical-beaded nanofibers and nanoarchitectured networks for water-in-oil emulsion separation. Nano Lett. 2024, 24, 12806–12813. [Google Scholar]
- Guo, Z.; Long, B.; Gao, S.; Luo, J.; Wang, L.; Huang, X.; Wang, D.; Xue, H.O.; Gao. Carbon nanofiber based superhydrophobic foam composite for high performance oil/water separation. J. Hazard. Materials 2021, 402, 123838. [Google Scholar] [CrossRef]
- Liu, Z.; Tang, Y.; Zhao, K.; Q. Zhang. Superhydrophobic SiO2 micro/nanofibrous membranes with porous surface prepared by freeze electrospinning for oil adsorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2019, 568, 356–361. [Google Scholar] [CrossRef]
- Chen, Y.; Li, B.; Nie, G.; Pei, W.H.H.; Han, W.; Shao, W.; He, J.; Wang, R.; Yu, X.; Wei, D.; Chen, D.; Xiong, Y.; P. Han. ZIF-8 in Situ Modified Nanofiber Membranes with Photocatalytic Self-Cleaning Ability for Oil–Water Separation. ACS Appl. Nano Mater. 2025, 8, 5444–5455. [Google Scholar]
- Cheng, C.X.; Li, T.; Yan, L.; Jiao, Y.; Zhang, Y. ; Wang; Cheng, Z.; J. Ma. L. Shao. Biodegradable electrospinning superhydrophilic nanofiber membranes for ultrafast oil-water separation. Science Advances 2023, 9. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Liu, H.; Huang, Y.; C. Xiao. Three-dimensional structure design of tubular polyvinyl chloride hybrid nanofiber membranes for water-in-oil emulsion separation. J Membr Sci 2021, 620, 118905. [Google Scholar] [CrossRef]
- Fang, S.; Li, Y.; Yu, H.; Li, H.; Feng, S.; Wang, S.; Chen, X.; Li, J.; Yuan, Y.; Wang, X.; Yu, Y.; H. Zhang. Preparation of ZIF-8 modified PAN/PU superhydrophobic-superoleophilic composite nanofiber membranes for oil/water separation and dye adsorption. Reactive and Functional Polymers 2025, 209, 106160. [Google Scholar] [CrossRef]
- Li, S.; He, Y.; Zhang, L.; Li, J.; Nie, Y.; Li, H.; Yin, X.; Y. Bai. Designing nanofibrous membrane with biomimetic caterpillar-like structured for highly efficient and simultaneous removal of insoluble emulsified oils and soluble dyes towards sewage remediation. J. Hazard. Materials 2021, 414, 125442. [Google Scholar] [CrossRef]
- Fu, W.; Dai, Y.; Tian, J.; Huang, C.; Liu, Z.; Liu, K.; Yin, L.; Huang, F.; Lu, Y.; Y. Sun. In situ growth of hierarchical Al2O3 nanostructures onto TiO2 nanofibers surface: super-hydrophilicity, efficient oil/water separation and dye-removal. Nanotechn 2018, 29, 345607. [Google Scholar] [CrossRef]
- Gong, X.; Zhang, L.; Liu, Y.; M. Zhu. A review on zeolitic imidazolate framework-8 based materials with special wettability for oil/water separation. J. Environm Chem Eng 2023, 11, 111360. [Google Scholar] [CrossRef]
- Yue, Y. ; Y. Mukai. In situ growth of ZIF-8 on nanofibrous membrane for long-term ultra-high flux coalescence separation of oil-in-water emulsion. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 688, 133681. [Google Scholar] [CrossRef]
- Cheng, C.X.; Li, T.; Yan, L.; Jiao, Y.; Zhang, Y. ; Wang; Cheng, Z.; J. Ma. L. Shao. Biodegradable electrospinning superhydrophilic nanofiber membranes for ultrafast oil-water separation. Science Advances 2023, 9. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Guo, J.; Gao, N.; Hou, M.; Cai, Z.; Zhao, K.; High-strength, L.L. ; super-hydrophilic alginate electrospun nanofibrous membranes for rapid oil-water emulsion separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2025, 705, 135637. [Google Scholar]
- Matabola, K.P.; Mokhena, T.C.; Bambo, M.F.; Mokhothu, T.H.; Modise, J.S.; M. J. Mochane. PVDF-Based Electrospun Nanofibers for Oil/Water Separation: A Review. Macromol. Mater. Eng. 2024, 309, 2300390. [Google Scholar] [CrossRef]
- Li, H.; Che, K.; Jiang, P.; Yin, F.; Li, Z.; Wang, X.; Yu, J.; Zhang, S.; B. Ding. High-Performance Membranes Based on Spherical-Beaded Nanofibers and Nanoarchitectured Networks for Water-in-Oil Emulsion Separation. Nano Lett. 2024, 24, 12806–12813. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).