Submitted:
04 August 2025
Posted:
05 August 2025
You are already at the latest version
Abstract
Keywords:
MSC: 42C15; 94A12; 46B45
1. Introduction
- (i)
- .
- (ii)
- If satisfies , then
2. Functional Donoho-Elad-Gribonval-Nielsen-Fuchs Sparsity Theorem
- (i)
-
The map (analysis operator)is a well-defined bounded linear operator.
- (ii)
-
The map (synthesis operator)is a well-defined bounded linear operator.
- 1.
-
The map (frame operator)is a well-defined bounded invertible operator.
- (i)
- If can be written as for some satisfying , then c is the unique solution to Problem 2.3.
- (ii)
- satisfies the NSP of order k.
- (i)
-
⇒ (ii) Let with and let . Then we havewhich givesDefine and . Then we have andBy assumption (i), we then haveRewriting previous inequality givesHence satisfies the NSP of order k.
- (ii)
-
⇒ (i) Let can be written as for some satisfying . Define . Then . By assumption (ii), we then haveLet be such that and . Define . Then and hence . Using Inequality (1), we getHence c is the unique solution to Problem 2.3.
References
- Ben Adcock and Anders C. Hansen. Compressive imaging: structure, sampling, learning. Cambridge University Press, Cambridge, 2021.
- John J. Benedetto and Matthew Fickus. Finite normalized tight frames. Adv. Comput. Math., 18(2-4):357–385, 2003. [CrossRef]
- Alfred M. Bruckstein, David L. Donoho, and Michael Elad. From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev., 51(1):34–81, 2009. [CrossRef]
- Emmanuel Candes and Terence Tao. The Dantzig selector: statistical estimation when p is much larger than n. Ann. Statist., 35(6):2313–2351, 2007. [CrossRef]
- Emmanuel J. Candes. The restricted isometry property and its implications for compressed sensing. C. R. Math. Acad. Sci. Paris, 346(9-10):589–592, 2008. [CrossRef]
- Emmanuel J. Candès, Justin Romberg, and Terence Tao. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory, 52(2):489–509, 2006. [CrossRef]
- Emmanuel J. Candès, Justin K. Romberg, and Terence Tao. Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math., 59(8):1207–1223, 2006. [CrossRef]
- Emmanuel J. Candes and Terence Tao. Decoding by linear programming. IEEE Trans. Inform. Theory, 51(12):4203–4215, 2005. [CrossRef]
- Emmanuel J. Candes and Terence Tao. Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory, 52(12):5406–5425, 2006.
- Emmanuel J. Candès and Terence Tao. The power of convex relaxation: near-optimal matrix completion. IEEE Trans. Inform. Theory, 56(5):2053–2080, 2010. [CrossRef]
- P. G. Casazza, S. J. Dilworth, E. Odell, Th. Schlumprecht, and A. Zsák. Coefficient quantization for frames in Banach spaces. J. Math. Anal. Appl., 348(1):66–86, 2008. [CrossRef]
- Peter, G. Casazza, Deguang Han, and David R. Larson. Frames for Banach spaces. In The functional and harmonic analysis of wavelets and frames (San Antonio, TX, 1999), volume 247 of Contemp. Math., pages 149–182. Amer. Math. Soc., Providence, RI, 1999.
- Scott Shaobing Chen, David L. Donoho, and Michael A. Saunders. Atomic decomposition by basis pursuit. SIAM J. Sci. Comput., 20(1):33–61, 1998. [CrossRef]
- Albert Cohen, Wolfgang Dahmen, and Ronald DeVore. Compressed sensing and best k-term approximation. J. Amer. Math. Soc., 22(1):211–231, 2009. [CrossRef]
- Mark A. Davenport, Marco F. Duarte, Yonina C. Eldar, and Gitta Kutyniok. Introduction to compressed sensing. In Compressed sensing, pages 1–64. Cambridge Univ. Press, Cambridge, 2012.
- David L. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52(4):1289–1306, 2006.
- David L. Donoho and Michael Elad. Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization. Proc. Natl. Acad. Sci. USA, 100(5):2197–2202, 2003.
- David L. Donoho and Xiaoming Huo. Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inform. Theory, 47(7):2845–2862, 2001.
- Michael Elad. Sparse and redundant representations : From theory to applications in signal and image processing. Springer, New York, 2010.
- Michael Elad and Alfred M. Bruckstein. A generalized uncertainty principle and sparse representation in pairs of bases. IEEE Trans. Inform. Theory, 48(9):2558–2567, 2002. [CrossRef]
- Yonina C. Eldar. Sampling Theory : Beyond Bandlimited Systems. Cambridge University Press, Cambridge, 2014.
- Arie Feuer and Arkadi Nemirovski. On sparse representation in pairs of bases. IEEE Trans. Inform. Theory, 49(6):1579–1581, 2003.
- Simon Foucart and Holger Rauhut. A mathematical introduction to compressive sensing. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, New York, 2013.
- D. Freeman, E. Odell, Th. Schlumprecht, and A. Zsák. Unconditional structures of translates for Lp(Rd). Israel J. Math., 203(1):189–209, 2014.
- Jean-Jacques Fuchs. More on sparse representations in arbitrary bases. IFAC Proceedings Volumes, 36(16):1315–1320, 2003.
- Jean-Jacques Fuchs. On sparse representations in arbitrary redundant bases. IEEE Trans. Inform. Theory, 50(6):1341–1344, 2004. [CrossRef]
- Rémi Gribonval and Morten Nielsen. Sparse representations in unions of bases. IEEE Trans. Inform. Theory, 49(12):3320–3325, 2003.
- Deguang Han, Keri Kornelson, David Larson, and Eric Weber. Frames for undergraduates, volume 40 of Student Mathematical Library. American Mathematical Society, Providence, RI, 2007.
- K. Mahesh Krishna. Noncommutative Donoho-Elad-Gribonval-Nielsen-Fuchs sparsity theorem. Math. Inequal. Appl., 28(3):531–539, 2025.
- K. Mahesh Krishna and P. Sam Johnson. Towards characterizations of approximate Schauder frame and its duals for Banach spaces. J. Pseudo-Differ. Oper. Appl., 12(1):Paper No. 9, 13, 2021.
- Gitta Kutyniok. Data separation by sparse representations. In Compressed sensing, pages 485–514. Cambridge Univ. Press, Cambridge, 2012.
- Gitta Kutyniok. Theory and applications of compressed sensing. GAMM-Mitt., 36(1):79–101, 2013.
- B. K. Natarajan. Sparse approximate solutions to linear systems. SIAM J. Comput., 24(2):227–234, 1995.
- Irina Rish and Genady Ya. Grabarnik. Sparse modeling : Theory, algorithms, and applications. Chapman & Hall/CRC Machine Learning & Pattern Recognition Series. CRC Press, Boca Raton, FL, 2015.
- T. Terlaky. On lp programming. European J. Oper. Res., 22(1):70–100, 1985.
- A. M. Tillmann. Equivalence of linear programming and basis pursuit. Proc. Appl. Math. Mech., 15:735–738, 2015. [CrossRef]
- Andreas M. Tillmann and Marc E. Pfetsch. The computational complexity of the restricted isometry property, the nullspace property, and related concepts in compressed sensing. IEEE Trans. Inform. Theory, 60(2):1248–1259, 2014. [CrossRef]
- M. Vidyasagar. An introduction to compressed sensing, volume 22 of Computational Science & Engineering. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2020.
- Guoliang Xue and Yinyu Ye. An efficient algorithm for minimizing a sum of p-norms. SIAM J. Optim., 10(2):551–579, 2000.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).