Submitted:
23 July 2025
Posted:
24 July 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Pathogenic Mechanisms and the Rationale for Biologic Therapies in AD
2.1. AD Pathogenesis: Current Hypotheses
2.1.1. Aβ Plaques and the Amyloid Cascade Hypothesis
2.1.2. Neurofibrillary Tangles and Tau Pathology
2.1.3. Beyond Amyloid and Tau: Alternative Mechanistic Hypotheses in AD
2.1.3.1. Neuroinflammation and Microglia Activation
2.1.3.2. Insulin Resistance and Brain Glucose Hypometabolism Hypothesis
2.1.3.3. Lipid Metabolism and ApoE Pathway Dysfunction Hypothesis
2.1.3.4. BBB Dysfunction Hypothesis
- Enhancing efflux transporter function (e.g., LRP1 upregulation),
- Inhibiting RAGE-mediated Aβ influx,
- Modulating endothelial inflammation (e.g., via anti-VCAM1 agents),
- Promoting pericyte survival and vascular stability.
2.1.3.5. Mitochondrial Dysfunction and Oxidative Stress Hypothesis
- Reduced activity of key oxidative phosphorylation (OXPHOS) enzymes (e.g., cytochrome c oxidase, complex I),
- Mitochondrial DNA (mtDNA) mutations and deletions,
- Abnormal mitochondrial morphology and dynamics (fission/fusion imbalance),
- Disrupted transport along axons and dendrites.
- Antioxidants (e.g., vitamin E, coenzyme Q10, MitoQ),
- Mitochondria-targeted peptides (e.g., SS-31/Elamipretide),
- NAD⁺ precursors (e.g., nicotinamide riboside) to support mitochondrial biogenesis,
- Agents that enhance mitophagy and mitochondrial dynamics (e.g., urolithin A).
2.2. Genetic Risk Factors in AD
2.2.1. APP
2.2.2. PSEN1/PSEN2
2.2.3. ApoE
- TREM2
- EM2
2.3. Biologics as Therapeutics Agents
2.3.1. Overview and Classification of Biologic Therapeutics
2.3.2. Advantages over Traditional Small-Molecule Drugs
2.3.3. Mechanistic Compatibility with AD Pathology
3. Biologic Therapeutics in Clinical Trials for AD
3.1. Clinical Trial Phase and NCT Identifiers Were Obtained from ClinicalTrials.gov .3.1. Passive Immunotherapy: mAbs Against Aβ and tau
3.1.1. Anti-Aβ mAbs
3.1.2. Anti-tau mAbs
3.2. Active Immunotherapy: Vaccines Targeting Aβ and tau
3.3. RNA Therapeutics and Gene-Modifying Approaches: Redefining Targets at the Transcript Level
3.4. Clinical Trial Phase and NCT Identifiers Were Obtained from ClinicalTrials.gov .3.4. Failure and Lessons Learned from Biologic Trials
4. Future Perspectives and Challenges
4.1. Rethinking Therapeutic Targets Beyond Amyloid and tau
4.2. Overcoming Delivery Barriers to the Brain
4.3. Designing Trials for Prevention and Precision
4.4. Ethical, Regulatory, and Access Considerations
References
- Kamatham, P.T.; Shukla, R.; Khatri, D.K.; Vora, L.K. Pathogenesis, diagnostics, and therapeutics for Alzheimer's disease: Breaking the memory barrier. Ageing Res Rev 2024, 101, 102481. [CrossRef]
- Twiss, E.; McPherson, C.; Weaver, D.F. Global Diseases Deserve Global Solutions: Alzheimer's Disease. Neurol Int 2025, 17. [CrossRef]
- 2024 Alzheimer's disease facts and figures. Alzheimers Dement 2024, 20, 3708-3821. [CrossRef]
- Gulisano, W.; Maugeri, D.; Baltrons, M.A.; Fà, M.; Amato, A.; Palmeri, A.; D'Adamio, L.; Grassi, C.; Devanand, D.P.; Honig, L.S.; et al. Role of Amyloid-β and Tau Proteins in Alzheimer's Disease: Confuting the Amyloid Cascade. J Alzheimers Dis 2018, 64, S611-s631. [CrossRef]
- Zhang, H.; Wei, W.; Zhao, M.; Ma, L.; Jiang, X.; Pei, H.; Cao, Y.; Li, H. Interaction between Aβ and Tau in the Pathogenesis of Alzheimer's Disease. Int J Biol Sci 2021, 17, 2181-2192. [CrossRef]
- Jurcău, M.C.; Andronie-Cioara, F.L.; Jurcău, A.; Marcu, F.; Ţiț, D.M.; Pașcalău, N.; Nistor-Cseppentö, D.C. The Link between Oxidative Stress, Mitochondrial Dysfunction and Neuroinflammation in the Pathophysiology of Alzheimer's Disease: Therapeutic Implications and Future Perspectives. Antioxidants (Basel) 2022, 11. [CrossRef]
- Tönnies, E.; Trushina, E. Oxidative Stress, Synaptic Dysfunction, and Alzheimer's Disease. J Alzheimers Dis 2017, 57, 1105-1121. [CrossRef]
- Ashleigh, T.; Swerdlow, R.H.; Beal, M.F. The role of mitochondrial dysfunction in Alzheimer's disease pathogenesis. Alzheimers Dement 2023, 19, 333-342. [CrossRef]
- Zhang, W.; Xiao, D.; Mao, Q.; Xia, H. Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther 2023, 8, 267. [CrossRef]
- Subramanian, J.; Savage, J.C.; Tremblay, M. Synaptic Loss in Alzheimer's Disease: Mechanistic Insights Provided by Two-Photon in vivo Imaging of Transgenic Mouse Models. Front Cell Neurosci 2020, 14, 592607. [CrossRef]
- Moya-Alvarado, G.; Gershoni-Emek, N.; Perlson, E.; Bronfman, F.C. Neurodegeneration and Alzheimer's disease (AD). What Can Proteomics Tell Us About the Alzheimer's Brain? Mol Cell Proteomics 2016, 15, 409-425. [CrossRef]
- Di Battista, A.M.; Heinsinger, N.M.; Rebeck, G.W. Alzheimer's Disease Genetic Risk Factor APOE-ε4 Also Affects Normal Brain Function. Curr Alzheimer Res 2016, 13, 1200-1207. [CrossRef]
- Liu, C.C.; Liu, C.C.; Kanekiyo, T.; Xu, H.; Bu, G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 2013, 9, 106-118. [CrossRef]
- Raulin, A.C.; Doss, S.V.; Trottier, Z.A.; Ikezu, T.C.; Bu, G.; Liu, C.C. ApoE in Alzheimer's disease: pathophysiology and therapeutic strategies. Mol Neurodegener 2022, 17, 72. [CrossRef]
- Sheppard, O.; Coleman, M. Alzheimer’s Disease: Etiology, Neuropathology and Pathogenesis. In Alzheimer’s Disease: Drug Discovery, Huang, X., Ed.; Exon Publications Copyright: The Authors.: Brisbane (AU), 2020.
- Grossberg, G.T. Cholinesterase inhibitors for the treatment of Alzheimer's disease:: getting on and staying on. Curr Ther Res Clin Exp 2003, 64, 216-235. [CrossRef]
- Liu, J.; Chang, L.; Song, Y.; Li, H.; Wu, Y. The Role of NMDA Receptors in Alzheimer's Disease. Front Neurosci 2019, 13, 43. [CrossRef]
- Oliver, D.M.A.; Reddy, P.H. Small molecules as therapeutic drugs for Alzheimer's disease. Mol Cell Neurosci 2019, 96, 47-62. [CrossRef]
- Adami, G.; Saag, K.G.; Chapurlat, R.D.; Guañabens, N.; Haugeberg, G.; Lems, W.F.; Matijevic, R.; Peel, N.; Poddubnyy, D.; Geusens, P. Balancing benefits and risks in the era of biologics. Ther Adv Musculoskelet Dis 2019, 11, 1759720x19883973. [CrossRef]
- Weaver, D.F. Drug Design for Alzheimer's Disease: Biologics vs. Small Molecules. Curr Alzheimer Res 2024, 20, 821-826. [CrossRef]
- Zhang, J.; Zhang, Y.; Wang, J.; Xia, Y.; Zhang, J.; Chen, L. Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther 2024, 9, 211. [CrossRef]
- Hardy, J.A.; Higgins, G.A. Alzheimer's disease: the amyloid cascade hypothesis. Science 1992, 256, 184-185. [CrossRef]
- Ricciarelli, R.; Fedele, E. The Amyloid Cascade Hypothesis in Alzheimer's Disease: It's Time to Change Our Mind. Curr Neuropharmacol 2017, 15, 926-935. [CrossRef]
- Zhang, C.; Saunders, A.J. Therapeutic targeting of the alpha-secretase pathway to treat Alzheimer's disease. Discov Med 2007, 7, 113-117.
- Chow, V.W.; Mattson, M.P.; Wong, P.C.; Gleichmann, M. An overview of APP processing enzymes and products. Neuromolecular Med 2010, 12, 1-12. [CrossRef]
- Cole, S.L.; Vassar, R. The Alzheimer's disease beta-secretase enzyme, BACE1. Mol Neurodegener 2007, 2, 22. [CrossRef]
- Im, D.; Choi, T.S. Distinctive contribution of two additional residues in protein aggregation of Aβ42 and Aβ40 isoforms. BMB Rep 2024, 57, 263-272. [CrossRef]
- Song, C.; Zhang, T.; Zhang, Y. Conformational Essentials Responsible for Neurotoxicity of Aβ42 Aggregates Revealed by Antibodies against Oligomeric Aβ42. Molecules 2022, 27. [CrossRef]
- Zhang, Y.; Chen, H.; Li, R.; Sterling, K.; Song, W. Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future. Signal Transduct Target Ther 2023, 8, 248. [CrossRef]
- Boutajangout, A.; Sigurdsson, E.M.; Krishnamurthy, P.K. Tau as a therapeutic target for Alzheimer's disease. Curr Alzheimer Res 2011, 8, 666-677. [CrossRef]
- Boutajangout, A.; Ingadottir, J.; Davies, P.; Sigurdsson, E.M. Passive immunization targeting pathological phospho-tau protein in a mouse model reduces functional decline and clears tau aggregates from the brain: Clearance of pathological tau by passive immunization. Journal of neurochemistry 2011, 118, 658-667. [CrossRef]
- Chaudhary, A.R.; Berger, F.; Berger, C.L.; Hendricks, A.G. Tau directs intracellular trafficking by regulating the forces exerted by kinesin and dynein teams. Traffic 2018, 19, 111-121. [CrossRef]
- Utton, M.A.; Gibb, G.M.; Burdett, I.D.; Anderton, B.H.; Vandecandelaere, A. Functional differences of tau isoforms containing 3 or 4 C-terminal repeat regions and the influence of oxidative stress. J Biol Chem 2001, 276, 34288-34297. [CrossRef]
- Goode, B.L.; Chau, M.; Denis, P.E.; Feinstein, S.C. Structural and functional differences between 3-repeat and 4-repeat tau isoforms. Implications for normal tau function and the onset of neurodegenetative disease. J Biol Chem 2000, 275, 38182-38189. [CrossRef]
- Jayapalan, S.; Natarajan, J. The role of CDK5 and GSK3B kinases in hyperphosphorylation of microtubule associated protein tau (MAPT) in Alzheimer's disease. Bioinformation 2013, 9, 1023-1030. [CrossRef]
- Rawat, P.; Sehar, U.; Bisht, J.; Selman, A.; Culberson, J.; Reddy, P.H. Phosphorylated Tau in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2022, 23. [CrossRef]
- Alonso, A.D.; Di Clerico, J.; Li, B.; Corbo, C.P.; Alaniz, M.E.; Grundke-Iqbal, I.; Iqbal, K. Phosphorylation of tau at Thr212, Thr231, and Ser262 combined causes neurodegeneration. J Biol Chem 2010, 285, 30851-30860. [CrossRef]
- Muraoka, S.; Lin, W.; Takamatsu-Yukawa, K.; Hu, J.; Ikezu, S.; DeTure, M.A.; Dickson, D.W.; Emili, A.; Ikezu, T. Enrichment of Phosphorylated Tau (Thr181) and Functionally Interacting Molecules in Chronic Traumatic Encephalopathy Brain-derived Extracellular Vesicles. Aging Dis 2021, 12, 1376-1388. [CrossRef]
- Bramblett, G.T.; Goedert, M.; Jakes, R.; Merrick, S.E.; Trojanowski, J.Q.; Lee, V.M. Abnormal tau phosphorylation at Ser396 in Alzheimer's disease recapitulates development and contributes to reduced microtubule binding. Neuron 1993, 10, 1089-1099. [CrossRef]
- Yang, S.D.; Song, J.S.; Yu, J.S.; Shiah, S.G. Protein kinase FA/GSK-3 phosphorylates tau on Ser235-Pro and Ser404-Pro that are abnormally phosphorylated in Alzheimer's disease brain. J Neurochem 1993, 61, 1742-1747. [CrossRef]
- Troquier, L.; Caillierez, R.; Burnouf, S.; Fernandez-Gomez, F.J.; Grosjean, M.E.; Zommer, N.; Sergeant, N.; Schraen-Maschke, S.; Blum, D.; Buee, L. Targeting phospho-Ser422 by active Tau Immunotherapy in the THYTau22 mouse model: a suitable therapeutic approach. Curr Alzheimer Res 2012, 9, 397-405. [CrossRef]
- Yu, L.; Boyle, P.A.; Janelidze, S.; Petyuk, V.A.; Wang, T.; Bennett, D.A.; Hansson, O.; Schneider, J.A. Plasma p-tau181 and p-tau217 in discriminating PART, AD and other key neuropathologies in older adults. Acta Neuropathol 2023, 146, 1-11. [CrossRef]
- Brickman, A.M.; Manly, J.J.; Honig, L.S.; Sanchez, D.; Reyes-Dumeyer, D.; Lantigua, R.A.; Lao, P.J.; Stern, Y.; Vonsattel, J.P.; Teich, A.F.; et al. Plasma p-tau181, p-tau217, and other blood-based Alzheimer's disease biomarkers in a multi-ethnic, community study. Alzheimers Dement 2021, 17, 1353-1364. [CrossRef]
- St-Onge, F.; Chapleau, M.; Breitner, J.C.; Villeneuve, S.; Binette, A.P. Tau accumulation and its spatial progression across the Alzheimer's disease spectrum. medRxiv 2023. [CrossRef]
- Bejanin, A.; Schonhaut, D.R.; La Joie, R.; Kramer, J.H.; Baker, S.L.; Sosa, N.; Ayakta, N.; Cantwell, A.; Janabi, M.; Lauriola, M.; et al. Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer's disease. Brain 2017, 140, 3286-3300. [CrossRef]
- Kopeikina, K.J.; Hyman, B.T.; Spires-Jones, T.L. Soluble forms of tau are toxic in Alzheimer's disease. Transl Neurosci 2012, 3, 223-233. [CrossRef]
- Brunello, C.A.; Merezhko, M.; Uronen, R.L.; Huttunen, H.J. Mechanisms of secretion and spreading of pathological tau protein. Cell Mol Life Sci 2020, 77, 1721-1744. [CrossRef]
- Gibbons, G.S.; Lee, V.M.Y.; Trojanowski, J.Q. Mechanisms of Cell-to-Cell Transmission of Pathological Tau: A Review. JAMA Neurol 2019, 76, 101-108. [CrossRef]
- Chen, Y.; Yu, Y. Tau and neuroinflammation in Alzheimer's disease: interplay mechanisms and clinical translation. J Neuroinflammation 2023, 20, 165. [CrossRef]
- Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alzheimer's disease. Alzheimers Dement (N Y) 2018, 4, 575-590. [CrossRef]
- Tosto, G.; Reitz, C. Genome-wide association studies in Alzheimer's disease: a review. Curr Neurol Neurosci Rep 2013, 13, 381. [CrossRef]
- Bellenguez, C.; Küçükali, F.; Jansen, I.E.; Kleineidam, L.; Moreno-Grau, S.; Amin, N.; Naj, A.C.; Campos-Martin, R.; Grenier-Boley, B.; Andrade, V.; et al. New insights into the genetic etiology of Alzheimer's disease and related dementias. Nat Genet 2022, 54, 412-436. [CrossRef]
- Boyd, R.J.; Avramopoulos, D.; Jantzie, L.L.; McCallion, A.S. Neuroinflammation represents a common theme amongst genetic and environmental risk factors for Alzheimer and Parkinson diseases. J Neuroinflammation 2022, 19, 223. [CrossRef]
- Long, H.; Simmons, A.; Mayorga, A.; Burgess, B.; Nguyen, T.; Budda, B.; Rychkova, A.; Rhinn, H.; Tassi, I.; Ward, M.; et al. Preclinical and first-in-human evaluation of AL002, a novel TREM2 agonistic antibody for Alzheimer's disease. Alzheimers Res Ther 2024, 16, 235. [CrossRef]
- Yang, X.; Zhangyi, Z.; Yu, A.; Zhou, Q.; Xia, A.; Qiu, J.; Cai, M.; Chu, X.; Li, L.; Feng, Z.; et al. GV-971 attenuates the progression of neuromyelitis optica in murine models and reverses alterations in gut microbiota and associated peripheral abnormalities. CNS Neurosci Ther 2024, 30, e14847. [CrossRef]
- Arnold, S.E.; Arvanitakis, Z.; Macauley-Rambach, S.L.; Koenig, A.M.; Wang, H.-Y.; Ahima, R.S.; Craft, S.; Gandy, S.; Buettner, C.; Stoeckel, L.E.; et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: Concepts and conundrums. Nature reviews. Neurology 2018, 14, 168-181. [CrossRef]
- Kciuk, M.; Kruczkowska, W.; Gałęziewska, J.; Wanke, K.; Kałuzińska-Kołat, Ż.; Aleksandrowicz, M.; Kontek, R. Alzheimer's Disease as Type 3 Diabetes: Understanding the Link and Implications. Int J Mol Sci 2024, 25. [CrossRef]
- Kandimalla, R.; Thirumala, V.; Reddy, P.H. Is Alzheimer's disease a Type 3 Diabetes? A critical appraisal. Biochim Biophys Acta Mol Basis Dis 2017, 1863, 1078-1089. [CrossRef]
- Blázquez, E.; Hurtado-Carneiro, V.; LeBaut-Ayuso, Y.; Velázquez, E.; García-García, L.; Gómez-Oliver, F.; Ruiz-Albusac, J.M.; Ávila, J.; Pozo, M. Significance of Brain Glucose Hypometabolism, Altered Insulin Signal Transduction, and Insulin Resistance in Several Neurological Diseases. Front Endocrinol (Lausanne) 2022, 13, 873301. [CrossRef]
- Knopman, D.S.; Jack, C.R., Jr.; Wiste, H.J.; Lundt, E.S.; Weigand, S.D.; Vemuri, P.; Lowe, V.J.; Kantarci, K.; Gunter, J.L.; Senjem, M.L.; et al. 18F-fluorodeoxyglucose positron emission tomography, aging, and apolipoprotein E genotype in cognitively normal persons. Neurobiol Aging 2014, 35, 2096-2106. [CrossRef]
- Sȩdzikowska, A.; Szablewski, L. Insulin and insulin resistance in alzheimer’s disease. International journal of molecular sciences 2021, 22, 9987. [CrossRef]
- Chatterjee, S.; Mudher, A. Alzheimer's Disease and Type 2 Diabetes: A Critical Assessment of the Shared Pathological Traits. Front Neurosci 2018, 12, 383. [CrossRef]
- Wong, C.Y.J.; Baldelli, A.; Hoyos, C.M.; Tietz, O.; Ong, H.X.; Traini, D. Insulin Delivery to the Brain via the Nasal Route: Unraveling the Potential for Alzheimer's Disease Therapy. Drug Deliv Transl Res 2024, 14, 1776-1793. [CrossRef]
- Sabbagh, M.; Boschini, C.; Cohen, S.; Fugger, M.; Jessen, F.; Dandanell, S.; Pedersen, S.D.; Tarazona, L.R.S.; Aroda, V.R. Safety considerations of semaglutide in the potential treatment of Alzheimer's disease: A pooled analysis of semaglutide in adults aged ≥ 65 years. Alzheimers Dement (N Y) 2025, 11, e70076. [CrossRef]
- Mahley, R.W. Central Nervous System Lipoproteins: ApoE and Regulation of Cholesterol Metabolism. Arterioscler Thromb Vasc Biol 2016, 36, 1305-1315. [CrossRef]
- Genin, E.; Hannequin, D.; Wallon, D.; Sleegers, K.; Hiltunen, M.; Combarros, O.; Bullido, M.J.; Engelborghs, S.; De Deyn, P.; Berr, C.; et al. APOE and Alzheimer disease: A major gene with semi-dominant inheritance. Molecular psychiatry 2011, 16, 903-907. [CrossRef]
- Martens, Y.A.; Zhao, N.; Liu, C.-C.; Kanekiyo, T.; Yang, A.J.; Goate, A.M.; Holtzman, D.M.; Bu, G. ApoE Cascade Hypothesis in the pathogenesis of Alzheimer’s disease and related dementias. Neuron (Cambridge, Mass.) 2022, 110, 1304-1317. [CrossRef]
- Li, Z.; Shue, F.; Zhao, N.; Shinohara, M.; Bu, G. APOE2: protective mechanism and therapeutic implications for Alzheimer's disease. Mol Neurodegener 2020, 15, 63. [CrossRef]
- Sun, Y.Y.; Wang, Z.; Huang, H.C. Roles of ApoE4 on the Pathogenesis in Alzheimer's Disease and the Potential Therapeutic Approaches. Cell Mol Neurobiol 2023, 43, 3115-3136. [CrossRef]
- Hunsberger, H.C.; Pinky, P.D.; Smith, W.; Suppiramaniam, V.; Reed, M.N. The role of APOE4 in Alzheimer's disease: strategies for future therapeutic interventions. Neuronal Signal 2019, 3, Ns20180203. [CrossRef]
- Dias, D.; Portugal, C.C.; Relvas, J.; Socodato, R. From Genetics to Neuroinflammation: The Impact of ApoE4 on Microglial Function in Alzheimer's Disease. Cells 2025, 14. [CrossRef]
- Schmukler, E.; Solomon, S.; Simonovitch, S.; Goldshmit, Y.; Wolfson, E.; Michaelson, D.M.; Pinkas-Kramarski, R. Altered mitochondrial dynamics and function in APOE4-expressing astrocytes. Cell Death Dis 2020, 11, 578. [CrossRef]
- Liang, Y.; Lin, S.; Beyer, T.P.; Zhang, Y.; Wu, X.; Bales, K.R.; DeMattos, R.B.; May, P.C.; Li, S.D.; Jiang, X.C.; et al. A liver X receptor and retinoid X receptor heterodimer mediates apolipoprotein E expression, secretion and cholesterol homeostasis in astrocytes. J Neurochem 2004, 88, 623-634. [CrossRef]
- Teter, B.; Campagna, J.; Zhu, C.; McCauley, G.E.; Spilman, P.; Kohn, D.B.; John, V. Successful Gene Editing of Apolipoprotein E4 to E3 in Brain of Alzheimer Model Mice After a Single IV Dose of Synthetic Exosome-Delivered CRISPR. bioRxiv 2024, 2024.2004.2023.590784. [CrossRef]
- Litvinchuk, A.; Huynh, T.V.; Shi, Y.; Jackson, R.J.; Finn, M.B.; Manis, M.; Francis, C.M.; Tran, A.C.; Sullivan, P.M.; Ulrich, J.D.; et al. Apolipoprotein E4 Reduction with Antisense Oligonucleotides Decreases Neurodegeneration in a Tauopathy Model. Ann Neurol 2021, 89, 952-966. [CrossRef]
- Ferguson, C.M.; Hildebrand, S.; Godinho, B.; Buchwald, J.; Echeverria, D.; Coles, A.; Grigorenko, A.; Vangjeli, L.; Sousa, J.; McHugh, N.; et al. Silencing Apoe with divalent-siRNAs improves amyloid burden and activates immune response pathways in Alzheimer's disease. Alzheimers Dement 2024, 20, 2632-2652. [CrossRef]
- Williams, T.; Borchelt, D.R.; Chakrabarty, P. Therapeutic approaches targeting Apolipoprotein E function in Alzheimer’s disease. Molecular Neurodegeneration 2020, 15, 8. [CrossRef]
- Alkhalifa, A.E.; Al-Ghraiybah, N.F.; Odum, J.; Shunnarah, J.G.; Austin, N.; Kaddoumi, A. Blood-Brain Barrier Breakdown in Alzheimer's Disease: Mechanisms and Targeted Strategies. Int J Mol Sci 2023, 24. [CrossRef]
- Knox, E.G.; Aburto, M.R.; Clarke, G.; Cryan, J.F.; O'Driscoll, C.M. The blood-brain barrier in aging and neurodegeneration. Mol Psychiatry 2022, 27, 2659-2673. [CrossRef]
- Montagne, A.; Barnes, S.R.; Sweeney, M.D.; Halliday, M.R.; Sagare, A.P.; Zhao, Z.; Toga, A.W.; Jacobs, R.E.; Liu, C.Y.; Amezcua, L.; et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 2015, 85, 296-302. [CrossRef]
- Wang, D.; Chen, F.; Han, Z.; Yin, Z.; Ge, X.; Lei, P. Relationship Between Amyloid-β Deposition and Blood-Brain Barrier Dysfunction in Alzheimer's Disease. Front Cell Neurosci 2021, 15, 695479. [CrossRef]
- Derk, J.; MacLean, M.; Juranek, J.; Schmidt, A.M. The Receptor for Advanced Glycation Endproducts (RAGE) and Mediation of Inflammatory Neurodegeneration. J Alzheimers Dis Parkinsonism 2018, 8. [CrossRef]
- CHOI, M.S. APOE4 lead to neurovascular dysfunction & inflammation is an early change in Alzheimer’s disease? Alzheimer's & Dementia 2024, 20, e095248. [CrossRef]
- Li, J.; Zheng, M.; Shimoni, O.; Banks, W.A.; Bush, A.I.; Gamble, J.R.; Shi, B. Development of Novel Therapeutics Targeting the Blood-Brain Barrier: From Barrier to Carrier. Adv Sci (Weinh) 2021, 8, e2101090. [CrossRef]
- Wang, W.; Zhao, F.; Ma, X.; Perry, G.; Zhu, X. Mitochondria dysfunction in the pathogenesis of Alzheimer's disease: recent advances. Mol Neurodegener 2020, 15, 30. [CrossRef]
- Misrani, A.; Tabassum, S.; Yang, L. Mitochondrial Dysfunction and Oxidative Stress in Alzheimer's Disease. Front Aging Neurosci 2021, 13, 617588. [CrossRef]
- Zong, Y.; Li, H.; Liao, P.; Chen, L.; Pan, Y.; Zheng, Y.; Zhang, C.; Liu, D.; Zheng, M.; Gao, J. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal Transduction and Targeted Therapy 2024, 9, 124. [CrossRef]
- Li, K.; Rashid, T.; Li, J.; Honnorat, N.; Nirmala, A.B.; Fadaee, E.; Wang, D.; Charisis, S.; Liu, H.; Franklin, C.; et al. Postmortem Brain Imaging in Alzheimer's Disease and Related Dementias: The South Texas Alzheimer's Disease Research Center Repository. J Alzheimers Dis 2023, 96, 1267-1283. [CrossRef]
- Pagani, L.; Eckert, A. Amyloid-Beta interaction with mitochondria. Int J Alzheimers Dis 2011, 2011, 925050. [CrossRef]
- Eckert, A.; Nisbet, R.; Grimm, A.; Götz, J. March separate, strike together--role of phosphorylated TAU in mitochondrial dysfunction in Alzheimer's disease. Biochim Biophys Acta 2014, 1842, 1258-1266. [CrossRef]
- Pires, M.; Rego, A.C. Apoe4 and Alzheimer's Disease Pathogenesis-Mitochondrial Deregulation and Targeted Therapeutic Strategies. Int J Mol Sci 2023, 24. [CrossRef]
- Shi, J.; Yu, Y.; Yuan, H.; Li, Y.; Xue, Y. Mitochondrial dysfunction in AMI: mechanisms and therapeutic perspectives. J Transl Med 2025, 23, 418. [CrossRef]
- Pappolla, M.A.; Martins, R.N.; Poeggeler, B.; Omar, R.A.; Perry, G. Oxidative Stress in Alzheimer's Disease: The Shortcomings of Antioxidant Therapies. J Alzheimers Dis 2024, 101, S155-s178. [CrossRef]
- Valdez-Gaxiola, C.A.; Rosales-Leycegui, F.; Gaxiola-Rubio, A.; Moreno-Ortiz, J.M.; Figuera, L.E. Early- and Late-Onset Alzheimer's Disease: Two Sides of the Same Coin? Diseases 2024, 12. [CrossRef]
- Hoogmartens, J.; Cacace, R.; Van Broeckhoven, C. Insight into the genetic etiology of Alzheimer's disease: A comprehensive review of the role of rare variants. Alzheimers Dement (Amst) 2021, 13, e12155. [CrossRef]
- Virolainen, S.J.; VonHandorf, A.; Viel, K.C.M.F.; Weirauch, M.T.; Kottyan, L.C. Gene–environment interactions and their impact on human health. Genes & Immunity 2023, 24, 1-11. [CrossRef]
- Ringman, J.M.; Coppola, G. New genes and new insights from old genes: update on Alzheimer disease. Continuum (Minneap Minn) 2013, 19, 358-371. [CrossRef]
- Hampel, H.; Hardy, J.; Blennow, K.; Chen, C.; Perry, G.; Kim, S.H.; Villemagne, V.L.; Aisen, P.; Vendruscolo, M.; Iwatsubo, T.; et al. The Amyloid-β Pathway in Alzheimer's Disease. Mol Psychiatry 2021, 26, 5481-5503. [CrossRef]
- MacLeod, R.; Hillert, E.K.; Cameron, R.T.; Baillie, G.S. The role and therapeutic targeting of α-, β- and γ-secretase in Alzheimer's disease. Future Sci OA 2015, 1, Fso11. [CrossRef]
- Muratore, C.R.; Rice, H.C.; Srikanth, P.; Callahan, D.G.; Shin, T.; Benjamin, L.N.; Walsh, D.M.; Selkoe, D.J.; Young-Pearse, T.L. The familial Alzheimer's disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons. Hum Mol Genet 2014, 23, 3523-3536. [CrossRef]
- De Strooper, B.; Iwatsubo, T.; Wolfe, M.S. Presenilins and γ-secretase: structure, function, and role in Alzheimer Disease. Cold Spring Harb Perspect Med 2012, 2, a006304. [CrossRef]
- Dai, M.H.; Zheng, H.; Zeng, L.D.; Zhang, Y. The genes associated with early-onset Alzheimer's disease. Oncotarget 2018, 9, 15132-15143. [CrossRef]
- Bagaria, J.; Bagyinszky, E.; An, S.S.A. Genetics, Functions, and Clinical Impact of Presenilin-1 (PSEN1) Gene. Int J Mol Sci 2022, 23. [CrossRef]
- Cai, Y.; An, S.S.; Kim, S. Mutations in presenilin 2 and its implications in Alzheimer's disease and other dementia-associated disorders. Clin Interv Aging 2015, 10, 1163-1172. [CrossRef]
- Fernandez-Calle, R.; Konings, S.C.; Frontinan-Rubio, J.; Garcia-Revilla, J.; Camprubi-Ferrer, L.; Svensson, M.; Martinson, I.; Boza-Serrano, A.; Luis Venero, J.; Nielsen, H.M.; et al. APOE in the bullseye of neurodegenerative diseases: impact of the APOE genotype in Alzheimer's disease pathology and brain diseases. Molecular neurodegeneration 2022, 17, 1-62. [CrossRef]
- Jackson, R.J.; Keiser, M.S.; Meltzer, J.C.; Fykstra, D.P.; Dierksmeier, S.E.; Hajizadeh, S.; Kreuzer, J.; Morris, R.; Melloni, A.; Nakajima, T.; et al. APOE2 gene therapy reduces amyloid deposition and improves markers of neuroinflammation and neurodegeneration in a mouse model of Alzheimer disease. Mol Ther 2024, 32, 1373-1386. [CrossRef]
- Rosenberg, J.B.; Kaplitt, M.G.; De, B.P.; Chen, A.; Flagiello, T.; Salami, C.; Pey, E.; Zhao, L.Z.; Arbona, R.J.R.; Monette, S.; et al. AAVrh.10-Mediated APOE2 Central Nervous System Gene Therapy for APOE4-Associated Alzheimer's Disease. Human Gene Therapy Clinical Development 2018, 29, 24-47. [CrossRef]
- Li, R.; Wang, X.; He, P. The most prevalent rare coding variants of TREM2 conferring risk of Alzheimer's disease: A systematic review and meta-analysis. Exp Ther Med 2021, 21, 347. [CrossRef]
- Lin, M.; Yu, J.X.; Zhang, W.X.; Lao, F.X.; Huang, H.C. Roles of TREM2 in the Pathological Mechanism and the Therapeutic Strategies of Alzheimer's Disease. J Prev Alzheimers Dis 2024, 11, 1682-1695. [CrossRef]
- Kunkle, B.W.; Grenier-Boley, B.; Sims, R.; Bis, J.C.; Damotte, V.; Naj, A.C.; van der Lee, S.; Ahmad, S.; Adams, H.; Vojinovic, D.; et al. Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates A beta, tau, immunity and lipid processing. Nature genetics 2019, 51, 414-+. [CrossRef]
- Fang, S.C.; Wang, L.; Cheng, M.T.; Xu, D.; Chen, Z.P.; Wang, J.; Liao, W.; Li, Y.; Zhou, C.Z.; Hou, W.T.; et al. Structural insights into human ABCA7-mediated lipid transport. Structure 2025, 33, 583-593.e585. [CrossRef]
- Foster, E.M.; Dangla-Valls, A.; Lovestone, S.; Ribe, E.M.; Buckley, N.J. Clusterin in Alzheimer's Disease: Mechanisms, Genetics, and Lessons From Other Pathologies. Front Neurosci 2019, 13, 164. [CrossRef]
- Dourlen, P.; Kilinc, D.; Landrieu, I.; Chapuis, J.; Lambert, J.C. BIN1 and Alzheimer's disease: the tau connection. Trends Neurosci 2025, 48, 349-361. [CrossRef]
- Xu, W.; Tan, L.; Yu, J.T. The Role of PICALM in Alzheimer's Disease. Mol Neurobiol 2015, 52, 399-413. [CrossRef]
- Griciuc, A.; Patel, S.; Federico, A.N.; Choi, S.H.; Innes, B.J.; Oram, M.K.; Cereghetti, G.; McGinty, D.; Anselmo, A.; Sadreyev, R.I.; et al. TREM2 Acts Downstream of CD33 in Modulating Microglial Pathology in Alzheimer's Disease. Neuron 2019, 103, 820-835.e827. [CrossRef]
- Hung, C.; Tuck, E.; Stubbs, V.; van der Lee, S.J.; Aalfs, C.; van Spaendonk, R.; Scheltens, P.; Hardy, J.; Holstege, H.; Livesey, F.J. SORL1 deficiency in human excitatory neurons causes APP-dependent defects in the endolysosome-autophagy network. Cell Rep 2021, 35, 109259. [CrossRef]
- Schlepckow, K.; Morenas-Rodríguez, E.; Hong, S.; Haass, C. Stimulation of TREM2 with agonistic antibodies-an emerging therapeutic option for Alzheimer's disease. Lancet Neurol 2023, 22, 1048-1060. [CrossRef]
- Wu, W.; Ji, Y.; Wang, Z.; Wu, X.; Li, J.; Gu, F.; Chen, Z.; Wang, Z. The FDA-approved anti-amyloid-β monoclonal antibodies for the treatment of Alzheimer's disease: a systematic review and meta-analysis of randomized controlled trials. Eur J Med Res 2023, 28, 544. [CrossRef]
- Malonis, R.J.; Lai, J.R.; Vergnolle, O. Peptide-Based Vaccines: Current Progress and Future Challenges. Chem Rev 2020, 120, 3210-3229. [CrossRef]
- Hernández, R.; Jiménez-Luna, C.; Perales-Adán, J.; Perazzoli, G.; Melguizo, C.; Prados, J. Differentiation of Human Mesenchymal Stem Cells towards Neuronal Lineage: Clinical Trials in Nervous System Disorders. Biomol Ther (Seoul) 2020, 28, 34-44. [CrossRef]
- Kells, A.P.; Fong, D.M.; Dragunow, M.; During, M.J.; Young, D.; Connor, B. AAV-mediated gene delivery of BDNF or GDNF is neuroprotective in a model of Huntington disease. Mol Ther 2004, 9, 682-688. [CrossRef]
- Ducancel, F.; Muller, B.H. Molecular engineering of antibodies for therapeutic and diagnostic purposes. MAbs 2012, 4, 445-457. [CrossRef]
- Alarcón-Arís, D.; Pavia-Collado, R.; Miquel-Rio, L.; Coppola-Segovia, V.; Ferrés-Coy, A.; Ruiz-Bronchal, E.; Galofré, M.; Paz, V.; Campa, L.; Revilla, R.; et al. Anti-α-synuclein ASO delivered to monoamine neurons prevents α-synuclein accumulation in a Parkinson's disease-like mouse model and in monkeys. EBioMedicine 2020, 59, 102944. [CrossRef]
- Sun, C.; Sha, S.; Shan, Y.; Gao, X.; Li, L.; Xing, C.; Guo, Z.; Du, H. Intranasal Delivery of BACE1 siRNA and Berberine via Engineered Stem Cell Exosomes for the Treatment of Alzheimer's Disease. Int J Nanomedicine 2025, 20, 5873-5891. [CrossRef]
- Hinrich, A.J.; Jodelka, F.M.; Chang, J.L.; Brutman, D.; Bruno, A.M.; Briggs, C.A.; James, B.D.; Stutzmann, G.E.; Bennett, D.A.; Miller, S.A.; et al. Therapeutic correction of ApoER2 splicing in Alzheimer's disease mice using antisense oligonucleotides. EMBO molecular medicine 2016, 8, 328-345. [CrossRef]
- Al Ayidh, A.; Abbas, M.; Parayangat, M.; Ijyas, T. Advances in Nanomaterials for Targeted Drug Delivery: Emerging Trends and Future Prospects in Nanodrug Development. Curr Cancer Drug Targets 2025. [CrossRef]
- Qi, B.; Yang, Y.; Cheng, Y.; Sun, D.; Wang, X.; Khanna, R.; Ju, W. Nasal delivery of a CRMP2-derived CBD3 adenovirus improves cognitive function and pathology in APP/PS1 transgenic mice. Mol Brain 2020, 13, 58. [CrossRef]
- Ross, T.M.; Martinez, P.M.; Renner, J.C.; Thorne, R.G.; Hanson, L.R.; Frey, W.H., 2nd. Intranasal administration of interferon beta bypasses the blood-brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. J Neuroimmunol 2004, 151, 66-77. [CrossRef]
- Ji, C.; Sigurdsson, E.M. Current Status of Clinical Trials on Tau Immunotherapies. Drugs 2021, 81, 1135-1152. [CrossRef]
- Song, C.; Shi, J.; Zhang, P.; Zhang, Y.; Xu, J.; Zhao, L.; Zhang, R.; Wang, H.; Chen, H. Immunotherapy for Alzheimer’s disease: targeting β-amyloid and beyond. Translational Neurodegeneration 2022, 11, 18. [CrossRef]
- Zhu, M.; Tian, X.; Han, X.; Ma, Y.; Fa, W.; Wang, N.; Liu, R.; Dong, Y.; Ren, Y.; Liu, C.; et al. Synergistic associations of CD33 variants and hypertension with brain and cognitive aging among dementia-free older adults: A population-based study. Alzheimers Dement 2024, 20, 7193-7204. [CrossRef]
- Wang, Q.; Chen, S.; Wang, J.; Shang, H.; Chen, X. Advancements in Pharmacological Treatment of Alzheimer's Disease: The Advent of Disease-Modifying Therapies (DMTs). Brain Sci 2024, 14. [CrossRef]
- Huang, L.K.; Kuan, Y.C.; Lin, H.W.; Hu, C.J. Clinical trials of new drugs for Alzheimer disease: a 2020-2023 update. J Biomed Sci 2023, 30, 83. [CrossRef]
- Ameen, T.B.; Kashif, S.N.; Abbas, S.M.I.; Babar, K.; Ali, S.M.S.; Raheem, A. Unraveling Alzheimer’s: the promise of aducanumab, lecanemab, and donanemab. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery 2024, 60, 72. [CrossRef]
- Jin, M.; Noble, J.M. What's in It for Me? Contextualizing the Potential Clinical Impacts of Lecanemab, Donanemab, and Other Anti-β-amyloid Monoclonal Antibodies in Early Alzheimer's Disease. eNeuro 2024, 11. [CrossRef]
- Shi, M.; Chu, F.; Zhu, F.; Zhu, J. Impact of Anti-amyloid-β Monoclonal Antibodies on the Pathology and Clinical Profile of Alzheimer's Disease: A Focus on Aducanumab and Lecanemab. Frontiers in aging neuroscience 2022, 14, 870517-870517. [CrossRef]
- Soderberg, L.; Johannesson, M.; Nygren, P.; Laudon, H.; Eriksson, F.; Osswald, G.; Moller, C.; Lannfelt, L. Lecanemab, Aducanumab, and Gantenerumab - Binding Profiles to Different Forms of Amyloid-Beta Might Explain Efficacy and Side Effects in Clinical Trials for Alzheimer's Disease. Neurotherapeutics 2022. [CrossRef]
- Easton, A.; Jensen, M.L.; Wang, C.; Hagedorn, P.H.; Li, Y.; Weed, M.; Meredith, J.E.; Guss, V.; Jones, K.; Gill, M.; et al. Identification and characterization of a MAPT-targeting locked nucleic acid antisense oligonucleotide therapeutic for tauopathies. Mol Ther Nucleic Acids 2022, 29, 625-642. [CrossRef]
- Yang, X.; Yang, W.; Xia, X.; Lei, T.; Yang, Z.; Jia, W.; Zhou, Y.; Cheng, G.; Gao, H. Intranasal Delivery of BACE1 siRNA and Rapamycin by Dual Targets Modified Nanoparticles for Alzheimer's Disease Therapy. Small 2022, 18, e2203182. [CrossRef]
- Wang, C.Y.; Wang, P.N.; Chiu, M.J.; Finstad, C.L.; Lin, F.; Lynn, S.; Tai, Y.H.; De Fang, X.; Zhao, K.; Hung, C.H.; et al. UB-311, a novel UBITh(®) amyloid β peptide vaccine for mild Alzheimer's disease. Alzheimers Dement (N Y) 2017, 3, 262-272. [CrossRef]
- Mullard, A. Parsing clinical success rates. Nature Reviews Drug Discovery 2016, 15, 447-447. [CrossRef]
- Zhao, J.; Nussinov, R.; Ma, B. Mechanisms of recognition of amyloid-β (Aβ) monomer, oligomer, and fibril by homologous antibodies. J Biol Chem 2017, 292, 18325-18343. [CrossRef]
- Miles, L.A.; Crespi, G.A.; Doughty, L.; Parker, M.W. Bapineuzumab captures the N-terminus of the Alzheimer's disease amyloid-beta peptide in a helical conformation. Sci Rep 2013, 3, 1302. [CrossRef]
- Bateman, R.J.; Cummings, J.; Schobel, S.; Salloway, S.; Vellas, B.; Boada, M.; Black, S.E.; Blennow, K.; Fontoura, P.; Klein, G.; et al. Gantenerumab: an anti-amyloid monoclonal antibody with potential disease-modifying effects in early Alzheimer's disease. Alzheimers Res Ther 2022, 14, 178. [CrossRef]
- Høilund-Carlsen, P.F.; Revheim, M.E.; Costa, T.; Kepp, K.P.; Castellani, R.J.; Perry, G.; Alavi, A.; Barrio, J.R. FDG-PET versus Amyloid-PET Imaging for Diagnosis and Response Evaluation in Alzheimer's Disease: Benefits and Pitfalls. Diagnostics (Basel) 2023, 13. [CrossRef]
- Teipel, S.; Tang, Y.; Khachaturian, A. Clinical efficacy of anti-amyloid antibodies in apolipoprotein E ε4 homozygotes: A Bayesian reanalysis of lecanemab and donanemab phase 3 results. Alzheimers Dement (N Y) 2025, 11, e70083. [CrossRef]
- Daly, T.; Kepp, K.P.; Imbimbo, B.P. Are lecanemab and donanemab disease-modifying therapies? Alzheimers Dement 2024, 20, 6659-6661. [CrossRef]
- Brier, M.R.; Gordon, B.; Friedrichsen, K.; McCarthy, J.; Stern, A.; Christensen, J.; Owen, C.; Aldea, P.; Su, Y.; Hassenstab, J.; et al. Tau and Aβ imaging, CSF measures, and cognition in Alzheimer's disease. Sci Transl Med 2016, 8, 338ra366. [CrossRef]
- Congdon, E.E.; Ji, C.; Tetlow, A.M.; Jiang, Y.; Sigurdsson, E.M. Tau-targeting therapies for Alzheimer disease: current status and future directions. Nat Rev Neurol 2023, 19, 715-736. [CrossRef]
- Monteiro, C.; Toth, B.; Brunstein, F.; Bobbala, A.; Datta, S.; Ceniceros, R.; Sanabria Bohorquez, S.M.; Anania, V.G.; Wildsmith, K.R.; Schauer, S.P.; et al. Randomized Phase II Study of the Safety and Efficacy of Semorinemab in Participants With Mild-to-Moderate Alzheimer Disease: Lauriet. Neurology 2023, 101, e1391-e1401. [CrossRef]
- Imbimbo, B.P.; Balducci, C.; Ippati, S.; Watling, M. Initial failures of anti-tau antibodies in Alzheimer's disease are reminiscent of the amyloid-β story. Neural Regen Res 2023, 18, 117-118. [CrossRef]
- Shulman, M.; Kong, J.; O'Gorman, J.; Ratti, E.; Rajagovindan, R.; Viollet, L.; Huang, E.; Sharma, S.; Racine, A.M.; Czerkowicz, J.; et al. TANGO: a placebo-controlled randomized phase 2 study of efficacy and safety of the anti-tau monoclonal antibody gosuranemab in early Alzheimer's disease. Nat Aging 2023, 3, 1591-1601. [CrossRef]
- Lemere, C.A.; Masliah, E. Can Alzheimer disease be prevented by amyloid-beta immunotherapy? Nat Rev Neurol 2010, 6, 108-119. [CrossRef]
- Yu, H.J.; Dickson, S.P.; Wang, P.N.; Chiu, M.J.; Huang, C.C.; Chang, C.C.; Liu, H.; Hendrix, S.B.; Dodart, J.C.; Verma, A.; et al. Safety, tolerability, immunogenicity, and efficacy of UB-311 in participants with mild Alzheimer's disease: a randomised, double-blind, placebo-controlled, phase 2a study. EBioMedicine 2023, 94, 104665. [CrossRef]
- Shahpasand, K.; Sepehri Shamloo, A.; Nabavi, S.M.; Ping Lu, K.; Zhen Zhou, X. "Tau immunotherapy: Hopes and hindrances". Hum Vaccin Immunother 2018, 14, 277-284. [CrossRef]
- Sandusky-Beltran, L.A.; Sigurdsson, E.M. Tau immunotherapies: Lessons learned, current status and future considerations. Neuropharmacology 2020, 175, 108104. [CrossRef]
- Kovacech, B.; Cullen, N.C.; Novak, P.; Hanes, J.; Kontsekova, E.; Katina, S.; Parrak, V.; Fresser, M.; Vanbrabant, J.; Feldman, H.H.; et al. Post hoc analysis of ADAMANT, a phase 2 clinical trial of active tau immunotherapy with AADvac1 in patients with Alzheimer's disease, positive for plasma p-tau217. Alzheimers Res Ther 2024, 16, 254. [CrossRef]
- Islam, W.; Niidome, T.; Sawa, T. Enhanced Permeability and Retention Effect as a Ubiquitous and Epoch-Making Phenomenon for the Selective Drug Targeting of Solid Tumors. J Pers Med 2022, 12. [CrossRef]
- Mummery, C.J.; Börjesson-Hanson, A.; Blackburn, D.J.; Vijverberg, E.G.B.; De Deyn, P.P.; Ducharme, S.; Jonsson, M.; Schneider, A.; Rinne, J.O.; Ludolph, A.C.; et al. Tau-targeting antisense oligonucleotide MAPT(Rx) in mild Alzheimer's disease: a phase 1b, randomized, placebo-controlled trial. Nat Med 2023, 29, 1437-1447. [CrossRef]
- Edwards, A.L.; Collins, J.A.; Junge, C.; Kordasiewicz, H.; Mignon, L.; Wu, S.; Li, Y.; Lin, L.; DuBois, J.; Hutchison, R.M.; et al. Exploratory Tau Biomarker Results From a Multiple Ascending-Dose Study of BIIB080 in Alzheimer Disease: A Randomized Clinical Trial. JAMA Neurol 2023, 80, 1344-1352. [CrossRef]
- McCartan, R.; Khorkova, O.; Volmar, C.H.; Wahlestedt, C. Nucleic acid-based therapeutics for the treatment of central nervous system disorders. Front Genet 2023, 14, 1250276. [CrossRef]
- Emerich, D.F.; Thanos, C.G. NT-501: an ophthalmic implant of polymer-encapsulated ciliary neurotrophic factor-producing cells. Curr Opin Mol Ther 2008, 10, 506-515.
- Aisen, P.S.; Cummings, J.; Doody, R.; Kramer, L.; Salloway, S.; Selkoe, D.J.; Sims, J.; Sperling, R.A.; Vellas, B. The Future of Anti-Amyloid Trials. J Prev Alzheimers Dis 2020, 7, 146-151. [CrossRef]
- Yoshida, K.; Moein, A.; Bittner, T.; Ostrowitzki, S.; Lin, H.; Honigberg, L.; Jin, J.Y.; Quartino, A. Pharmacokinetics and pharmacodynamic effect of crenezumab on plasma and cerebrospinal fluid beta-amyloid in patients with mild-to-moderate Alzheimer's disease. Alzheimers Res Ther 2020, 12, 16. [CrossRef]
- Cummings, J. The Role of Biomarkers in Alzheimer's Disease Drug Development. Adv Exp Med Biol 2019, 1118, 29-61. [CrossRef]
- Hansson, O.; Edelmayer, R.M.; Boxer, A.L.; Carrillo, M.C.; Mielke, M.M.; Rabinovici, G.D.; Salloway, S.; Sperling, R.; Zetterberg, H.; Teunissen, C.E. The Alzheimer's Association appropriate use recommendations for blood biomarkers in Alzheimer's disease. Alzheimer's & Dementia 2022, 18, 2669-2686. [CrossRef]
- Reiss, Y.; Bauer, S.; David, B.; Devraj, K.; Fidan, E.; Hattingen, E.; Liebner, S.; Melzer, N.; Meuth, S.G.; Rosenow, F.; et al. The neurovasculature as a target in temporal lobe epilepsy. Brain Pathology 2023, 33, e13147. [CrossRef]
- Cummings, J.L.; Atri, A.; Feldman, H.H.; Hansson, O.; Sano, M.; Knop, F.K.; Johannsen, P.; León, T.; Scheltens, P. evoke and evoke+: design of two large-scale, double-blind, placebo-controlled, phase 3 studies evaluating efficacy, safety, and tolerability of semaglutide in early-stage symptomatic Alzheimer's disease. Alzheimers Res Ther 2025, 17, 14. [CrossRef]
- Wu, D.; Chen, Q.; Chen, X.; Han, F.; Chen, Z.; Wang, Y. The blood–brain barrier: Structure, regulation and drug delivery. Signal Transduction and Targeted Therapy 2023, 8, 217. [CrossRef]
- Chen, K.T.; Wei, K.C.; Liu, H.L. Focused Ultrasound Combined with Microbubbles in Central Nervous System Applications. Pharmaceutics 2021, 13. [CrossRef]
- Sims, J.R.; Zimmer, J.A.; Evans, C.D.; Lu, M.; Ardayfio, P.; Sparks, J.; Wessels, A.M.; Shcherbinin, S.; Wang, H.; Monkul Nery, E.S.; et al. Donanemab in Early Symptomatic Alzheimer Disease: The TRAILBLAZER-ALZ 2 Randomized Clinical Trial. JAMA 2023, 330, 512-527. [CrossRef]
- Tarawneh, R.; Pankratz, V.S. The search for clarity regarding "clinically meaningful outcomes" in Alzheimer disease clinical trials: CLARITY-AD and Beyond. Alzheimers Res Ther 2024, 16, 37. [CrossRef]
- Molinuevo, J.L.; Cami, J.; Carné, X.; Carrillo, M.C.; Georges, J.; Isaac, M.B.; Khachaturian, Z.; Kim, S.Y.; Morris, J.C.; Pasquier, F.; et al. Ethical challenges in preclinical Alzheimer's disease observational studies and trials: Results of the Barcelona summit. Alzheimers Dement 2016, 12, 614-622. [CrossRef]
| Drug | Target | Biologic type | Mechanism of action | Clinical trial phase | AD stage | Sponsor |
|---|---|---|---|---|---|---|
| Aducanumab | Aβ aggregates | mAb | FcγR-mediated microglial clearance of aggregated Aβ | Approved / Phase IV (NCT04241068, NCT02484547) |
Early/mild AD | Biogen |
| CM383 | Binds aggregated Aβ to promote clearance and reduce plaque-associated neurotoxicity | Phase I (NCT06619613) | MCI / mild AD | Keymed Biosciences | ||
| IBC-Ab002 | Targets aggregated Aβ to enhance clearance through Fc-mediated phagocytosis | Phase I (NCT05567181) | Early AD | Iceberg Biotech | ||
| Lecanemab | Aβ protofibrils | Binds protofibrillar Aβ to reduce plaque formation and neurotoxicity | Approved / Phase IV (NCT03887455, NCT01767311) | Early AD | Eisai/Biogen | |
| Sabrinetug | Binds Aβ protofibrils to neutralize toxicity and facilitate immune clearance | Phase I & II (NCT05531650 | Early AD | Genentech / Roche | ||
| ALIA-1758 | Binds Aβ protofibrils to promote clearance and inhibit neurotoxicity | Phase I (NCT05269394) | Early AD | Alia Therapeutics | ||
| APNmAb005 | Binds to amyloid protofibrils to neutralize neurotoxic aggregates | Phase I (NCT05512345) | Early AD | AptaBio / Neurodegeneration Partners | ||
| MK-2214 | Binds protofibrillar Aβ to facilitate immune clearance | Phase I (NCT06030414) | Early AD | Merck & Co. (MSD) | ||
| Donanemab | Pyroglutamate-modified Aβ | Targets modified plaques to clear established amyloid | Approved / Phase IV (NCT04437511, NCT05026866) | Early/mild AD | Eli Lilly | |
| Remterneutug | Targets pyroglutamate-modified Aβ to remove established amyloid plaques | Phase III (NCT06653153) | Early symptomatic AD | Eli Lilly | ||
| ABBV-916 | N3 pyroglutamate Aβ | Binds N-terminal truncated Aβ (pyroglutamate) to clear plaques | Phase II (NCT05291234) | Early AD | AbbVie | |
| LY3954068 | Aβ oligomers | Binds toxic Aβ oligomers to neutralize neurotoxicity | Phase I (NCT05999999) | Early AD | Eli Lilly | |
| Bepranemab | Extracellular full-length tau | Targets extracellular tau to prevent propagation of pathological species | Phase II (NCT04867616) | Early AD | UCB Biopharma | |
| E2814 | Tau MTBR (microtubule-binding region) | Binds extracellular MTBR-tau to inhibit seeding and propagation of pathogenic tau species, clearance mediated by microglia | Phase II (NCT04971733, NCT06602258 with Lecanemab) | Early/sporadic AD & DIAD | Eisai (+ DIAN-TU) | |
| BMS-986446 | Binds MTBR-tau to inhibit tau aggregation and spread | Phase II (NCT06268886) | Early AD | Bristol-Myers Squibb | ||
| PMN310 | Misfolded tau aggregates | Targets pathological tau conformers to block downstream neurodegeneration | Phase I (NCT05654321) | MCI / Early AD | ProMIS Neurosciences | |
| JNJ-63733657 | p-tau | Binds p-tau to inhibit extracellular spread and promote clearance | Completed Phase II (NCT04619420) | Early AD | Janssen | |
| Trontinemab | Tau oligomers | Targets extracellular tau oligomers to prevent propagation | Phase I (NCT05678901) | Early/mild AD | Eli Lilly | |
| AL002 | TREM2 | Activates microglia via TREM2 to enhance Aβ clearance and modulate neuroinflammation | Phase II (NCT03635047, NCT05744401) | Early AD | Alector / GSK | |
| SHR-1707 | Activates microglial TREM2 signaling to promote phagocytosis and reduce inflammation | Phase I & II (NCT05926897) | Early AD | Jiangsu Hengrui Pharma | ||
| AL101 | Sortilin receptor (elevates progranulin, PGRN) | Downregulates Sortilin to increase PGRN levels, enhancing lysosomal function and neuroprotection | Phase II (NCT06079190) | Early AD | Alector / GSK | |
| Foralumab | CD3 on T lymphocytes | Modulates neuroinflammation via nasal anti-CD3 immunotherapy | Phase I (NCT05586542) | Early AD | Tiziana Life Sciences | |
| BIIB080 | MAPT mRNA (tau) | ASO | Reduces tau production by degrading MAPT mRNA via RNase H–dependent ASO mechanism, targets intracellular tau broadly | Phase II (NCT05399888) | MCI / mild AD dementia | Biogen / Ionis |
| ION269 | Reduces tau expression by degrading MAPT mRNA via RNase H mechanism | Phase I (NCT05893537) | Mild AD | Ionis | ||
| NIO752 | Reduces tau protein production via intrathecal ASO targeting MAPT mRNA | Phase I (NCT05469360, NCT06372821) | Early AD/ MCI | Novartis / UCLH / NIHR | ||
| ALN-APP | APP mRNA | siRNA (LNP) | Suppresses APP expression to reduce Aβ production | Phase I (NCT051 theoretical, platform approach) | Early AD (presymptomatic/MCI) | Alnylam / Regeneron |
| LY3954068 | MAPT mRNA (tau) | siRNA | Reduces tau production by degrading MAPT mRNA | Phase I (NCT06297590) | Early AD | Eli Lilly |
| Gonadorelin | GnRH receptor (GNRHR) | Peptide hormone | Pulsatile GnRH stimulation to promote neurogenesis, reduce hypothalamic inflammation | Phase II/III (NCT04390646) | Early Onset AD (Down syndrome) | N. Pitteloud et al. |
| Leuprolide | Hormonal analog | Modulates sex hormones to potentially slow neurodegeneration in postmenopausal women | Phase II ( NCT03649724) | MCI / mild AD | Weill Cornell / NIH-supported trial | |
| Insulin | CNS insulin receptor | Peptide hormone | Improves brain glucose metabolism and cognition via central insulin signalling | Phase II/III (NCT01767909, NCT05089656) | MCI / mild AD | Wake Forest / NIH |
| Semaglutide | GLP-1 receptor | Peptide agonist | Modulates insulin signalling, reduces neuroinflammation, promotes neuroprotection | Phase III (NCT04777396, NCT04777409) | Early AD | Novo Nordisk, Eli Lilly |
| CpG1018 | Aβ antigen (adjuvant only) | TLR9 agonist adjuvant | Enhances immune response to co-administered Aβ vaccine antigens via TLR9 activation | Phase I (NCT04524351) | Mild AD | Vaxxinity / Dynavax |
| AV-1959D | Aβ1–11 epitope | DNA Vaccine | Induces polyclonal antibodies against Aβ to clear plaques | Phase I (NCT05642429) | Early AD | Capo Therapeutics / IMM |
| ACI-24.060 | Aβ oligomers & pyroglutamate Aβ | Active immunization (vaccine) | Induces polyclonal antibodies targeting pathogenic Aβ species, promoting immune-mediated clearance | Phase II (NCT05462106) | Prodromal AD & Down syndrome | AC Immune |
| ALZ-101 | Aβ1–42 peptide | Elicits antibodies against Aβ1–42 to promote clearance | Phase I/II (NCT05399888) | Early AD | Alzinova AB | |
| ACI-35 | p-tau | Elicits antibodies against phosphorylated tau epitopes to inhibit intracellular aggregation | Phase I/IIa (no NCT listed) | MCI / mild AD | AC Immune / Janssen | |
| BCG Vaccine | Trained innate immunity (macrophages) | Live attenuated vaccine | Boosts innate immune surveillance to mitigate neuroinflammation | Phase I/II ( NCT05124171) | Early AD | University of Queensland / NIH¹ |
| Aldesleukin | IL-2 receptor on Tregs | Recombinant cytokine | Low-dose IL-2 selectively expands regulatory T cells to reduce neuroinflammation | Phase IIa (NCT06268886) | Early AD | Phase IIa (NCT06268886) |
| Sargramostim | Granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor | Stimulates innate immune cells to enhance Aβ clearance and neuroprotection | Phase II (NCT04902703) | Mild-to-moderate AD | Partner Therapeutics / CU Anschutz | |
| ExPlas | Plasma factors | Plasma exchange biologic | Transfuses young plasma components to support neuronal health | Phase IIa ( NCT05006716) | Mild AD to moderate | Alkahest / Grifols |
| Recombinant Human Serum Albumin | Circulating Aβ | Plasma protein infusion | Alters peripheral Aβ dynamics to promote central Aβ clearance | Phase IIb (NCT04140176) | Mild to moderate AD | Grifols |
| XPro1595 | Soluble TNFα | Dominant-negative TNF biologic | Inhibits soluble TNFα to reduce neuroinflammation and synaptic loss | Phase II (NCT03943264) | Mild AD | INmune Bio |
| ADEL-Y01 | TGF-β1 pathway | Stem cell-derived biologic | Adipose-derived stem cell secretome modulates neuroinflammation and synaptic repair | Phase II (NCT05531526) | Mild to moderate AD | Anterogen / Medipost |
| Lomecel-B | MSC-secreted immunomodulatory and neurovascular factors | Allogeneic MSC therapy | Anti-inflammatory, pro-vascular, tissue repair, immunomodulatory, and low immunogenicity | Phase IIa (NCT05233774) | Mild AD | Longeveron |
| Probiotics | Gut microbiota | Microbial consortia / dietary | Modulates gut–brain axis to reduce systemic inflammation and improve cognitive function | Phase II (NCT05325179) |
MCI | Wake Forest |
| Drug | Target | Biologic type | Mechanism of actin | Clinical trial phase (at failure) | Reason for failure / outcome | Sponsor |
|---|---|---|---|---|---|---|
| Gantenerumab | Fibrillar Aβ | mAb | Clears fibrillar Aβ via microglial activation | Phase III (GRADUATE 1: NCT03444870, GRADUATE 2: NCT03443973) | Despite significant plaque reduction, no cognitive benefit was observed in interim analyses, leading to early termination. | Roche |
| Bapineuzumab | Targets Aβ plaques via Fc-mediated phagocytosis | Phase III (Studies 301/302: NCT00667810, NCT00667824) | Failed to meet co-primary cognitive and function endpoints in ApoE4 carriers & non-carriers, incidence of ARIA, all trials subsequently discontinued | Janssen/Pfizer | ||
| Solanezumab | Soluble Aβ | Enhances peripheral clearance of soluble Aβ | Phase III (EXPEDITION 1–3: NCT01767311, NCT02008357, A4: NCT02008357) | Failed to meet primary cognitive endpoints in mild-to-moderate and preclinical AD, subgroup analyses showed only marginal trends without statistical power. | Eli Lilly | |
| Ponezumab | Peripheral sink effect, targets Aβ to enhance systemic clearance | Phase II (NCT00945672) | No cognitive or biomarker benefit in mild-to-moderate AD patients | Prizer | ||
| Crenezumab | Aβ oligomers | Binds oligomeric Aβ, reduced Fc effector activity (IgG4) | Binds oligomeric Aβ, reduced Fc effector activity (IgG4) | Terminated after futility analyses revealed no significant clinical benefit in prodromal/mild AD, also failed in the Alzheimer’s Prevention Initiative (API) for autosomal dominant AD. | Genentech/Roche | |
| RG7345 | Aggregated Aβ | Anti-Aβ monoclonal antibody | Phase I (NCT01224106) | Trial completed with no follow-up, development not continued | Roche / Genentech | |
| GSK933776 | Binds plaque-forming Aβ to lower CNS Aβ without ARIA | Phase I (NCT00459550, NCT01424436) | Engaged target and altered Aβ levels, but no subsequent efficacy trials, likely discontinued | GSK | ||
| Gosuranemab | Extracellular N-terminal tau | Binds N-terminal tau to block cell-to-cell propagation | Phase II (TANGO: NCT03352557) | Trial failed to demonstrate clinical benefit despite target engagement, program discontinued. | Biogen | |
| Semorinemab | Targets N-terminal tau to inhibit spreading of pathology | Phase II (Tauriel: NCT03289143, Lauriet: NCT03828747) | No significant slowing of cognitive or functional decline observed in mild-to-moderate AD patients. | Genentech | ||
| AN1792 Vaccine | Full-length Aβ₁–₄₂ | Peptide vaccine | Induces polyclonal anti-Aβ antibody response | Phase II (NCT00021723) | Induced meningoencephalitis in ~5% of participants due to autoimmune T-cell response, program halted for safety reasons. | Elan/Wyeth |
| ACC-001 | Aβ1–7 peptide (with QS-21 adjuvant) | Vaccine targeting Aβ1–7 with QS-21 adjuvant | Phase II (NCT01284387) | Terminated due to injection-site reactions and lack of efficacy | Janssen / Pfizer | |
| ABvac40 | C-terminal Aβ₄₀ epitope | Induces antibodies targeting Aβ40 to prevent aggregation | Phase II (NCT02927237) | Phase II results unpublished, program status unclear, likely discontinued | Araclon Biotech | |
| UB-311 | Aβ1–14 (soluble and aggregated forms) | Induces Th2-skewed anti-Aβ antibody response | Phase IIa (NCT04055376) | Trial completed, no publicly reported efficacy outcomes since 2021 | United Biomedical Inc. | |
| AADvac1 | Truncated pathological tau | Induces antibodies against misfolded tau protein | Phase II (NCT02579252) | No significant slowing of cognitive decline, biomarker changes modest, development halted or stalled | AXON Neuroscience | |
| BIIB092 (Tilavonemab) | N-terminal extracellular tau | Binds extracellular tau to block seeding and spread | Phase II (NCT03352557) | Failed to slow clinical decline despite tau binding, development discontinued | Biogen | |
| RO7105705 | Blocks tau propagation in extracellular space | Phase II (NCT03828747) | Modest biomarker changes but failed to slow clinical progression | Genentech | ||
| Lu AF20513 | Multi-epitope Aβ | DNA vaccine | Targets multiple Aβ epitopes | Phase I (NCT01519363) | Study completed with no publication or further clinical development | Lundbeck |
| CAD106 | Aβ1–6 | Active vaccine | Induces Aβ antibodies while avoiding T-cell response | Phase II/III (NCT02565511) | Did not meet cognitive endpoints in patients with prodromal AD | Novartis |
| Octagam IVIG | Polyvalent antibodies | IV immunoglobulin therapy | Hypothesized to clear Aβ/Opsonize for immune-mediated clearance | Phase III (NCT01561053) | Failed to meet cognitive or functional endpoints in mild-to-moderate AD | Baxter / Baxalta |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
