Submitted:
20 July 2025
Posted:
21 July 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Information Exchange Fluctuation Theorem
3. Results
3.1. Theoretical Framework
3.2. Proof of Equations (3) and (4)
3.3. Work Fluctuation Theorem for Information Exchange
4. Conclusions
Funding
Conflicts of Interest
References
- Jarzynski, C. Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 1997, 78, 2690–2693. [Google Scholar] [CrossRef]
- Crooks, G.E. Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 1999, 60, 2721–2726. [Google Scholar] [CrossRef] [PubMed]
- Seifert, U. Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys. Rev. Lett. 2005, 95, 040602. [Google Scholar] [CrossRef] [PubMed]
- Hatano, T.; Sasa, S.i. Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett. 2001, 86, 3463–3466. [Google Scholar] [CrossRef] [PubMed]
- Jinwoo, L.; Tanaka, H. Local non-equilibrium thermodynamics. Sci.Rep. 2015, 5, 7832. [Google Scholar] [CrossRef] [PubMed]
- Jinwoo, L. Roles of local nonequilibrium free energy in the description of biomolecules. Phys. Rev. E 2023, 107, 014402. [Google Scholar] [CrossRef] [PubMed]
- Hummer, G.; Szabo, A. Free energy reconstruction from nonequilibrium single-molecule pulling experiments. Proc. Nat. Acad. Sci. USA 2001, 98, 3658–3661. [Google Scholar] [CrossRef] [PubMed]
- Liphardt, J.; Onoa, B.; Smith, S.B.; Tinoco, I.; Bustamante, C. Reversible unfolding of single RNA molecules by mechanical force. Science 2001, 292, 733–737. [Google Scholar] [CrossRef] [PubMed]
- Liphardt, J.; Dumont, S.; Smith, S.; Tinoco Jr, I.; Bustamante, C. Equilibrium information from nonequilibrium measurements in an experimental test of Jarzynski’s equality. Science 2002, 296, 1832–1835. [Google Scholar] [CrossRef] [PubMed]
- Trepagnier, E.H.; Jarzynski, C.; Ritort, F.; Crooks, G.E.; Bustamante, C.J.; Liphardt, J. Experimental test of Hatano and Sasa’s nonequilibrium steady-state equality. Proc. Nat. Acad. Sci. USA 2004, 101, 15038–15041. [Google Scholar] [CrossRef] [PubMed]
- Collin, D.; Ritort, F.; Jarzynski, C.; Smith, S.B.; Tinoco, I.; Bustamante, C. Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies. Nature 2005, 437, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Alemany, A.; Mossa, A.; Junier, I.; Ritort, F. Experimental free-energy measurements of kinetic molecular states using fluctuation theorems. Nature Phys. 2012. [Google Scholar] [CrossRef]
- Ponmurugan, M. Generalized detailed fluctuation theorem under nonequilibrium feedback control. Physical Review E 2010, 82, 031129. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, J.M.; Vaikuntanathan, S. Nonequilibrium detailed fluctuation theorem for repeated discrete feedback. Physical Review E 2010, 82, 061120. [Google Scholar] [CrossRef] [PubMed]
- Sagawa, T.; Ueda, M. Generalized Jarzynski equality under nonequilibrium feedback control. Phys. Rev. Lett. 2010, 104, 090602. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, J.M.; Parrondo, J.M. Thermodynamic reversibility in feedback processes. EPL (Europhysics Letters) 2011, 95, 10005. [Google Scholar] [CrossRef]
- Sagawa, T.; Ueda, M. Fluctuation theorem with information exchange: Role of correlations in stochastic thermodynamics. Phys. Rev. Lett. 2012, 109, 180602. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Wang, J. New fluctuation theorems on Maxwell?s demon. Science Advances 2021, 7, eabf1807. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.L.; Bu, J.T.; Zeng, Q.; Zhang, K.; Cui, K.F.; Zhou, F.; Su, S.L.; Chen, L.; Wang, J.; Chen, G.; et al. Experimental Verification of Demon-Involved Fluctuation Theorems. Phys. Rev. Lett. 2024, 133, 090402. [Google Scholar] [CrossRef] [PubMed]
- Hartwell, L.H.; Hopfield, J.J.; Leibler, S.; Murray, A.W. From molecular to modular cell biology. Nature 1999, 402, C47. [Google Scholar] [CrossRef] [PubMed]
- Crofts, A.R. Life, information, entropy, and time: vehicles for semantic inheritance. Complexity 2007, 13, 14–50. [Google Scholar] [CrossRef] [PubMed]
- Cheong, R.; Rhee, A.; Wang, C.J.; Nemenman, I.; Levchenko, A. Information transduction capacity of noisy biochemical signaling networks. science 2011, 334, 354–358. [Google Scholar] [CrossRef] [PubMed]
- McGrath, T.; Jones, N.S.; ten Wolde, P.R.; Ouldridge, T.E. Biochemical Machines for the Interconversion of Mutual Information and Work. Phys. Rev. Lett. 2017, 118, 028101. [Google Scholar] [CrossRef] [PubMed]
- Ouldridge, T.E.; Govern, C.C.; ten Wolde, P.R. Thermodynamics of Computational Copying in Biochemical Systems. Phys. Rev. X 2017, 7, 021004. [Google Scholar] [CrossRef]
- Becker, N.B.; Mugler, A.; ten Wolde, P.R. Optimal Prediction by Cellular Signaling Networks. Phys. Rev. Lett. 2015, 115, 258103. [Google Scholar] [CrossRef] [PubMed]
- Cheng, F.; Liu, C.; Shen, B.; Zhao, Z. Investigating cellular network heterogeneity and modularity in cancer: a network entropy and unbalanced motif approach. BMC Systems Biology 2016, 10, 65. [Google Scholar] [CrossRef] [PubMed]
- Whitsett, J.A.; Guo, M.; Xu, Y.; Bao, E.L.; Wagner, M. SLICE: determining cell differentiation and lineage based on single cell entropy. Nucleic Acids Research 2016, 45, e54–e54. [Google Scholar] [CrossRef] [PubMed]
- Statistical Dynamics of Spatial-Order Formation by Communicating Cells. iScience 2018, 2, 27–40. [CrossRef] [PubMed]
- Maire, T.; Youk, H. Molecular-Level Tuning of Cellular Autonomy Controls the Collective Behaviors of Cell Populations. Cell Systems 2015, 1, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; Schwab, D.J. Energetic costs of cellular computation. Proceedings of the National Academy of Sciences 2012, 109, 17978–17982. [Google Scholar] [CrossRef] [PubMed]
- Govern, C.C.; ten Wolde, P.R. Energy dissipation and noise correlations in biochemical sensing. Physical review letters 2014, 113, 258102. [Google Scholar] [CrossRef] [PubMed]
- Jinwoo, L. Fluctuation Theorem of Information Exchange between Subsystems that Co-Evolve in Time. Symmetry 2019, 11, 433. [Google Scholar] [CrossRef]
- Jinwoo, L. Fluctuation Theorem of Information Exchange within an Ensemble of Paths Conditioned on Correlated-Microstates. Entropy 2019, 21. [Google Scholar] [CrossRef] [PubMed]
- Jarzynski, C. Equalities and inequalities: Irreversibility and the second law of thermodynamics at the nanoscale. Annu. Rev. Codens. Matter Phys. 2011, 2, 329–51. [Google Scholar] [CrossRef]
- Seifert, U. Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 2012, 75, 126001. [Google Scholar] [CrossRef] [PubMed]
- Spinney, R.; Ford, I. Fluctuation Relations: A Pedagogical Overview. In Nonequilibrium Statistical Physics of Small Systems; Wiley-VCH Verlag GmbH & Co. KGaA, 2013; pp. 3–56. [Google Scholar]
- Cover, T.M.; Thomas, J.A. Elements of information theory; John Wiley & Sons, 2012. [Google Scholar]
- Kurchan, J. Fluctuation theorem for stochastic dynamics. Journal of Physics A: Mathematical and General 1998, 31, 3719. [Google Scholar] [CrossRef]
- Maes, C. The fluctuation theorem as a Gibbs property. Journal of statistical physics 1999, 95, 367–392. [Google Scholar] [CrossRef]
- Jarzynski, C. Hamiltonian derivation of a detailed fluctuation theorem. J. Stat. Phys. 2000, 98, 77–102. [Google Scholar] [CrossRef]
- Parrondo, J.M.; Horowitz, J.M.; Sagawa, T. Thermodynamics of information. Nature physics 2015, 11, 131–139. [Google Scholar] [CrossRef]
- Kawai, R.; Parrondo, J.M.R.; den Broeck, C.V. Dissipation: The phase-space perspective. Phys. Rev. Lett. 2007, 98, 080602. [Google Scholar] [CrossRef] [PubMed]
- Generalization of the second law for a transition between nonequilibrium states. Physics Letters A 2010, 375, 88–92. [CrossRef]
- Generalization of the second law for a nonequilibrium initial state. Physics Letters A 2010, 374, 1001–1004. [CrossRef]
- Esposito, M.; Van den Broeck, C. Second law and Landauer principle far from equilibrium. Europhys. Lett. 2011, 95, 40004. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
