Submitted:
30 June 2025
Posted:
01 July 2025
You are already at the latest version
Abstract
Keywords:
Introduction
Availability on the BCEC Surface
Trafficking Across BCEC
Trafficking with One vs Multiple BCEC Proteins
Trafficking of Large Constructs
Trafficking Interference Points
Availability in the Bloodstream
Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- N.J. Abbott, A.A. Patabendige, D.E. Dolman, S.R. Yusof, D.J. Begley, Structure and function of the blood-brain barrier, Neurobiol Dis 37 (2010) 13–25. [CrossRef]
- S. Ayloo, C. Gu, Transcytosis at the blood–brain barrier, Current Opinion in Neurobiology 57 (2019) 32–38. [CrossRef]
- G.C. Terstappen, A.H. Meyer, R.D. Bell, W. Zhang, Strategies for delivering therapeutics across the blood-brain barrier, Nat Rev Drug Discov 20 (2021) 362–383. [CrossRef]
- W.M. Pardridge, A Historical Review of Brain Drug Delivery, Pharmaceutics 14 (2022) 1283. [CrossRef]
- K. Piper, J.I. Kumar, J. Domino, C. Tuchek, M.A. Vogelbaum, Consensus review on strategies to improve delivery across the blood-brain barrier including focused ultrasound, Neuro-Oncology 26 (2024) 1545–1556. [CrossRef]
- D. McMahon, M.A. O’Reilly, K. Hynynen, Therapeutic Agent Delivery Across the Blood- Brain Barrier Using Focused Ultrasound, Annu Rev Biomed Eng 23 (2021) 89–113. [CrossRef]
- R.S. D’Amico, D. Khatri, N. Reichman, N.V. Patel, T. Wong, S.R. Fralin, M. Li, J.A. Ellis, R. Ortiz, D.J. Langer, J.A. Boockvar, Super selective intra-arterial cerebral infusion of modern chemotherapeutics after blood–brain barrier disruption: where are we now, and where we are going, J Neurooncol 147 (2020) 261–278. [CrossRef]
- P.G. Durham, A. Butnariu, R. Alghorazi, G. Pinton, V. Krishna, P.A. Dayton, Current clinical investigations of focused ultrasound blood-brain barrier disruption: A review, Neurotherapeutics 21 (2024) e00352. [CrossRef]
- J.H. Pedder, A.M. Sonabend, M.D. Cearns, B.D. Michael, R. Zakaria, A.B. Heimberger, M.D. Jenkinson, D. Dickens, Crossing the blood–brain barrier: emerging therapeutic strategies for neurological disease, The Lancet Neurology 0 (2025). [CrossRef]
- S. Ayloo, C.G. Lazo, S. Sun, W. Zhang, B. Cui, C. Gu, Pericyte-to-endothelial cell signaling via vitronectin-integrin regulates blood-CNS barrier, Neuron 110 (2022) 1641-1655.e6. [CrossRef]
- A Ben-Zvi, B Lacoste, E Kur, BJ Andreone, Y Mayshar, Mfsd2a is critical for the formation and function of the blood–brain barrier, Nature (2014). [CrossRef]
- B.J. Andreone, B.W. Chow, A. Tata, B. Lacoste, A. Ben-Zvi, K. Bullock, A.A. Deik, D.D. Ginty, C.B. Clish, C. Gu, Blood-Brain Barrier Permeability Is Regulated by Lipid Transport- Dependent Suppression of Caveolae-Mediated Transcytosis, Neuron 94 (2017) 581- 594.e5. [CrossRef]
- Y. Xie, L. He, Y. Zhang, H. Huang, F. Yang, M. Chao, H. Cao, J. Wang, Y. Li, L. Zhang, L. Xin, B. Xiao, X. Shi, X. Zhang, J. Tang, L. Uhrbom, A. Dimberg, L. Wang, L. Zhang, Wnt signaling regulates MFSD2A-dependent drug delivery through endothelial transcytosis in glioma, Neuro-Oncology 25 (2023) 1073–1084. [CrossRef]
- X. Ju, T. Miao, H. Chen, J. Ni, L. Han, Overcoming Mfsd2a-Mediated Low Transcytosis to Boost Nanoparticle Delivery to Brain for Chemotherapy of Brain Metastases, Adv Healthc Mater 10 (2021) e2001997. [CrossRef]
- Y. Tong, P. An, P. Tang, R. Mu, Y. Zeng, H. Sun, M. Zhao, Z. Lv, P. Wang, W. Han, C. Gui, X. Zhen, L. Han, Suppressing Wnt signaling of the blood‒tumor barrier to intensify drug delivery and inhibit lipogenesis of brain metastases, Acta Pharmaceutica Sinica B 14 (2024) 2716–2731. [CrossRef]
- A. Lindqvist, M. Fridén, M. Hammarlund-Udenaes, Pharmacokinetic considerations of nanodelivery to the brain: Using modeling and simulations to predict the outcome of liposomal formulations, Eur J Pharm Sci 92 (2016) 173–182. [CrossRef]
- M. Farid, T. Faber, D. Dietrich, A. Lamprecht, Cell membrane fusing liposomes for cytoplasmic delivery in brain endothelial cells, Colloids and Surfaces B: Biointerfaces 194 (2020) 111193. [CrossRef]
- J. Hammond, C.J. Richards, Y. Ko, T. Jonker, C. Åberg, W.H. Roos, R.B. Lira, Membrane Fusion-Based Drug Delivery Liposomes Transiently Modify the Material Properties of Synthetic and Biological Membranes, Small 21 (2025) 2408039. [CrossRef]
- Ruseska, A. Zimmer, Internalization mechanisms of cell-penetrating peptides, Beilstein J Nanotechnol 11 (2020) 101–123. [CrossRef]
- M. Okafor, D. Schmitt, S. Ory, S. Gasman, C. Hureau, P. Faller, N. Vitale, The Different Cellular Entry Routes for Drug Delivery Using Cell Penetrating Peptides, Biology of the Cell 117 (2025) e70012. [CrossRef]
- B. Obermeier, R. Daneman, R.M. Ransohoff, Development, maintenance and disruption of the blood-brain barrier, Nat Med 19 (2013) 1584–96. [CrossRef]
- M. De Bock, V. Van Haver, R.E. Vandenbroucke, E. Decrock, N. Wang, L. Leybaert, Into rather unexplored terrain-transcellular transport across the blood-brain barrier, Glia 64 (2016) 1097–123. [CrossRef]
- A.V. Andjelkovic, M. Situ, A.F. Citalan-Madrid, S.M. Stamatovic, J. Xiang, R.F. Keep, Blood-Brain Barrier Dysfunction in Normal Aging and Neurodegeneration: Mechanisms, Impact, and Treatments, Stroke 54 (2023) 661–672. [CrossRef]
- O. van Tellingen, B. Yetkin-Arik, M.C. de Gooijer, P. Wesseling, T. Wurdinger, H.E. de Vries, Overcoming the blood–brain tumor barrier for effective glioblastoma treatment, Drug Resistance Updates 19 (2015) 1–12. [CrossRef]
- S. Rathi, J.I. Griffith, W. Zhang, W. Zhang, J.-H. Oh, S. Talele, J.N. Sarkaria, W.F. Elmquist, The influence of the blood–brain barrier in the treatment of brain tumours, Journal of Internal Medicine 292 (2022) 3–30. [CrossRef]
- D. Yang, R. Kroe-Barrett, S. Singh, T. Laue, IgG Charge: Practical and Biological Implications, Antibodies 8 (2019) 24. [CrossRef]
- M. Mapiour, A. Abdelrasoul, Critical Influences of Plasma pH on Human Protein Properties for Modeling Considerations: Size, Charge, Conformation, Hydrophobicity, and Denaturation, Journal of Composites Science 7 (2023) 28. [CrossRef]
- A.K. Kumagai, J.B. Eisenberg, W.M. Pardridge, Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood-brain barrier transport., Journal of Biological Chemistry 262 (1987) 15214–15219. [CrossRef]
- J.J. Rennick, A.P.R. Johnston, R.G. Parton, Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics, Nature Nanotechnology 16 (2021) 266–276. [CrossRef]
- H. Baghirov, Mechanisms of receptor-mediated transcytosis at the blood-brain barrier, Journal of Controlled Release 381 (2025) 113595. [CrossRef]
- N.J. Abbott, Blood-brain barrier structure and function and the challenges for CNS drug delivery, J Inherit Metab Dis 36 (2013) 437–49. [CrossRef]
- N. Kutuzov, H. Flyvbjerg, M. Lauritzen, Contributions of the glycocalyx, endothelium, and extravascular compartment to the blood-brain barrier, Proceedings of the National Academy of Sciences of the United States of America 115 (2018) E9429–E9438. [CrossRef]
- S.M. Shi, R.J. Suh, D.J. Shon, F.J. Garcia, J.K. Buff, M. Atkins, L. Li, N. Lu, B. Sun, J. Luo, N.-S. To, T.H. Cheung, M.W. McNerney, M. Heiman, C.R. Bertozzi, T. Wyss-Coray, Glycocalyx dysregulation impairs blood–brain barrier in ageing and disease, Nature 639 (2025) 985–994. [CrossRef]
- R. Larsen, K. Kucharz, S. Aydin, M.K.B. Micael, B. Choudhury, M. Paulchakrabarti, M. Lønstrup, D.C. Lin, M. Abeln, A. Münster-Kühnel, A.G. Toledo, M. Lauritzen, J.D. Esko, R. Daneman, Multi-omic analysis reveals the unique glycan landscape of the blood-brain barrier glycocalyx, bioRxiv (2025) 2025.04.07.645297. [CrossRef]
- U. Renner, A. Zeug, A. Woehler, M. Niebert, A. Dityatev, G. Dityateva, N. Gorinski, D. Guseva, D. Abdel-Galil, M. Fröhlich, F. Döring, E. Wischmeyer, D.W. Richter, E. Neher, E.G. Ponimaskin, Heterodimerization of serotonin receptors 5-HT1A and 5-HT7 differentially regulates receptor signalling and trafficking, J Cell Sci 125 (2012) 2486–2499. [CrossRef]
- K.S. Carmon, Lin ,Qiushi, Gong ,Xing, Thomas ,Anthony, Q. and Liu, LGR5 Interacts and Cointernalizes with Wnt Receptors To Modulate Wnt/β-Catenin Signaling, Molecular and Cellular Biology 32 (2012) 2054–2064. [CrossRef]
- F. Hüttenrauch, B. Pollok-Kopp, M. Oppermann, G Protein-coupled Receptor Kinases Promote Phosphorylation and β-Arrestin-mediated Internalization of CCR5 Homo- and Hetero-oligomers *, Journal of Biological Chemistry 280 (2005) 37503–37515. [CrossRef]
- R.C. Wells, P. Akkapeddi, D. Chan, D. Joy, R. Chau, J. Chow, A. Moshkforoush, G.M. Cherf, E.Y.T. Chien, A. Clemens, M.E. Pizzo, A.N. Qerqez, T. Tran, I. Becerra, J.C. Dugas, J. Duque, T.K. Earr, D. Huynh, D.J. Kim, A.W.-S. Leung, E. Liang, H.N. Nguyen, Y. Robles-Colmenares, H. Kane, E. Roche, P. Sacayon, K. Xa, H. Solanoy, M.S. Dennis, J.W. Lewcock, R.J. Watts, M.S. Kariolis, R.G. Thorne, C.M. Koth, M.E.K. Calvert, Y.J.Y. Zuchero, K.S. Chew, Dual targeting of transferrin receptor and CD98hc enhances brain exposure of large molecules, (2025) 2025.03.24.645085. [CrossRef]
- S. Edavettal, P. Cejudo-Martin, B. Dasgupta, D. Yang, M.D. Buschman, D. Domingo, K. Van Kolen, P. Jaiprasat, R. Gordon, K. Schutsky, B. Geist, N. Taylor, C.H. Soubrane, E. Van Der Helm, A. LaCombe, Z. Ainekulu, E. Lacy, J. Aligo, J. Ho, Y. He, P.F. Lebowitz, J.T. Patterson, J.M. Scheer, S. Singh, Enhanced delivery of antibodies across the blood- brain barrier via TEMs with inherent receptor-mediated phagocytosis, Med 3 (2022) 860- 882 e15. [CrossRef]
- K.S. Chew, R.C. Wells, A. Moshkforoush, D. Chan, K.J. Lechtenberg, H.L. Tran, J. Chow, D.J. Kim, Y. Robles-Colmenares, D.B. Srivastava, R.K. Tong, M. Tong, K. Xa, A. Yang, Y. Zhou, P. Akkapeddi, L. Annamalai, K. Bajc, M. Blanchette, G.M. Cherf, T.K. Earr, A. Gill, D. Huynh, D. Joy, K.N. Knight, D. Lac, A.W.-S. Leung, K.W. Lexa, N.P.D. Liau, I. Becerra, M. Malfavon, J. McInnes, H.N. Nguyen, E.I. Lozano, M.E. Pizzo, E. Roche, P. Sacayon, M.E.K. Calvert, R. Daneman, M.S. Dennis, J. Duque, K. Gadkar, J.W. Lewcock, C.S. Mahon, R. Meisner, H. Solanoy, R.G. Thorne, R.J. Watts, Y.J.Y. Zuchero, M.S. Kariolis, CD98hc is a target for brain delivery of biotherapeutics, Nat Commun 14 (2023) 5053. [CrossRef]
- G. Pornnoppadol, L.G. Bond, M.J. Lucas, J.M. Zupancic, Y.-H. Kuo, B. Zhang, C.F. Greineder, P.M. Tessier, Bispecific antibody shuttles targeting CD98hc mediate efficient and long-lived brain delivery of IgGs, Cell Chemical Biology 31 (2024) 361-372.e8. [CrossRef]
- J.L. Veire, M.J. Lucas, L.G. Bond, D.R. Tripu, P.M. Tessier, C.F. Greineder, Comparative Radiotracing Quantifies Brain Cellular Uptake and Catabolism of Bispecific Antibodies Targeting Transferrin Receptor and CD98hc, ACS Chem. Neurosci. 16 (2025) 1264–1274. [CrossRef]
- N. Khoury, M.E. Pizzo, C.B. Discenza, D. Joy, D. Tatarakis, M.I. Todorov, M. Negwer, C. Ha, G.L. De Melo, L. Sarrafha, M.J. Simon, D. Chan, R. Chau, K.S. Chew, J. Chow, A. Clemens, Y. Robles-Colmenares, J.C. Dugas, J. Duque, D. Kaltenecker, H. Kane, A. Leung, E. Lozano, A. Moshkforoush, E. Roche, T. Sandmann, M. Tong, K. Xa, Y. Zhou,J.W. Lewcock, A. Ertürk, R.G. Thorne, M.E.K. Calvert, Y.J. Yu Zuchero, Fc-engineered large molecules targeting blood-brain barrier transferrin receptor and CD98hc have distinct central nervous system and peripheral biodistribution, Nat Commun 16 (2025) 1822. [CrossRef]
- U. Julku, M. Xiong, E. Wik, S. Roshanbin, D. Sehlin, S. Syvanen, Brain pharmacokinetics of mono- and bispecific amyloid-beta antibodies in wild-type and Alzheimer’s disease mice measured by high cut-off microdialysis, Fluids Barriers CNS 19 (2022) 99. [CrossRef]
- H.W. Huang, S. Wu, S. Liu, D.K. Shah, Effect of FcRn Binding on Monoclonal Antibody Disposition in the Brain, AAPS J 27 (2025) 1–13. [CrossRef]
- E. Anderson, S. Maday, J. Sfakianos, M. Hull, B. Winckler, D. Sheff, H. Fölsch, I. Mellman, Transcytosis of NgCAM in epithelial cells reflects differential signal recognition on the endocytic and secretory pathways, J Cell Biol 170 (2005) 595–605. [CrossRef]
- D. Wisco, E.D. Anderson, M.C. Chang, C. Norden, T. Boiko, H. Fölsch, B. Winckler, Uncovering multiple axonal targeting pathways in hippocampal neurons, Journal of Cell Biology 162 (2003) 1317–1328. [CrossRef]
- A.T. Nabb, M. Bentley, NgCAM and VAMP2 reveal that direct delivery and dendritic degradation maintain axonal polarity, MBoC 33 (2022) ar3. [CrossRef]
- A. Yogi, G. Hussack, H. van Faassen, A.S. Haqqani, C.E. Delaney, E. Brunette, J.K. Sandhu, M. Hewitt, T. Sulea, K. Kemmerich, D.B. Stanimirovic, Brain Delivery of IGF1R5, a Single-Domain Antibody Targeting Insulin-like Growth Factor-1 Receptor, Pharmaceutics 14 (2022) 1452. [CrossRef]
- T.J. Esparza, S. Su, C.M. Francescutti, E. Rodionova, J.H. Kim, D.L. Brody, Enhanced in Vivo Blood Brain Barrier Transcytosis of Macromolecular Cargo Using an Engineered pH- sensitive Mouse Transferrin Receptor Binding Nanobody, bioRxiv (2023) 2023.04.26.538462. [CrossRef]
- Y.J. Yu, Y. Zhang, M. Kenrick, K. Hoyte, W. Luk, Y. Lu, J. Atwal, J.M. Elliott, S. Prabhu, R.J. Watts, M.S. Dennis, Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target, Science Translational Medicine 3 (2011) 84ra44. [CrossRef]
- N. Bien-Ly, Y.J. Yu, D. Bumbaca, J. Elstrott, C.A. Boswell, Y. Zhang, W. Luk, Y. Lu, M.S. Dennis, R.M. Weimer, I. Chung, R.J. Watts, Transferrin receptor (TfR) trafficking determines brain uptake of TfR antibody affinity variants, The Journal of Experimental Medicine 211 (2014) 233–44. [CrossRef]
- S.J. Barker, M.B. Thayer, C. Kim, D. Tatarakis, M.J. Simon, R. Dial, L. Nilewski, R.C. Wells, Y. Zhou, M. Afetian, P. Akkapeddi, A. Chappell, K.S. Chew, J. Chow, A. Clemens, C.B. Discenza, J.C. Dugas, C. Dwyer, T. Earr, C. Ha, Y.S. Ho, D. Huynh, E.I. Lozano, S. Jayaraman, W. Kwan, C. Mahon, M. Pizzo, Y. Robles-Colmenares, E. Roche, L. Sanders, A. Stergioulis, R. Tong, H. Tran, Y. Zuchero, A.A. Estrada, K. Gadkar, C.M.M. Koth, P.E. Sanchez, R.G. Thorne, R.J. Watts, T. Sandmann, L.A. Kane, F. Rigo, M.S. Dennis, J.W. Lewcock, S.L. DeVos, Targeting the transferrin receptor to transport antisense oligonucleotides across the mammalian blood-brain barrier, Science Translational Medicine 16 (2024) eadi2245. [CrossRef]
- Y. Zhang, W.M. Pardridge, Rapid transferrin efflux from brain to blood across the blood– brain barrier, Journal of Neurochemistry 76 (2001) 1597–1600. [CrossRef]
- L.B. Thomsen, J. Lichota, K.S. Kim, T. Moos, Gene delivery by pullulan derivatives in brain capillary endothelial cells for protein secretion, Journal of Controlled Release : Official Journal of the Controlled Release Society 151 (2011) 45–50. [CrossRef]
- A. Burkhart, T.L. Andresen, A. Aigner, L.B. Thomsen, T. Moos, Transfection of primary brain capillary endothelial cells for protein synthesis and secretion of recombinant erythropoietin: a strategy to enable protein delivery to the brain, Cell Mol Life Sci 74 (2017) 2467–2485. [CrossRef]
- E. Hede, C.B. Christiansen, C.W. Heegaard, T. Moos, A. Burkhart, Gene therapy to the blood–brain barrier with resulting protein secretion as a strategy for treatment of Niemann Picks type C2 disease, Journal of Neurochemistry 156 (2021) 290–308. [CrossRef]
- J. Klumperman, G. Raposo, The Complex Ultrastructure of the Endolysosomal System, Cold Spring Harb Perspect Biol 6 (2014) a016857. [CrossRef]
- J. Huotari, A. Helenius, Endosome maturation, EMBO J 30 (2011) 3481–3500. [CrossRef]
- J. Gruenberg, H. Stenmark, The biogenesis of multivesicular endosomes, Nat Rev Mol Cell Biol 5 (2004) 317–323. [CrossRef]
- C.C. Scott, F. Vacca, J. Gruenberg, Endosome maturation, transport and functions, Seminars in Cell & Developmental Biology 31 (2014) 2–10. [CrossRef]
- J. Kowal, G. Arras, M. Colombo, M. Jouve, J.P. Morath, B. Primdal-Bengtson, F. Dingli, D. Loew, M. Tkach, C. Théry, Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes, Proc Natl Acad Sci U S A 113 (2016) E968–E977. [CrossRef]
- B. Huang, M. Abedi, G. Ahn, B. Coventry, I. Sappington, C. Tang, R. Wang, T. Schlichthaerle, J.Z. Zhang, Y. Wang, I. Goreshnik, C.W. Chiu, A. Chazin-Gray, S. Chan, S. Gerben, A. Murray, S. Wang, J. O’Neill, L. Yi, R. Yeh, A. Misquith, A. Wolf, L.M. Tomasovic, D.I. Piraner, M.J. Duran Gonzalez, N.R. Bennett, P. Venkatesh, M. Ahlrichs, C. Dobbins, W. Yang, X. Wang, D.D. Sahtoe, D. Vafeados, R. Mout, S. Shivaei, L. Cao, L. Carter, L. Stewart, J.B. Spangler, K.T. Roybal, P.J. Greisen, X. Li, G.J.L. Bernardes, C.R. Bertozzi, D. Baker, Designed endocytosis-inducing proteins degrade targets and amplify signals, Nature (2024) 1–9. [CrossRef]
- J. Niewoehner, B. Bohrmann, L. Collin, E. Urich, H. Sade, P. Maier, P. Rueger, J.O. Stracke, W. Lau, A.C. Tissot, H. Loetscher, A. Ghosh, P.O. Freskgard, Increased brain penetration and potency of a therapeutic antibody using a monovalent molecular shuttle, Neuron 81 (2014) 49–60. [CrossRef]
- D.T. Wiley, P. Webster, A. Gale, M.E. Davis, Transcytosis and brain uptake of transferrin- containing nanoparticles by tuning avidity to transferrin receptor, Proceedings of the National Academy of Sciences of the United States of America 110 (2013) 8662–7. [CrossRef]
- K.B. Johnsen, M. Bak, F. Melander, M.S. Thomsen, A. Burkhart, P.J. Kempen, T.L. Andresen, T. Moos, Modulating the antibody density changes the uptake and transport at the blood-brain barrier of both transferrin receptor-targeted gold nanoparticles and liposomal cargo, Journal of Controlled Release : Official Journal of the Controlled Release Society 295 (2019) 237–249. [CrossRef]
- H. Bila, K. Paloja, V. Caroprese, A. Kononenko, M.M.C. Bastings, Multivalent Pattern Recognition through Control of Nano-Spacing in Low-Valency Super-Selective Materials, J. Am. Chem. Soc. 144 (2022) 21576–21586. [CrossRef]
- N. Joudeh, D. Linke, Nanoparticle classification, physicochemical properties, characterization, and applications: a comprehensive review for biologists, Journal of Nanobiotechnology 20 (2022) 262. [CrossRef]
- W. Nickel, C. Rabouille, Mechanisms of regulated unconventional protein secretion, Nat Rev Mol Cell Biol 10 (2009) 148–155. [CrossRef]
- H.Y. Chang, S. Wu, Y. Li, W. Zhang, M. Burrell, C.I. Webster, D.K. Shah, Brain pharmacokinetics of anti-transferrin receptor antibody affinity variants in rats determined using microdialysis, MAbs 13 (2021) 1874121. [CrossRef]
- S. Sato, S. Liu, A. Goto, T. Yoneyama, K. Okita, S. Yamamoto, H. Hirabayashi, S. Iwasaki, H. Kusuhara, Advanced translational PBPK model for transferrin receptor-mediated drug delivery to the brain, Journal of Controlled Release : Official Journal of the Controlled Release Society 357 (2023) 379–393. [CrossRef]
- A. Sepp, Stader ,Felix, Derbalah ,Abdallah, Liu ,Cong, Zyla ,Adriana, Gardner ,Iain, M. and Jamei, The physiological limits of bispecific monoclonal antibody tissue targeting specificity, mAbs 17 (2025) 2492236. [CrossRef]
- S. Latvala, B. Jacobsen, M.B. Otteneder, A. Herrmann, S. Kronenberg, Distribution of FcRn Across Species and Tissues, J Histochem Cytochem. 65 (2017) 321–333. [CrossRef]
- T. Igawa, S. Ishii, T. Tachibana, A. Maeda, Y. Higuchi, S. Shimaoka, C. Moriyama, T. Watanabe, R. Takubo, Y. Doi, T. Wakabayashi, A. Hayasaka, S. Kadono, T. Miyazaki, K. Haraya, Y. Sekimori, T. Kojima, Y. Nabuchi, Y. Aso, Y. Kawabe, K. Hattori, Antibody recycling by engineered pH-dependent antigen binding improves the duration of antigen neutralization, Nat Biotechnol 28 (2010) 1203–1207. [CrossRef]
- T. Fukuzawa, Z. Sampei, K. Haraya, Y. Ruike, M. Shida-Kawazoe, Y. Shimizu, S.W. Gan, M. Irie, Y. Tsuboi, H. Tai, T. Sakiyama, A. Sakamoto, S. Ishii, A. Maeda, Y. Iwayanagi, N. Shibahara, M. Shibuya, G. Nakamura, T. Nambu, A. Hayasaka, F. Mimoto, Y. Okura, Y. Hori, K. Habu, M. Wada, T. Miura, T. Tachibana, K. Honda, H. Tsunoda, T. Kitazawa, Y. Kawabe, T. Igawa, K. Hattori, J. Nezu, Long lasting neutralization of C5 by SKY59, a novel recycling antibody, is a potential therapy for complement-mediated diseases, Sci Rep 7 (2017) 1080. [CrossRef]
- H. Liu, L. Xia, J. Weng, F. Zhang, C. He, S. Gao, J. Jia, A.C. Chang, P. Lundberg, J. Shi, C.S. Sima, A. Sostelly, S. Sreckovic, Z. Xiao, Z. Zhang, R. Fu, Efficacy and safety of the C5 inhibitor crovalimab in complement inhibitor-naive patients with PNH (COMMODORE 3): A multicenter, Phase 3, single-arm study, American Journal of Hematology 98 (2023) 1407–1414. [CrossRef]
- W.C. Aird, Phenotypic heterogeneity of the endothelium: II. Representative vascular beds, Circ Res 100 (2007) 174–90. [CrossRef]
- M. Wessling-Resnick, Crossing the Iron Gate: Why and How Transferrin Receptors Mediate Viral Entry, Annual Review of Nutrition 38 (2018) 431–458. [CrossRef]
- K. Ketel, M. Krauss, A.-S. Nicot, D. Puchkov, M. Wieffer, R. Müller, D. Subramanian, C. Schultz, J. Laporte, V. Haucke, A phosphoinositide conversion mechanism for exit from endosomes, Nature 529 (2016) 408–412. [CrossRef]
- A. Wallroth, V. Haucke, Phosphoinositide conversion in endocytosis and the endolysosomal system, Journal of Biological Chemistry 293 (2018) 1526–1535. [CrossRef]
- PI4P and BLOC-1 remodel endosomal membranes into tubules | Journal of Cell Biology | Rockefeller University Press, (n.d.). https://rupress.org/jcb/article/221/11/e202110132/213508/PI4P-and-BLOC-1-remodel- endosomal-membranes-into (accessed June 25, 2025).
- N. van Hilten, J. Methorst, N. Verwei, H.J. Risselada, Physics-based generative model of curvature sensing peptides; distinguishing sensors from binders, Science Advances 9 (2023) eade8839. [CrossRef]
- D.H. Johnson, O.H. Kou, N. Bouzos, W.F. Zeno, Protein–membrane interactions: sensing and generating curvature, Trends in Biochemical Sciences 49 (2024) 401–416. [CrossRef]
| Entity | Location | Description | Rationale |
| Luminal surface target | PM, EE, RE, less likely MVB | High- or moderate affinity binding at cell surface, low in the endosome | Dissociation in the endosome, possibly for subsequent interaction with endosomal proteins |
| Abluminal surface proteins | EE, more likely RE | High affinity in the endosome, low on the cell surface | Capturing the dissociated construct in the endosome and redirecting it toward the abluminal membrane for release into parenchyma |
| Endocytic machinery proteins, vesicular domain* | EE or RE | Moderate affinity in the endosome | As above; the difference is that for intracellular machinery, peripheral expression-dictated specificity constraints may be less relevant. |
| Abluminal surface proteins or secreted proteins | TGN | High affinity in the TGN, low on the cell surface** | Capturing dissociated construct in the TGN and redirecting to the abluminal membrane or for secretion into brain parenchyma |
| Transmembrane proteins of EVs | EE | High affinity in the endosome, low on the cell surface*** | Tethering to those EE regions that are more likely to give rise to exocytosis-destined MVBs |
| Luminal surface target | EE, RE | Conformational change to mask apical sorting signals | Preventing recycling to the luminal membrane, thus indirectly promoting transcytosis |
| Luminal surface target | PM | Conformational change to trigger endocytosis, e.g., by exposing possibly inactive endocytic motifs | Inducing endocytosis (for proteins with slow internalization rate but otherwise favorable properties) |
| Luminal surface target | PM, EE, RE | Moderate affinity on the cell surface, high in the endosome | Eliminating intracellular dissociation - for targets with a strong recycling functionality - while preserving release on the cell surface |
| Construct (nanocarriers) | EE, or as early as possible | Triggering endosomal release of the payload | Released payload may traverse endosomal structures that are too narrow for the construct. The payload itself may be engineered to interact with endosomal proteins, as above. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
