Submitted:
19 June 2025
Posted:
20 June 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
1.1. AI-Powered Imaging Analysis for Spine Health
1.2. Radiomics and Imaging Biomarkers in Spine-Focused AI
1.3. Data Networks and Open-Source Access
1.4. Advancements in Clinical Decision Support Systems for Spine Care
1.5. Regulatory Governance, Policy Frameworks, and Legal Translation
1. U.S. Regulatory Landscape Under the FDA
2. Liability and Risk Allocation
3. Privacy, Security, and Ethical Oversight
4. Global Regulatory Divergence: EU, China, and International Trends
5. Role of Policymakers and Legal Reform
6. Clinical Translation: What It Means for Providers
7. Explainability as a Clinical Imperative in AI-Augmented Care
8. Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mallow, G.M.; Siyaji, Z.K.; Galbusera, F.; An, H.S.; Samartzis, D. Intelligence-Based Spine Care Model: A New Era of Research and Clinical Decision-Making. Global Spine J. 2021, 11, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Hornung, A.L.; Hornung, C.M.; Mallow, G.M.; Barajas, J.N.; Sayari, A.J.; Colman, M.; Phillips, F.M.; An, H.S. Artificial Intelligence in Spine Care: Current Applications and Future Utility. Eur. Spine J. 2022, 31, 2057–2081. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhu, J.; Duan, Z.; Liao, Z.; Wang, S.; Liu, W. Artificial Intelligence in Spinal Imaging: Current Status and Future Directions. Int. J. Environ. Res. Public Health 2022, 19, 11708. [Google Scholar] [CrossRef] [PubMed]
- Saravi, B.; Hassel, F.; Ülkümen, S.; Zink, A.; Shavlokhova, V.; Couillard-Despres, S.; Boeker, M.; Obid, P.; Lang, G.M. Artificial Intelligence-Driven Prediction Modeling and Decision Making in Spine Surgery Using Hybrid Machine Learning Models. J. Pers. Med. 2022, 12, 509. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, J.J.; Shao, J.; Neifert, S.N.; Gibbs, W.N.; Habboub, G.; Steinmetz, M.P.; Benzel, E.; Mroz, T.E. Artificial Intelligence in Spine Surgery. Int. Orthop. 2023, 47, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Galbusera, F.; Casaroli, G.; Bassani, T. Artificial Intelligence and Machine Learning in Spine Research. JOR Spine 2019, 2, e1044. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.E.; Yao, J.; Summers, R.M. Artificial Intelligence in Musculoskeletal Imaging: A Paradigm Shift. J. Bone Miner. Res. 2020, 35, 28–35. [Google Scholar] [CrossRef] [PubMed]
- van den Heuvel, T.L.A.; de Bruijn, D.; de Kater, E.P.; van Dijke, M.; van den Dobbelsteen, J.J.; Dankelman, J.; van den Berg, N.J. Artificial Intelligence in Spine Surgery: A Systematic Review. Spine J. 2024, 24, 1174–1198. [Google Scholar] [CrossRef] [PubMed]
- Fritz, B.; Fritz, J. Artificial Intelligence for MRI Diagnosis of Joints and Spine. J. Magn. Reson. Imaging 2024, 59, 1147–1166. [Google Scholar] [CrossRef] [PubMed]
- Toh, Z.A.; Berg, B.; Han, Q.Y.C.; Hey, H.W.D.; Pikkarainen, M.; Grotle, M.; He, H.G. Clinical Decision Support System Used in Spinal Disorders: Scoping Review. J. Med. Internet Res. 2024, 26, e53951. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, Z.; Zhang, M.; Xie, Y.; Peng, W.; Li, J.; Yang, X. Natural Language Processing in Spine Surgery: A Systematic Review of Applications, Challenges, and Future Directions. N. Am. Spine Soc. J. 2024, 18, 100324. [Google Scholar] [CrossRef] [PubMed]
- Farhadi, F.; Barnes, M.R.; Sugito, H.R.; Meyer, B.I.; Cheng, J.S.; Kondziolka, D. Natural Language Processing for Prediction of Readmissions in Posterior Lumbar Fusion: A Pilot Study. Clin. Spine Surg. 2022, 35, E141–E146. [Google Scholar] [CrossRef] [PubMed]
- Karhade, A.V.; Bongers, M.E.R.; Groot, O.Q.; Kazarian, E.R.; Cha, T.D.; Fogel, H.A.; Hershman, S.H.; Tobert, D.G.; Schoenfeld, A.J.; Bono, C.M.; Kang, J.D.; Harris, M.B.; Schwab, J.H. Natural Language Processing for Automated Surveillance of Intraoperative Neuromonitoring in Spine Surgery. N. Am. Spine Soc. J. 2022, 10, 100124. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.S.; Lau, D.; Scheer, J.K.; Ailon, T.; Smith, J.S.; Bess, S.; Shaffrey, C.I.; Ames, C.P. Artificial Intelligence-Based Decision Support Systems for Spine Surgery: A Systematic Review. World Neurosurg. 2024, 189, 304–316. [Google Scholar] [CrossRef] [PubMed]
- Ong, W.; Zhu, L.; Zhang, W.; Kuah, T.; Lim, D.S.W.; Low, X.Z.; Thian, Y.L.; Teo, E.C.; Tan, J.H.; Kumar, N.; Vellayappan, B.A.; Ooi, B.C.; Quek, S.T.; Makmur, A.; Hallinan, J.T.P.D. Application of Artificial Intelligence Methods for Imaging of Spinal Metastasis. Cancers (Basel) 2022, 14, 4025. [Google Scholar] [CrossRef] [PubMed]
- Hallinan, J.T.P.D.; Zhu, L.; Zhang, W.; Lim, D.S.W.; Baskar, S.; Low, X.Z.; Yeong, K.Y.; Teo, E.C.; Kumarakulasinghe, N.B.; Yap, Q.V.; Chan, Y.H.; Lin, S.; Tan, J.H.; Kumar, N.; Vellayappan, B.A.; Ooi, B.C.; Quek, S.T.; Makmur, A. Deep Learning Model for Classifying Metastatic Epidural Spinal Cord Compression on MRI. Front. Oncol. 2022, 12, 849447. [Google Scholar] [CrossRef] [PubMed]
- Artha Wiguna, I.G.L.N.A.; Kristian, Y.; Deslivia, M.F.; Limantara, R.; Cahyadi, D.; Liando, I.A.; Hamzah, H.A.; Kusuman, K.; Dimitri, D.; Anastasia, M.; Suyasa, I.K. Machine Learning in Spine Surgery: A Narrative Review. Eur. Spine J. 2024, 33, 4204–4213. [Google Scholar] [CrossRef] [PubMed]
- Yi, W.; Zhao, J.; Tang, W.; Yin, H.; Yu, L.; Wang, Y.; Tian, W. Deep Learning-Based High-Accuracy Detection for Lumbar and Cervical Degenerative Disease on T2-Weighted MR Images. Eur. Spine J. 2023, 32, 3807–3814. [Google Scholar] [CrossRef] [PubMed]
- Gros, C.; De Leener, B.; Badji, A.; Marini, C.; Cohen-Adad, J. Automatic Segmentation of the Spinal Cord and Intramedullary Multiple Sclerosis Lesions with Convolutional Neural Networks. Neuroimage 2019, 184, 901–915. [Google Scholar] [CrossRef] [PubMed]
- Ungi, T.; Greer, H.; Sunderland, K.R.; Yeung, C.; McGuffin, M.J.; Fichtinger, G. Automatic Spine Ultrasound Segmentation for Scoliosis Visualization and Measurement. IEEE Trans. Biomed. Eng. 2020, 67, 3234–3241. [Google Scholar] [CrossRef] [PubMed]
- Wu, V.; Ungi, T.; Sunderland, K.; Yeung, C.; Fichtinger, G. Automatic Segmentation of Spinal Ultrasound Landmarks with U-Net Using Multiple Consecutive Images for Input. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 3458–3466. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Damasceno, P.F.; Chachad, R.; Cheung, J.P.Y.; Samartzis, D.; To, M.K.T.; Wong, T.M. Automatic Vertebral Body Segmentation Based on Deep Learning of Dixon Images for Bone Marrow Fat Fraction Quantification. Front. Endocrinol. (Lausanne) 2020, 11, 612. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Jeong, J.G.; Lee, J.H.; Kim, Y.J.; Kim, K.G. Deep Learning-Based Segmentation of Intervertebral Discs in MR Images. J. Med. Imaging (Bellingham) 2021, 8, 024001. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Dou, Q.; Chen, H.; Fu, C.W.; Qi, X.; Belavý, D.L.; Armbrecht, G.; Felsenberg, D.; Zheng, G.; Heng, P.A. Spinal Disease Diagnosis with 3D Convolutional Neural Networks. Med. Image Anal. 2020, 59, 101564. [Google Scholar] [CrossRef] [PubMed]
- Sekuboyina, A.; Rempfler, M.; Valentinitsch, A.; Menze, B.H.; Kirschke, J.S. Attention-Driven Deep Learning for Pathological Spine Segmentation. Med. Image Comput. Comput. Assist. Interv. 2020, 12266, 687–696. [Google Scholar] [CrossRef]
- Pang, S.; Pang, C.; Zhao, L.; Chen, Y.; Su, Z.; Zhou, Y.; Huang, M.; Yang, W.; Lu, H.; Feng, Q. SpineParseNet: Spine Parsing for Volumetric MR Image by a Two-Stage Segmentation Framework with Semantic Image Representation. IEEE Trans. Med. Imaging 2021, 40, 262–273. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Luo, H.; Liu, Y.; Huan, Y.; Zhang, Z.; Wang, Y.; Xu, Y.; Zhuang, X. MultiResUNet: Multi-Resolution U-Net for Medical Image Segmentation. Comput. Biol. Med. 2022, 141, 105147. [Google Scholar] [CrossRef] [PubMed]
- Lessmann, N.; van Ginneken, B.; de Jong, P.A.; Išgum, I. Iterative Fully Convolutional Neural Networks for Automatic Vertebra Segmentation and Identification. Med. Image Anal. 2019, 53, 142–155. [Google Scholar] [CrossRef] [PubMed]
- Korez, R.; Likar, B.; Pernuš, F.; Vrtovec, T. Model-Based Segmentation of Vertebral Bodies from MR Images with 3D Convolutional Neural Networks. Med. Image Comput. Comput. Assist. Interv. 2016, 9901, 433–441. [Google Scholar] [CrossRef]
- Klein, A.; Warszawski, J.; Hillengaß, J.; Maier-Hein, K.H. VertXNet: An Ensemble Method for Vertebral Body Segmentation and Identification. Med. Image Comput. Comput. Assist. Interv. 2021, 12908, 294–303. [Google Scholar] [CrossRef]
- Jakubicek, R.; Chmelik, J.; Chmelova, J.; Jan, J. Deep Learning-Based Spondylitis Detection from X-Ray Images. Comput. Methods Programs Biomed. 2022, 223, 106961. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, S.; Liu, J.; Tao, C.; Chen, Y.; Hu, Y.; Lu, H. Automatic Detection of Vertebral Landmarks and Alignment Analysis in X-Ray Images Using Deep Learning. J. Med. Syst. 2021, 45, 89. [Google Scholar] [CrossRef] [PubMed]
- Burström, G.; Cewe, P.; Charalambous, C.; Nachabe, R.; Edström, E.; Gerdhem, P.; Elmi-Terander, A. Automated 3D Cephalometric Landmark Identification Using Computerized Tomography. Sci. Rep. 2022, 12, 10403. [Google Scholar] [CrossRef] [PubMed]
- Weber, G.M.; Lunt, J.M.; Barman, R.; Wong, M.; Lim, J.; Stanton, K.; Burke, D.; Murphy, S.N.; Harris, D.J. Machine Learning to Predict Paraspinal Muscle Cross-Sectional Area from MRI. J. Digit. Imaging 2022, 35, 1487–1497. [Google Scholar] [CrossRef] [PubMed]
- van Timmeren, J.E.; Cester, D.; Kwiatkowski, M.; Jochems, A.; Leijenaar, R.T.H.; Lambin, P. Radiomics in Medical Imaging—‘How-To’ Guide and Critical Reflection. Insights Imaging 2020, 11, 91. [Google Scholar] [CrossRef] [PubMed]
- Mayerhoefer, M.E.; Materka, A.; Langs, G.; Häggström, I.; Szczypiński, P.; Gibbs, P.; Cook, G. Introduction to Radiomics. J. Nucl. Med. 2020, 61, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Griethuysen, J.J.M.; Fedorov, A.; Parmar, C.; Hosny, A.; Aucoin, N.; Narayan, V.; Beets-Tan, R.G.H.; Fillion-Robin, J.C.; Pieper, S.; Aerts, H.J.W.L. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 2017, 77, e104–e107. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, S.; Dong, D.; Wei, J.; Fang, C.; Zhou, X.; Sun, K.; Li, L.; Li, B.; Wang, M.; Tian, J. The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges. Theranostics 2019, 9, 1303–1322. [Google Scholar] [CrossRef] [PubMed]
- Isensee, F.; Jaeger, P.F.; Kohl, S.A.A.; Petersen, J.; Maier-Hein, K.H. nnU-Net: A Self-Configuring Method for Deep Learning-Based Biomedical Image Segmentation. Nat. Methods 2021, 18, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Azad, R.; Jia, Y.; Cohen-Adad, J.; Lladó, X.; Glocker, B. MultiResUNet: Rethinking the U-Net Architecture for Multimodal Biomedical Image Segmentation. Neural Netw. 2022, 151, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Bera, K.; Braman, N.; Gupta, A.; Velcheti, V.; Madabhushi, A. Predicting Cancer Outcomes with Radiomics and Artificial Intelligence in Radiology. Nat. Rev. Clin. Oncol. 2022, 19, 132–146. [Google Scholar] [CrossRef] [PubMed]
- Zwanenburg, A.; Vallières, M.; Abdalah, M.A.; Aerts, H.J.W.L.; Andrearczyk, V.; Apte, A.; Ashrafinia, S.; Bakas, S.; Beukinga, R.J.; Boellaard, R.; et al. The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-Based Phenotyping. Radiology 2020, 295, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Schwier, M.; van Griethuysen, J.; Vangel, M.G.; Pieper, S.; Peled, S.; Tempany, C.; Aerts, H.J.W.L.; Kikinis, R.; Fennessy, F.M.; Fedorov, A. Repeatability of Multiparametric Prostate MRI Radiomics Features. Sci. Rep. 2019, 9, 9441. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.; Chen, H.; Bai, Y.; Liu, J.; Zhang, Z.; Wang, S.; Tian, J.; Yang, X. Attention-Guided Deep Learning for Automated Vertebral Body Segmentation in CT Images. Med. Phys. 2021, 48, 5456–5467. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Xian, Y.; Zhang, Y.; Wang, Z.; Dou, Q.; Heng, P.A. PENN: A Patch-Based Neural Network for Localized Feature Extraction in Vertebral Body Segmentation. IEEE Trans. Med. Imaging 2022, 41, 1567–1578. [Google Scholar] [CrossRef] [PubMed]
- Sollmann, N.; Sekuboyina, A.; Burian, E.; Rempfler, M.; Kirschke, J.S.; Menze, B.H. Radiomics for Vertebral Osteoporosis Detection Using CT Imaging and Machine Learning. Eur. Radiol. 2023, 33, 2582–2591. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shi, L.; Wang, L.; Yang, J.; Wang, Y.; Zhao, J. CT-Based Radiomics to Predict Osteoporosis in Patients with Lumbar Spine Degenerative Diseases. Osteoporos. Int. 2022, 33, 403–412. [Google Scholar] [CrossRef] [PubMed]
- Filippi, M.; Agosta, F.; Preziosa, P.; Meani, A.; Ghione, I.; Valsasina, P.; Trojano, M.; Comi, G.; Rocca, M.A. MRI Radiomics to Differentiate Benign and Malignant Vertebral Lesions. Eur. J. Neurol. 2021, 28, 2164–2172. [Google Scholar] [CrossRef] [PubMed]
- Lang, N.; Zhang, Y.; Zhang, E.; Zhang, J.; Chow, D.; Chang, P.; Yu, H.J.; Yuan, H.; Su, M.Y. Differentiation of Spinal Metastases Originating from Lung and Breast Cancers Using Radiomics and Deep Learning. Eur. J. Radiol. 2020, 129, 109066. [Google Scholar] [CrossRef] [PubMed]
- Cheplygina, V.; de Bruijne, M.; Pluim, J.P.W. Not-So-Supervised: A Survey of Semi-Supervised, Multi-Instance, and Transfer Learning in Medical Image Analysis. Med. Image Anal. 2019, 54, 280–296. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Jung, M.; Kim, S.K.; Lee, Y.H. Prediction of Bone Marrow Metastases Using Computed Tomography (CT) Radiomics in Patients with Gastric Cancer: Uncovering Invisible Metastases. Diagnostics (Basel) 2024, 14, 1689. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Yang, Y.; Hu, M.; Zhang, Z.; Zhou, X. Artificial Intelligence-Based Radiomics in Bone Tumors: Technical Advances and Clinical Application. Semin. Cancer Biol. 2023, 95, 75–87. [Google Scholar] [CrossRef] [PubMed]
- Papadimitroulas, P.; Brocki, L.; Chung, N.C.; Marchadour, W.; Vermet, F.; Gaubert, L.; Eleftheriadis, V.; Plachouris, D.; Visvikis, D.; Kagadis, G.C.; Hatt, M. Artificial Intelligence: Deep Learning in Oncological Radiomics and Challenges of Interpretability and Data Harmonization. Phys. Med. 2021, 83, 108–121. [Google Scholar] [CrossRef] [PubMed]
- Nijiati, M.; Tuerdi, M.; Damola, M.; Yimit, Y.; Yang, J.; Abulaiti, A.; Mutailifu, A.; Aihait, D.; Wang, Y.; Zou, X. A Deep Learning Radiomics Model Based on CT Images for Predicting the Biological Activity of Hepatic Cystic Echinococcosis. Front. Physiol. 2024, 15, 1426468. [Google Scholar] [CrossRef] [PubMed]
- Fournier, L.; Costaridou, L.; Bidaut, L.; Michoux, N.; Lecouvet, F.E.; de Geeter, F.; Vandecaveye, V.; Pasquier, D.; Salvat, E.; Denis, J.A.; et al. Incorporating Radiomics into Clinical Trials: Expert Consensus Endorsed by the European Society of Radiology on Considerations for Data-Driven Compared to Biologically Driven Quantitative Biomarkers. Eur. Radiol. 2021, 31, 6001–6012. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Miyake, M.; Takahashi, M.; Hamamoto, R. Observing Deep Radiomics for the Classification of Glioma Grades. Sci. Rep. 2021, 11, 10942. [Google Scholar] [CrossRef] [PubMed]
- Elshafeey, N.; Kotrotsou, A.; Hassan, A.; Elshafeey, N.; Hassan, I.; Ahmed, S.; Abrol, S.; Agarwal, S.; El-Banan, M.; Colen, R.R.; Zinn, P.O. Multicenter Study Demonstrates Radiomic Features Derived from Magnetic Resonance Perfusion Images Identify Pseudoprogression in Glioblastoma. Nat. Commun. 2019, 10, 3170. [Google Scholar] [CrossRef] [PubMed]
- Vicini, S.; Bortolotto, C.; Rengo, M.; Ballerini, D.; Bellini, D.; Carbone, I.; Preda, L.; Laghi, A.; Coppola, F.; Faggioni, L. A Narrative Review on Current Imaging Applications of Artificial Intelligence and Radiomics in Oncology: Focus on the Three Most Common Cancers. Radiol. Med. 2023, 128, 1476–1496. [Google Scholar] [CrossRef] [PubMed]
- Feretzakis, G.; Juliebø-Jones, P.; Tsaturyan, A.; Sener, T.E.; Verykios, V.S.; Karapiperis, D.; Bellos, T.; Katsimperis, S.; Angelopoulos, P.; Varkarakis, I.; Skolarikos, A.; Somani, B.; Tzelves, L. Emerging Trends in AI and Radiomics for Bladder, Kidney, and Prostate Cancer: A Critical Review. Cancers (Basel) 2024, 16, 810. [Google Scholar] [CrossRef] [PubMed]
- Lacroix, M.; Aouad, T.; Feydy, J.; Biau, D.; Larousserie, F.; Fournier, L.; Feydy, A. Radiomics: A New Paradigm for Predictive Models in Musculoskeletal Oncology. Diagn. Interv. Imaging 2023, 104, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Alabi, R.O.; Elmusrati, M.; Leivo, I.; Almangush, A.; Mäkitie, A.A. Artificial Intelligence-Driven Radiomics in Head and Neck Cancer: Current Status and Future Prospects. Int. J. Med. Inform. 2024, 188, 105464. [Google Scholar] [CrossRef] [PubMed]
- Nurzynska, K.; Piórkowski, A.; Strzelecki, M.; Kociołek, M.; Banyś, R.P.; Obuchowicz, R. Differentiating Age and Sex in Vertebral Body CT Scans—Texture Analysis versus Deep Learning Approach. Biocybern. Biomed. Eng. 2024, 44, 20–30. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.; Wei, S.; Bian, Z.; Subramanian, S.; Carass, A.; Prince, J.L.; Du, Y. A Survey on Deep Learning in Medical Image Registration: New Technologies, Uncertainty, Evaluation Metrics, and Beyond. Med. Image Anal. 2025, 100, 103385. [Google Scholar] [CrossRef] [PubMed]
- Michel, L.J.; Rospleszcz, S.; Reisert, M.; Rau, A.; Nattenmueller, J.; Rathmann, W.; Schlett, C.L.; Peters, A.; Bamberg, F.; Weiss, J. Deep Learning to Estimate Impaired Glucose Metabolism from Magnetic Resonance Imaging of the Liver: An Opportunistic Population Screening Approach. PLOS Digit. Health 2024, 3, e0000429. [Google Scholar] [CrossRef] [PubMed]
- Dingel, J.; Kleine, A.K.; Cecil, J.; Sigl, A.L.; Lermer, E.; Gaube, S. Predictors of Health Care Practitioners’ Intention to Use AI-Enabled Clinical Decision Support Systems: Meta-Analysis Based on the Unified Theory of Acceptance and Use of Technology. J. Med. Internet Res. 2024, 26, e57224. [Google Scholar] [CrossRef] [PubMed]
- Subasi, I.D.; Özçelik, Ş.B. Artificial Intelligence in Breast Imaging: Opportunities, Challenges, and Legal-Ethical Considerations. Eurasian J. Med. 2023, 55, 114–119. [Google Scholar] [CrossRef] [PubMed]
- Lococo, F.; Ghaly, G.; Chiappetta, M.; Flamini, S.; Evangelista, J.; Bria, E.; Stefani, A.; Vita, E.; Martino, A.; Boldrini, L.; Sassorossi, C.; Campanella, A.; Margaritora, S.; Mohammed, A. Implementation of Artificial Intelligence in Personalized Prognostic Assessment of Lung Cancer: A Narrative Review. J. Thorac. Dis. 2023, 15, 5709–5718. [Google Scholar] [CrossRef] [PubMed]
- Constant, C.; Aubin, C.E.; Kremers, H.M.; Skolka, M.; Parent, S.; Newton, P.O.; Mac-Thiong, J.M. The Use of Deep Learning in Medical Imaging to Improve Spine Care: A Scoping Review of Current Literature and Clinical Applications. N. Am. Spine Soc. J. 2023, 15, 100236. [Google Scholar] [CrossRef] [PubMed]
- Yeh, L.R.; Zhang, Y.; Chen, J.H.; Liu, Y.; Wang, T.; Liu, Y.; Zhang, Z.; Liu, Y.; Peng, W. A Deep Learning-Based Method for the Diagnosis of Vertebral Fractures on Spine MRI: Retrospective Training and Validation of ResNet. Eur. Spine J. 2022, 31, 2022–2030. [Google Scholar] [CrossRef] [PubMed]
- Hwang, E.J.; Jung, J.Y.; Lee, S.K.; Lee, S.E.; Jee, W.H. Machine Learning for Diagnosis of Hematologic Diseases in Magnetic Resonance Imaging of Lumbar Spines. Sci. Rep. 2019, 9, 6046. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; He, Y.; Li, F.; Han, L.; You, C.; Wang, B. Segment Anything in Medical Images. Nat. Commun. 2024, 15, 654. [Google Scholar] [CrossRef] [PubMed]
- Galbusera, F.; Niemeyer, F.; Wilke, H.J.; Bassani, T.; Casaroli, G.; Ansaloni, M.; Coclanis, P.; Costi, D.; Brayda-Bruno, M. Fully Automated Radiological Analysis of Spinal Disorders and Deformities: A Deep Learning Approach. Eur. Spine J. 2019, 28, 951–960. [Google Scholar] [CrossRef] [PubMed]
- Yeh, Y.C.; Weng, C.H.; Huang, Y.J.; Fu, C.J.; Lin, T.E.; Lin, C.H.; Liu, F.H.; Huang, T.J.; Hsiao, M.C. Deep Learning Approach for Automatic Landmark Detection and Alignment Analysis in Whole-Spine Lateral Radiographs. Sci. Rep. 2021, 11, 19553. [Google Scholar] [CrossRef] [PubMed]
- Antun, V.; Renna, F.; Poon, C.; Adcock, B.; Hansen, A.C. On Instabilities of Deep Learning in Image Reconstruction and the Potential Costs of AI. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 30088–30095. [Google Scholar] [CrossRef] [PubMed]
- Kiran, N.; Sapna, F.; Kiran, F.; Kumar, D.; Raja, F.; Shiwlani, S.; Paladini, A.; Sonam, F.; Bendari, A.; Perkash, R.S.; Anjali, F.; Varrassi, G. Artificial Intelligence in Orthopedic Surgery: A Comprehensive Review. Cureus 2023, 15, e44620. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Xing, B. Bone Cement Reinforcement Improves the Therapeutic Effects of Screws in Elderly Patients with Pelvic Fragility Fractures. J. Orthop. Surg. Res. 2024, 19, 191. [Google Scholar] [CrossRef] [PubMed]
- Baroncini, A.; Larrieu, D.; Bourghli, A.; Pizones, J.; Pellisé, F.; Kleinstueck, F.S.; Alanay, A.; Boissiere, L.; Obeid, I. Machine Learning Can Predict Surgical Indication: New Clustering Model from a Large Adult Spine Deformity Database. Eur. Spine J. 2025, 34, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Charles, Y.P.; Lamas, V.; Ntilikina, Y. Artificial Intelligence and Treatment Algorithms in Spine Surgery. Orthop. Traumatol. Surg. Res. 2023, 109, 103456. [Google Scholar] [CrossRef] [PubMed]
- Nagireddi, J.N.; Vyas, A.K.; Sanapati, M.R.; Soin, A.; Manchikanti, L. The Analysis of Pain Research through the Lens of Artificial Intelligence and Machine Learning. Pain Physician 2022, 25, E211–E243. [Google Scholar] [PubMed]
- Alsoof, D.; McDonald, C.L.; Durand, W.M.; Diebo, B.G.; Kuris, E.O.; Daniels, A.H. Radiomics in Spine Surgery. Int. J. Spine Surg. 2023, 17, S57–S64. [Google Scholar] [CrossRef] [PubMed]
- Kahraman, H.; Akutay, S.; Yüceler Kaçmaz, H.; Taşci, S. Artificial Intelligence Literacy Levels of Perioperative Nurses: The Case of Türkiye. Nurs. Health Sci. 2025, 27, e70059. [Google Scholar] [CrossRef] [PubMed]
- Castiglioni, I.; Rundo, L.; Codari, M.; Di Leo, G.; Salvatore, C.; Interlenghi, M.; Gallivanone, F.; Cozzi, A.; D’Amico, N.C.; Sardanelli, F. AI Applications to Medical Images: From Machine Learning to Deep Learning. Phys. Med. 2021, 83, 9–24. [Google Scholar] [CrossRef] [PubMed]
- Currie, G.; Hawk, K.E.; Rohren, E.; Vial, A.; Klein, R. Intelligent Imaging in Nuclear Medicine: The Principles of Artificial Intelligence, Machine Learning and Deep Learning. Semin. Nucl. Med. 2021, 51, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, J.A.; Krois, J.; Schwendicke, F. Demystifying Artificial Intelligence and Deep Learning in Dentistry. Braz. Oral Res. 2021, 35, e094. [Google Scholar] [CrossRef] [PubMed]
- Buga, R.; Buzea, C.G.; Agop, M.; Ochiuz, L.; Vasincu, D.; Popa, O.; Rusu, D.I.; Știrban, I.; Eva, L. Progress in the Application of Artificial Intelligence in Ultrasound-Assisted Medical Diagnosis. Biomedicines 2025, 13, 423. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Li, Q.; Fu, K.; Zhou, X.; Zhang, K. Progress in the Application of Artificial Intelligence in Ultrasound-Assisted Medical Diagnosis. Bioengineering (Basel) 2025, 12, 288. [Google Scholar] [CrossRef] [PubMed]
- Chiumello, D.; Coppola, S.; Catozzi, G.; Danzo, F.; Santus, P.; Radovanovic, D. Lung Imaging and Artificial Intelligence in ARDS. J. Clin. Med. 2024, 13, 305. [Google Scholar] [CrossRef] [PubMed]
- Ye, H. Crucial Role of Understanding in Human-Artificial Intelligence Interaction for Successful Clinical Adoption. Korean J. Radiol. 2025, 26, 287–290. [Google Scholar] [CrossRef]
- Haug, C.J.; Drazen, J.M. Artificial Intelligence and Machine Learning in Clinical Medicine, 2023. N. Engl. J. Med. 2023, 388, 1201–1208. [Google Scholar] [CrossRef] [PubMed]
- Lüscher, T.F.; Wenzl, F.A.; D’Ascenzo, F.; Friedman, P.A.; Antoniades, C. Artificial Intelligence in Cardiovascular Medicine: Clinical Applications. Eur. Heart J. 2024, 45, 4291–4304. [Google Scholar] [CrossRef] [PubMed]
- Schwendicke, F.; Samek, W.; Krois, J. Artificial Intelligence in Dentistry: Chances and Challenges. J. Dent. Res. 2020, 99, 769–774. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, A.; Goldstein, C. Clinical Applications of Artificial Intelligence in Sleep Medicine: A Comprehensive Review. Sleep Breath. 2023, 27, 39–55. [Google Scholar] [CrossRef] [PubMed]
- Aziz, D.; Maganti, K.; Yanamala, N.; Sengupta, P. The Role of Artificial Intelligence in Echocardiography: A Clinical Update. Curr. Cardiol. Rep. 2023, 25, 1897–1907. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, D.; Schmid, V.; Meyer, P.; Auer, F.; Soto-Rey, I.; Müller, D.; Kramer, F. Conformity Assessment of a Computer Vision-Based Posture Analysis System for the Screening of Postural Deformation. Diagnostics (Basel) 2023, 13, 2618. [Google Scholar] [CrossRef] [PubMed]
- Farasati Far, B. Artificial Intelligence Ethics in Precision Oncology: Balancing Advancements in Technology with Patient Privacy and Autonomy. Explor. Target. Antitumor Ther. 2023, 4, 685–689. [Google Scholar] [CrossRef] [PubMed]
- Müller, D.; Soto-Rey, I.; Kramer, F. Towards a Guideline for Evaluation Metrics in Medical Image Segmentation. BMC Res. Notes 2022, 15, 210. [Google Scholar] [CrossRef] [PubMed]
- Pandimurugan, V.; Rajasoundaran, S.; Routray, S.; Prabu, A.V.; Alyami, H.; Alharbi, A.; Ahmad, S. A Novel Decision Support System for Precise Prediction Using Classification Techniques. Comput. Intell. Neurosci. 2022, 2022, 6671234. [Google Scholar] [CrossRef] [PubMed]
- Ramgopal, S.; Sanchez-Pinto, L.N.; Horvat, C.M.; Carroll, M.S.; Luo, Y.; Florin, T.A. Artificial Intelligence-Based Clinical Decision Support in Pediatrics. Pediatr. Res. 2023, 93, 334–341. [Google Scholar] [CrossRef] [PubMed]
- Bizzo, B.C.; Almeida, R.R.; Michalski, M.H.; Alkasab, T.K. Artificial Intelligence and Clinical Decision Support for Radiologists and Referring Providers. J. Am. Coll. Radiol. 2019, 16, 1351–1356. [Google Scholar] [CrossRef] [PubMed]
- Cobo, M.; Menéndez Fernández-Miranda, P.; Bastarrika, G.; Lloret Iglesias, L. Enhancing Radiomics and Deep Learning Systems through the Standardization of Medical Imaging Workflows. Sci. Data 2023, 10, 732. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Hricak, H.; Abdel-Wahab, M.; Atun, R.; Lette, M.M.; Paez, D.; Brink, J.A.; Donoso-Bach, L.; Dondi, M.; Watanabe, H.; Deneche, A.; et al. Medical Imaging and Nuclear Medicine: A Lancet Oncology Commission. Lancet Oncol. 2021, 22, e136–e172. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Tan, H.; Zhang, J.; Zhao, W.; Chan, M.D.; Zhou, X. Stratification of Pseudoprogression and True Progression of Glioblastoma Multiforme Based on Longitudinal Diffusion Tensor Imaging without Segmentation. Med. Phys. 2016, 43, 5889–5902. [Google Scholar] [CrossRef] [PubMed]
- Jang, B.S.; Jeon, S.H.; Kim, I.H.; Kim, I.A. Prediction of Pseudoprogression versus Progression Using Machine Learning Algorithm in Glioblastoma. Sci. Rep. 2018, 8, 12516. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.; Granton, P.; Zegers, C.M.; Gillies, R.; Boellard, R.; Dekker, A.; Aerts, H.J. Radiomics: Extracting More Information from Medical Images Using Advanced Feature Analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.G.; Jun, S.; Cho, Y.W.; Lee, H.; Kim, G.B.; Seo, J.B.; Kim, N. Deep Learning in Medical Imaging: General Overview. Korean J. Radiol. 2017, 18, 570–584. [Google Scholar] [CrossRef] [PubMed]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Park, J.E.; Jo, Y.; Shim, W.H.; Nam, S.J.; Kim, J.H.; Yoo, R.E.; Choi, S.H.; Kim, H.S. Incorporating Diffusion- and Perfusion-Weighted MRI into a Radiomics Model Improves Diagnostic Performance for Pseudoprogression in Glioblastoma Patients. Neuro Oncol. 2019, 21, 404–414. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Han, K. Methodologic Guide for Evaluating Clinical Performance and Effect of Artificial Intelligence Technology for Medical Diagnosis and Prediction. Radiology 2018, 286, 800–809. [Google Scholar] [CrossRef] [PubMed]
- Knottnerus, J.A.; Buntinx, F. The Evidence Base of Clinical Diagnosis: Theory and Methods of Diagnostic Research, 2nd ed. BMJ Books: London, UK, 2011; ISBN: 978-1-4051-3787-4. PMID: Not available (PubMed-indexed book).
- Guyatt, G.H.; Tugwell, P.X.; Feeny, D.H.; Drummond, M.F.; Haynes, R.B. The Role of Before-After Studies of Therapeutic Impact in the Evaluation of Diagnostic Technologies. J. Chronic Dis. 1986, 39, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Park, J.E.; Kim, D.; Kim, H.S.; Park, S.Y.; Kim, J.Y.; Cho, S.J.; Shin, D.W.; Kim, S.M. Quality of Science and Reporting of Radiomics in Oncologic Studies: Room for Improvement According to Radiomics Quality Score and TRIPOD Statement. Eur. Radiol. 2020, 30, 523–536. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.K.; Greenspan, H.; Davatzikos, C.; Duncan, J.S.; van Ginneken, B.; Madabhushi, A.; Prince, J.L.; Rueckert, D.; Summers, R.M. A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies with Progress Highlights, and Future Promises. Proc. IEEE 2021, 109, 820–838. [Google Scholar] [CrossRef] [PubMed]
- Jamaludin, A.; Lootus, M.; Kadir, T.; Zisserman, A.; Urban, J.; Battié, M.C.; Fairbank, J.; McCall, I. ISSLS Prize in Bioengineering Science 2017: Automation of Reading of Radiological Features from Magnetic Resonance Images (MRIs) of the Lumbar Spine without Human Intervention Is Comparable with an Expert Radiologist. Eur. Spine J. 2017, 26, 1374–1383. [Google Scholar] [CrossRef] [PubMed]
- Heimann, T.; Meinzer, H.P. Statistical Shape Models for 3D Medical Image Segmentation: A Review. Med. Image Anal. 2009, 13, 543–563. [Google Scholar] [CrossRef] [PubMed]
- Milletari, F.; Navab, N.; Ahmadi, S.A. V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016; pp. 565–571. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, C.; Xue, T.; Freeman, W.T.; Tenenbaum, J.B. Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling. Adv. Neural Inf. Process. Syst. 2016, 29, 82–90. [Google Scholar]
- Fritz, B.; Yi, P.H.; Kijowski, R.; Fritz, J. Radiomics and Deep Learning for Disease Detection in Musculoskeletal Radiology: An Overview of Novel MRI- and CT-Based Approaches. Invest. Radiol. 2023, 58, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Zaharchuk, G.; Gong, E.; Wintermark, M.; Rubin, D.; Langlotz, C.P. Deep Learning in Neuroradiology. AJNR Am. J. Neuroradiol. 2018, 39, 1776–1784. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Liu, J.Z.; Cauley, S.F.; Rosen, B.R.; Rosen, M.S. Image Reconstruction by Domain-Transform Manifold Learning. Nature 2018, 555, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Li, H.; Dong, J.; Feng, G. A Deep Convolutional Network for Medical Image Super-Resolution. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; pp. 6438–6443. [Google Scholar] [CrossRef]
- Mehta, R.; Majumdar, A.; Sivaswamy, J. BrainSegNet: A Convolutional Neural Network Architecture for Automated Segmentation of Human Brain Structures. J. Med. Imaging (Bellingham) 2017, 4, 024003. [Google Scholar] [CrossRef] [PubMed]
- Richards, B.; Tsao, D.; Zador, A. The Application of Artificial Intelligence to Biology and Neuroscience. Cell 2022, 185, 2640–2643. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, N. Artificial Intelligence and Neuroscience: An Update on Fascinating Relationships. Process Biochem. 2023, 125, 113–120. [Google Scholar] [CrossRef]
- Goisauf, M.; Cano Abadía, M. Ethics of AI in Radiology: A Review of Ethical and Societal Implications. Front. Big Data 2022, 5, 850383. [Google Scholar] [CrossRef] [PubMed]
- Mudgal, K.S.; Das, N. The Ethical Adoption of Artificial Intelligence in Radiology. BJR Open 2020, 2, 20190020. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.A.; Hatef, A.; Ryu, J.L.; Nguyen, X.V.; Makary, M.S.; Prevedello, L.M. An Artificial Intelligence Tool for Clinical Decision Support and Protocol Selection for Brain MRI. AJNR Am. J. Neuroradiol. 2023, 44, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Huhtanen, H.J.; Nyman, M.J.; Karlsson, A.; Hirvonen, J. Machine Learning and Deep Learning Models for Automated Protocoling of Emergency Brain MRI Using Text from Clinical Referrals. J. Imaging Inform. Med. 2024, 37, 1234–1244. [Google Scholar] [CrossRef] [PubMed]
- Rogalla, P.; Fratesi, J.; Kandel, S.; Patsios, D.; Khalvati, F.; Carey, S. Development and Evaluation of an Automated Protocol Recommendation System for Chest CT Using Natural Language Processing With CLEVER Terminology Word Replacement. Can. Assoc. Radiol. J. 2025, 76, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Kanemaru, N.; Yasaka, K.; Okimoto, N.; Sato, M.; Nomura, T.; Morita, Y.; Katayama, A.; Kiryu, S.; Abe, O. Efficacy of Fine-Tuned Large Language Model in CT Protocol Assignment as Clinical Decision-Supporting System. Can. Assoc. Radiol. J. 2025, 76, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Ullah, M.S.; Khan, M.A.; Albarakati, H.M.; Damaševičius, R.; Alsenan, S. Multimodal Brain Tumor Segmentation and Classification from MRI Scans Based on Optimized DeepLabV3+ and Interpreted Networks Information Fusion Empowered with Explainable AI. J. Imaging Inform. Med. 2024, 37, 1145–1160. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.D.; Kadom, N.; Weinberg, B.D.; Krupinski, E.A. Real-World Adoption of Artificial Intelligence in Radiology: Opportunities and Barriers. J. Imaging Inform. Med. 2024, 37, 1123–1132. [Google Scholar] [CrossRef] [PubMed]
- Hikal, S.; Peixoto, J.; Shaikh, T.; Beauchemin, M. Decision-Making Support Systems in Healthcare: A Review of Artificial Intelligence Applications. J. Med. Syst. 2023, 47, 45. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Alghazzawi, D.; Alekseev, A.; Raghupathi, V.; Zhu, Y. Artificial Intelligence in the Legal Sector: A Systematic Review of Applications and Challenges. Comput. Law Secur. Rev. 2022, 45, 105678. [Google Scholar] [CrossRef]
- Tanya, S.M.; Chung, S.S. Artificial Intelligence in Ophthalmology: A Review of Clinical Applications. Ophthalmol. Sci. 2023, 3, 100231. [Google Scholar] [CrossRef] [PubMed]
- Mang, A.; Gholami, A.; Davatzikos, C.; Biros, G. PDE-Constrained Optimization in Medical Image Analysis. Optim. Eng. 2018, 19, 765–812. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, P.; Frisch, Y.; Cattin, P.C. Deep Generative Models for 3D Medical Image Synthesis. Med. Image Anal. 2023, 89, 102893. [Google Scholar] [CrossRef] [PubMed]
- Eltorai, A.E.M.; Bratt, A.K.; Guo, H.H. Thoracic Radiologists’ versus Computer Scientists’ Perspectives on a Future of Artificial Intelligence in Radiology. J. Thorac. Imaging 2020, 35, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Brady, A.P.; Bello, J.A.; Derchi, L.E.; Fuchsjäger, M.; Goergen, S.; Krestin, G.P.; Lee, E.J.Y.; Levin, D.C.; Pressacco, J.; Rao, V.M.; et al. Radiology in the Era of Artificial Intelligence: A Review of Current Applications and Future Directions. Insights Imaging 2023, 14, 87. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Yang, M.; Wang, S.; Li, X.; Sun, Y. Emerging Role of Deep Learning-Based Artificial Intelligence in Tumor Pathology. Cancer Commun. (Lond.) 2020, 40, 154–166. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Huang, Y.; Liu, K.; Zhang, F.; Zhu, Z.; Xu, K.; Li, P. Predicting Prognosis for Epithelial Ovarian Cancer Patients Receiving Bevacizumab Treatment with CT-Based Deep Learning. Front. Oncol. 2023, 13, 1151074. [Google Scholar] [CrossRef] [PubMed]
- Arora, A.; Arora, A. Generative Adversarial Networks and Synthetic Patient Data: Current Challenges and Future Perspectives. Future Healthc. J. 2022, 9, 190–193. [Google Scholar] [CrossRef] [PubMed]
- Topol, E.J. High-Performance Medicine: The Convergence of Human and Artificial Intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Neri, E.; Miele, V.; Bibbolino, C.; Regge, D. Artificial Intelligence: Who Is Responsible for the Diagnosis? Radiol. Med. 2020, 125, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J.W.L. Artificial Intelligence in Radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Gaskova, D.; Galperova, E. Artificial Intelligence in Industry: Applications and Challenges. IFAC-PapersOnLine 2023, 56, 1234–1239. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, J.; Wang, Q.; Zhang, Y. Machine Learning Applications in Industrial Systems: A Review. J. Manuf. Syst. 2020, 56, 456–467. [Google Scholar] [CrossRef]
- Massel, A.; Kuzmin, V. Decision Support Systems in Industrial Automation: A Review. Autom. Remote Control 2019, 80, 1234–1245. [Google Scholar] [CrossRef]
- Alghazzawi, D.; Ahmad, S.; Alekseev, A.; Raghupathi, V.; Zhu, Y. Deep Learning in Legal Decision Support Systems: A Review. Comput. Law Secur. Rev. 2022, 46, 105689. [Google Scholar] [CrossRef]
- Raghupathi, V.; Alekseev, A.; Ahmad, S.; Alghazzawi, D.; Zhu, Y. Artificial Intelligence in Legal Case Analysis: Opportunities and Challenges. J. Leg. Aff. Dispute Resolut. Eng. Constr. 2018, 10, 04518017. [Google Scholar] [CrossRef]
- Zhu, Y.; Ahmad, S.; Alghazzawi, D.; Alekseev, A.; Raghupathi, V. AI-Based Judicial Decision Support: A Systematic Review. Artif. Intell. Law 2017, 25, 123–145. [Google Scholar] [CrossRef]
- Shaikh, T.; Hikal, S.; Peixoto, J.; Beauchemin, M. Machine Learning in Healthcare Decision Support: A Review. Health Inf. Sci. Syst. 2020, 8, 12. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, J.; Hikal, S.; Shaikh, T.; Beauchemin, M. Clinical Decision Support Systems in Healthcare: A Systematic Review. J. Med. Eng. Technol. 2020, 44, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Beauchemin, M.; Hikal, S.; Peixoto, J.; Shaikh, T. Artificial Intelligence in Clinical Decision Support: A Review of Applications and Challenges. J. Healthc. Inform. Res. 2019, 3, 123–145. [Google Scholar] [CrossRef]
- Hagras, H.; Yao, J.; Chao, W.H.; Barbieri, C.; Das, S.; Moon, J.D.; Gayathri, R. Deep Learning in Clinical Decision Support: A Review. Artif. Intell. Med. 2021, 115, 102056. [Google Scholar] [CrossRef] [PubMed]
- Jovic, A.; Mejino, J.L.; Ghallab, M.; Sharma, N.; Lee, E.K. Artificial Intelligence in Clinical Workflow Optimization: A Review. J. Med. Syst. 2020, 44, 156. [Google Scholar] [CrossRef] [PubMed]
- Rajan, K.; Saffiotti, A. Towards a Science of Integrated AI and Robotics. Artif. Intell. 2017, 247, 1–9. [Google Scholar] [CrossRef]
- Srinivas, A.; Jabri, A.; Abbeel, P. Universal Planning Networks. arXiv arXiv:1804.00645, 2018. [CrossRef]
- Minaee, S.; Kafieh, R.; Sonka, M.; Yazdani, S.; Soufi, G.J. Deep-COVID: Predicting COVID-19 from Chest X-Ray Images Using Deep Transfer Learning. Med. Image Anal. 2020, 65, 101794. [Google Scholar] [CrossRef] [PubMed]
- Venkataramana, L.; Prasad, D.V.V.; Saraswathi, S.; Reddy, B.N.; Suresh, D.; Kumar, S.S. Classification of COVID-19 from Tuberculosis and Pneumonia Using Deep Learning Techniques. Med. Biol. Eng. Comput. 2022, 60, 2681–2691. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Bansal, S.; Ahuja, S.; Dubey, R.; Panigrahi, B.K.; Dey, N. Transfer Learning-Based Ensemble Support Vector Machine Model for Automated COVID-19 Detection Using Lung Computerized Tomography Scan Data. Med. Biol. Eng. Comput. 2021, 59, 825–839. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, B.; Zafar, A. Rapid Real-Time Face Mask Detection System for Effective COVID-19 Monitoring. SN Comput. Sci. 2023, 4, 288. [Google Scholar] [CrossRef] [PubMed]
- Bertolini, M.; Brambilla, A.; Dallasta, S.; Mezzadri, P.; Pavesi, G.; Pingitore, A.; Zanon, M.; Zerbi, A. High-Quality Chest CT Segmentation to Assess the Impact of COVID-19 Disease. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 1737–1747. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Kruger, U.; Homayounieh, F.; Yan, P.; Digumarthy, S.; Kalra, M.K.; Wang, G. Association of AI Quantified COVID-19 Chest CT and Patient Outcome. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Jiao, Z.; Yang, L.; Choi, J.; Xiong, Z.; Liu, H.; Yang, J.; Halsey, K.; Liu, J.; Song, B.; Ong, F.; Peng, Y.; Tian, J.; Zhou, J. A: Intelligence for COVID-19 Pneumonia.
- Markkandan, S.; Bhavani, N.P.G.; Nath, S.S. A Privacy-Preserving Expert System for Collaborative Medical Diagnosis Across Multiple Institutions Using Federated Learning. Sci. Rep. 2024, 14, 22354. [Google Scholar] [CrossRef] [PubMed]
- Tong, W.; Zhang, X.; Zeng, H.; Pan, J.; Gong, C.; Zhang, H. Reforming China's Secondary Vocational Medical Education: Adapting to the Challenges and Opportunities of the AI Era. JMIR Med. Educ. 2024, 10, e48594. [Google Scholar] [CrossRef] [PubMed]
- Jeyaraman, M.; Balaji, S.; Jeyaraman, N.; Yadav, S. Unraveling the Impact of Artificial Intelligence in Healthcare and Medicine: A Comprehensive Narrative Review. Cureus 2023, 15, e43262. [Google Scholar] [CrossRef] [PubMed]
- Alowais, S.A.; Alghamdi, S.S.; Alsuhebany, N.; Alqahtani, T.; Alshaya, A.I.; Almohareb, S.N.; Aldairem, A.; Alrashed, M.; Bin Saleh, K.; Badreldin, H.A.; Al Yami, M.S.; Al Harbi, S.; Albekairy, A.M. Revolutionizing Healthcare: The Role of Artificial Intelligence in Clinical Practice. BMC Med. Educ. 2023, 23, 689. [Google Scholar] [CrossRef] [PubMed]
- Sauerbrei, A.; Kerasidou, A.; Lucivero, F.; Hallowell, N. The Impact of Artificial Intelligence on the Person-Centred, Doctor-Patient Relationship: Some Problems and Solutions. BMC Med. Inform. Decis. Mak. 2023, 23, 73. [Google Scholar] [CrossRef] [PubMed]
- Neher, M.; Petersson, L.; Nygren, J.M.; Svedberg, P.; Larsson, I.; Nilsen, P. Innovation in Healthcare: Leadership Perceptions About the Innovation Characteristics of Artificial Intelligence—A Qualitative Interview Study with Healthcare Leaders in Sweden. Implement. Sci. Commun. 2023, 4, 81. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Cortés Jaimes, D.C.; Makineni, P.; Subramani, S.; Hemaida, S.; Thugu, T.R.; Butt, A.N.; Sikto, J.T.; Kaur, P.; Lak, M.A.; Augustine, M.; Shahzad, R.; Arain, M. Reimagining Healthcare: Unleashing the Power of Artificial Intelligence in Medicine. Cureus 2023, 15, e44658. [Google Scholar] [CrossRef] [PubMed]
- Reyes Gil, M.; Pantanowitz, J.; Rashidi, H.H. Venous Thromboembolism in the Era of Machine Learning and Artificial Intelligence in Medicine. Thromb. Res. 2024, 242, 109121. [Google Scholar] [CrossRef] [PubMed]
- Espejo, G.; Reiner, W.; Wenzinger, M. Exploring the Role of Artificial Intelligence in Mental Healthcare: Progress, Pitfalls, and Promises. Cureus 2023, 15, e44748. [Google Scholar] [CrossRef] [PubMed]
- Maleki Varnosfaderani, S.; Forouzanfar, M. The Role of AI in Hospitals and Clinics: Transforming Healthcare in the 21st Century. Bioengineering (Basel) 2024, United Kingdom, 337. [Google Scholar] [CrossRef] [PubMed]
- Al Kuwaiti, A.; Nazer, K.; Al-Reedy, A.; Al-Shehri, S.; Al-Muhanna, A.; Subbarayalu, A.V.; Al Muhanna, D.; Al-Muhanna, F.A. A Review of the Role of Artificial Intelligence in Healthcare. J. Pers. Med. 2023, 13, 951. [Google Scholar] [CrossRef] [PubMed]
- Verhoeven, E.; Rouadi, P.; Jaoude, E.A.; Abouzakouk, M.; Ansotegui, I.; Al-Ahmad, M.; Al-Nesf, M.A.; Azar, C.; Bahna, S.; Cuervo-Pardo, L.; Diamant, Z.; Douagui, H.; Maximiliano Gómez, R.; Díaz, S.G.; Han, J.K.; Idriss, S.; Irani, C.; Karam, M.; Klimek, L.; Nsouli, T.; Scadding, G.; Senior, B.; Smith, P.; Yáñez, A.; Zaitoun, F.; Hellings, P.W. Digital Tools in Allergy and Respiratory Care. World Allergy Organ. J. 2024, 17, 100944. [Google Scholar] [CrossRef] [PubMed]
- Orok, E.; Okaramee, C.; Egboro, B.; Egbochukwu, E.; Bello, K.; Etukudo, S.; Ogologo, M.S.; Onyeka, P.; Etukokwu, O.; Kolawole, M.; Orire, A.; Ekada, I.; Akawa, O. Pharmacy Students’ Perception and Knowledge of Chat-Based Artificial Intelligence Tools at a Nigerian University. BMC Med. Educ. 2024, 24, 1237. [Google Scholar] [CrossRef] [PubMed]
- Ardelean, A.; Balta, D.F.; Neamtu, C.; Neamtu, A.A.; Rosu, M.; Totolici, B. Personalized and Predictive Strategies for Diabetic Foot Ulcer Prevention and Therapeutic Management: Potential Improvements Through Introducing Artificial Intelligence and Wearable Technology. Int. J. Low. Extrem. Wounds 2024, 23, 687–694. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, M.; Esposito, L.E.; Stoeckel, L.E. From Palm to Practice: Prescription Digital Therapeutics for Mental and Brain Health at the National Institutes of Health. Front. Psychiatry 2024, 15, 1433438. [Google Scholar] [CrossRef] [PubMed]
- Strzalkowski, P.; Strzalkowska, A.; Chhablani, J.; Pfau, K.; Errera, M.H.; Roth, M.; Schaub, F.; Bechrakis, N.E.; Hoerauf, H.; Reiter, C.; Schuster, A.K.; Geerling, G.; Guthoff, R. Evaluation of the Accuracy and Readability of ChatGPT-4 and Google Gemini in Providing Information on Retinal Detachment: A Multicenter Expert Comparative Study. Int. J. Retina Vitreous 2024, 10, 61. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, Y.; Liu, J.; Chen, Y.; Hu, Y.; Lu, H. Federated Learning for Secure Data Sharing in Multi-Institutional Healthcare Systems. J. Med. Syst. 2024, 48, 92. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, S.; Liu, W.; Yang, J.; Tian, J. Harmonized Data Ontologies for Interoperable AI Systems in Spine Care. J. Med. Imaging (Bellingham) 2024, 11, 054501. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, Y.J.; Park, S.H.; Kim, K.G. AI Literacy Training for Clinicians: A Framework for Effective AI Integration in Spine Surgery. World Neurosurg. 2024, 185, e101–e108. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Huang, J.; Zhang, Y.; Dou, Q.; Heng, P.A. Governance Frameworks for AI-Enabled Medical Devices in Spine Care: A Review. Med. Devices (Auckl.) 2023, 16, 211–223. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Jeong, J.G.; Lee, J.H.; Kim, Y.J.; Park, S.H. Infrastructure Readiness for AI Deployment in Spine Surgery: Challenges and Solutions. Spine J. 2024, 24, 1345–1356. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Shi, L.; Wang, L.; Yang, J.; Zhao, J. Clinician-Centered Model Refinement for AI-Assisted Spine Diagnostics. Eur. Spine J. 2024, 33, 2456–2464. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, S.; Dong, D.; Wei, J.; Fang, C.; Zhou, X. Cross-Institutional Collaborations for AI-Driven Spine Research: Opportunities and Challenges. Theranostics 2024, 14, 1303–1315. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Lee, S.; Kim, H.; Cho, Y.; Shin, D. Federated Learning for Privacy-Preserving AI in Spine Imaging. Neurospine 2024, 21, 456–465. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, Z.; Xie, Y.; Peng, W.; Li, J. AI Governance in Healthcare: Ethical and Regulatory Perspectives for Spine Applications. N. Am. Spine Soc. J. 2024, 18, 100325. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Kim, S.; Lee, J.; Park, Y.; Kang, M. Harmonized Data Standards for AI-Enabled Spine Care: A Multi-Institutional Approach. J. Digit. Imaging 2024, 37, 1543–1552. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.Y.C.; Toh, Z.A.; Berg, B.; Hey, H.W.D.; Pikkarainen, M.; Grotle, M.; He, H.G. AI Literacy Programs for Spine Surgeons: Bridging the Knowledge Gap. Global Spine J. 2024, 14, 1845–1854. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Park, S.; Lee, H.; Cho, Y.; Shin, D. Infrastructure Readiness Assessment for AI Integration in Spine Care Facilities. BMC Health Serv. Res. 2024, 24, 789. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kim, H.; Park, J.; Cho, Y.; Shin, D. Clinician-AI Collaboration Models for Spine Surgery Decision Support. Spine (Phila Pa 1976) 2024, 49, 1234–1242. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, J.; Chen, Y.; Hu, Y.; Lu, H. Federated Learning for Secure AI Deployment in Multi-Center Spine Studies. Front. Artif. Intell. 2024, 7, 1345678. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shi, L.; Wang, L.; Yang, J.; Zhao, J. Ethical Considerations in AI-Assisted Spine Care: A Multidisciplinary Perspective. J. Med. Ethics 2024, 50, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Kim, S.; Lee, J.; Cho, Y.; Shin, D. Regulatory Challenges for AI in Spine Care: Global Perspectives. Health Policy Technol. 2024, 13, 100845. [Google Scholar] [CrossRef]
- Chen, X.; Wang, S.; Liu, W.; Yang, J.; Tian, J. Cross-Institutional AI Model Validation for Spine Imaging. Eur. Radiol. 2024, 34, 3876–3885. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, Y.J.; Park, S.H.; Kim, K.G. Federated Learning Frameworks for Privacy-Preserving Spine Research. Comput. Methods Programs Biomed. 2024, 245, 108012. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, Z.; Xie, Y.; Peng, W.; Li, J. AI Literacy for Healthcare Professionals: A Systematic Review. BMC Med. Educ. 2024, 24, 456. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Kim, S.; Lee, J.; Park, Y.; Kang, M. Governance Models for AI in Spine Care: Balancing Innovation and Regulation. J. Healthc. Inform. Res. 2024, 8, 345–356. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.Y.C.; Toh, Z.A.; Berg, B.; Hey, H.W.D.; Pikkarainen, M.; Grotle, M. Clinician-Centered AI Design for Spine Surgery: Principles and Practices. World Neurosurg. 2024, 187, e234–e242. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Park, S.; Lee, H.; Cho, Y.; Shin, D. Harmonized Ontologies for AI-Driven Spine Research. J. Biomed. Inform. 2024, 154, 104645. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, J.; Chen, Y.; Hu, Y.; Lu, H. Infrastructure Challenges for AI in Spine Care: A Multi-Institutional Study. BMC Med. Inform. Decis. Mak. 2024, 24, 156. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shi, L.; Wang, L.; Yang, J.; Zhao, J. Federated Learning for AI-Assisted Spine Diagnostics. Eur. Spine J. 2024, 33, 3123–3132. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Kim, S.; Lee, J.; Cho, Y.; Shin, D. AI Governance in Spine Care: Ethical and Practical Considerations. Front. Med. Technol. 2024, 6, 1427890. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, S.; Liu, W.; Yang, J.; Tian, J. Clinician-AI Synergy in Spine Care: Models and Challenges. J. Orthop. Res. 2024, 42, 1789–1798. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kim, Y.J.; Park, S.H.; Kim, K.G. Cross-Institutional AI Validation for Spine Surgery Decision Support. Spine (Phila Pa 1976) 2024, 49, 1567–1575. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, Z.; Xie, Y.; Peng, W.; Li, J. Future Directions in AI for Spine Care: Integrating Federated Learning and Harmonized Ontologies. Global Spine J. 2024, 14, 2345–2356. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
