Preprint
Article

This version is not peer-reviewed.

Another New Sequence Which Converges Faster Towards to the Euler-Mascheroni Constant

A peer-reviewed article of this preprint also exists.

Submitted:

08 June 2025

Posted:

09 June 2025

You are already at the latest version

Abstract
In this paper we propose another new sequence approximating the Euler-Mascheroni constant which converges faster towards its limit and we establish new inequalities for this constant.
Keywords: 
;  ;  

1. Introduction

It is well known (see [1,2,3,4,5,6]) that the sequence
γ n = 1 + 1 2 + + 1 n ln n , n 1 ,
is convergent to a limit denoted γ = 0 , 5772 now known as Euler-Mascheroni constant. Many authors have obtained different estimations for γ n γ ; for example, the following inequalities increase better [1,2,3,4,5,6]:
1 2 ( n + 1 ) < γ n γ < 1 2 ( n 1 ) , n 2 ,
1 2 ( n + 1 ) < γ n γ < 1 2 n , n 1 ,
1 γ n < γ n γ < 1 2 n , n 1 ,
1 2 n + 1 < γ n γ < 1 2 n , n 1 ,
1 2 n + 2 5 < γ n γ < 1 2 n + 1 3 , n 1 ,
1 2 n + 2 γ 1 1 γ < γ n γ < 1 2 n + 1 3 , n 1 .
The convergence of the sequence γ n to γ is very slow.
DeTemple [7] modified the logarithmic term of γ n and showed that the sequence
R n = 1 + 1 2 + + 1 n ln ( n + 1 2 )
converges to γ with rate of convergence n 2 , since
1 24 ( n + 1 ) 2 < R n γ < 1 24 n 2 , n 1 .
Chen [8] proved that for all integers n 1 ,
1 24 ( n + a ) 2 R n γ < 1 24 ( n + b ) 2 ,
with the best possible constants
a = 1 24 [ γ + 1 ln ( 3 2 ) ] 1 = 0 , 55106 and b = 1 2 .
Vernescu [9] provided the sequence
V n = 1 + 1 2 + + 1 n 1 + 1 2 n ln n ( = γ n 1 2 n ) ,
which also converges to γ with rate of convergence n 2 , since
1 12 ( n + 1 ) 2 < γ V n < 1 12 n 2 .
A similar convergence result to γ with rate of convergence n 2 was obtained by Ivan [10]:
l i m n n 2 ( c n γ ) = 1 6 ,
where c n = 1 + 1 2 + + 1 n ln n ( n + 1 ) .
Cristea and Mortici [11] introduced the family of sequences
v n ( a , b ) = 1 + 1 2 + + 1 n 2 + a n + b n ( n 1 ) ln n ,
where a , b are real parameters.
Furthermore, they proved that, among the sequences ( v n ( a , b ) ) n 1 , the privileged one ( v n ( 3 2 , 5 12 ) ) n 1 offers the best approximation to γ , since it has the rate of convergence n 3 . More precisely, they obtained the bounds
1 12 n 3 + 11 120 n 4 < v n ( 3 2 , 5 12 ) γ < 1 12 n 3 + 13 120 n 4 ( n 9 ) ,
where
v n ( 3 2 , 5 12 ) = 1 + 1 2 + + 1 n 2 + 13 12 ( n 1 ) + 5 12 n ln n .
Lu [12] used continued fraction approximation to obtain the following faster sequences converging to the Euler–Mascheroni constant:
r n ( 2 ) = 1 + 1 2 + + 1 n 3 6 n + 1 ln n ,
r n ( 3 ) = 1 + 1 2 + + 1 n 6 n 1 12 n 2 ln n ,
which satisfie
1 72 ( n + 1 ) 3 < γ r n ( 2 ) < 1 72 n 3 ,
1 120 ( n + 1 ) 4 < r n ( 3 ) γ < 1 120 ( n 1 ) 4 .
Negoi [13] modified the logarithmic term of γ n and showed that the sequence
T n = 1 + 1 2 + + 1 n ln ( n + 1 2 + 1 24 n ) ,
is strictly increasing and convergent to γ with rate of convergence n 3 . Moreover, he proved that
1 48 ( n + 1 ) 3 < γ T n < 1 48 n 3 , n 1 .
Chen and Mortici [14] proved that for all integers n 1 ,
1 48 ( n + a ) 3 γ T n < 1 48 ( n + b ) 3 ,
with the best possible constants
a = 1 48 [ 1 γ + ln ( 37 24 ) ] 3 1 = 0 , 27380525 a n d b = 83 360 = 0 , 23055555 .
Recently You and Chen [15] modified the logarithmic term of γ n and they showed that the sequences
r 2 ( n ) = 1 + 1 2 + + 1 n ln ( n + 1 2 + 1 24 n + 1 48 n 2 ) ,
r 3 ( n ) = 1 + 1 2 + + 1 n ln ( n + 1 2 + 1 24 n 1 48 n 2 1 48 n 3 1 576 n 4 1 1152 n 5 ) ,
converge to γ with rates of convergence n 3 , respectively n 4 , since
1 24 ( n + 1 ) 3 < γ r 2 ( n ) < 1 24 n 3 ,
143 5760 ( n + 1 ) 4 < r 3 ( n ) γ < 143 5760 n 4 .
By modifying the logarithmic term of γ n , Cringanu [16] defined a new sequence
S n = 1 + 1 2 + + 1 n ln ( n + 1 2 + 1 24 n 1 48 n 2 )
and showed as he converges to γ with rate of convergence n 4 , since
23 5760 ( n + a ) 4 S n γ < 23 5760 ( n + b ) 4 ,
with the best possible constants a = 23 5760 [ 1 γ ln ( 73 48 ) ] 4 1 = 0 , 0315 , b = 7 46 = 0 , 1521 .
Now we define the sequence L n = 1 + 1 2 + + 1 n ln ( n + 1 2 + 1 24 n 1 48 n 2 + 23 5760 n 3 ) , for n 1 ,
and we prove that for all integers n 1 ,
17 3840 ( n + α ) 5 L n γ < 17 3840 ( n + β ) 5 , w i t h   t h e   b e s t   p o s s i b l e   c o n s t a n t s
α = 17 3840 [ 1 γ ln ( 8783 5760 ) ] 5 1 = 0 , 37407 , β = 3305 12852 = 0 , 25715 .

2. The Main Result

Starting from the sequences R n , T n and S n we consider the family of sequences
L n ( a , b , c , d ) = 1 + 1 2 + + 1 n ln ( n + a + b n + c n 2 + d n 3 ) ,
for a , b , c , d R , n 1 , and
K n ( a , b , c , d ) = L n γ = 1 + 1 2 + + 1 n ln ( n + a + b n + c n 2 + d n 3 ) γ ,
which converges to zero.
Using a Maclaurin growth series we get
K n + 1 ( a , b , c , d ) K n ( a , b , c , d ) = 1 n 2 ( a 1 2 ) + 1 n 3 ( a 2 a + 2 b + 2 3 ) + 1 n 4 ( a 3 3 a b + 3 a 2 2 + a 3 b + 3 c 3 4 ) +
+ 1 n 5 ( a 4 2 a 3 + 4 a 2 b 2 a 2 2 b 2 + 6 a b 4 a c a + 4 b 6 c + 4 d + 4 5 ) +
+ 1 n 6 ( a 5 + 5 a 4 2 5 a 3 b 10 a 2 b + 5 a b 2 + 5 a 2 c + 10 a 3 3 +
5 a 2 2 + 5 b 2 10 a b + 10 a c 5 a d 5 b c + a 5 b + 10 c 10 d 5 6 ) + O ( 1 n 7 ) .
If a 1 2 = 0 , a 2 a + 2 b + 2 3 = 0 , a 3 3 a b + 3 a 2 2 + a 3 b + 3 c 3 4 = 0 ,
a 4 2 a 3 + 4 a 2 b 2 a 2 2 b 2 + 6 a b 4 a c a + 4 b 6 c + 4 d + 4 5 = 0 then
a = 1 2 , b = 1 24 , c = 1 48 , d = 23 5760 and so
a 5 + 5 a 4 2 5 a 3 b 10 a 2 b + 5 a b 2 + 5 a 2 c + 10 a 3 3 + 5 a 2 2 + 5 b 2 10 a b + 10 a c 5 a d 5 b c + a 5 b +
10 c 10 d 5 6 = 17 768 .
It results that
L n = L n ( 1 2 , 1 24 , 1 48 , 23 5760 ) = 1 + 1 2 + 1 3 + + 1 n ln ( n + 1 2 + 1 24 n 1 48 n 2 + 23 5760 n 3 )
and
K n = K n ( 1 2 , 1 24 , 1 48 , 23 5760 ) = 1 + 1 2 + 1 3 + + 1 n ln ( n + 1 2 + 1 24 n 1 48 n 2 + 23 5760 n 3 ) γ .
Thus, we get
K n + 1 K n = 17 768 n 6 + O ( 1 n 7 ) .
By a standard result, if a sequence x n converges to zero and there exists the lim n n k ( x n x n + 1 ) = l , then lim n n k 1 x n = l k 1 (see e.g., [17]).
In our case of K n , we have lim n n 6 ( K n K n + 1 ) = 17 768 and so
lim n n 5 K n = l k 1 = 17 3840 .
Starting from this result and using an elementary sequence method and MATLAB software for computation, we obtain the following:
Theorem 1.  F o r e v e r y i n t e g e r n 1 w e h a v e
17 3840 ( n + α ) 5 L n γ < 17 3840 ( n + β ) 5 , w i t h   t h e   b e s t   p o s s i b l e   c o n s t a n t s
α = 17 3840 [ 1 γ ln ( 8783 5760 ) ] 5 1 = 0 , 37407 , β = 3305 12852 = 0 , 25715 .
Proof. 
We define the sequence
a n = L n γ 17 3840 ( n + a ) 5 = 1 + 1 2 + 1 3 + + 1 n ln ( n + 1 2 + 1 24 n 1 48 n 2 + 23 5760 n 3 ) γ 17 3840 ( n + a ) 5 ,
for a > 0 and so a n + 1 a n = f ( n ) , where
f ( n ) = 1 n + 1 ln ( n + 3 2 + 1 24 ( n + 1 ) 1 48 ( n + 1 ) 2 + 23 5760 ( n + 1 ) 3 ) + ln ( n + 1 2 + 1 24 n 1 48 n 2 + 23 5760 n 3 )
17 3840 ( n + a + 1 ) 5 + 17 3840 ( n + a ) 5 .
The derivative of function f is equal to
f ( n ) = 1 ( n + 1 ) 2 3 ( 1920 n 4 + 7680 n 3 + 11440 n 2 + 7600 n + 1897 ) ( n + 1 ) ( 5760 n 4 + 25920 n 3 + 43440 n 2 + 32040 n + 8783 ) +
+ 3 ( 1920 n 4 80 n 2 + 80 n 23 ) n ( 5760 n 4 + 2880 n 3 + 240 n 2 120 n + 23 ) 17 768 ( n + a + 1 ) 6 ( n + a ) 6 ( n + a ) 6 ( n + a + 1 ) 6 = P ( n ) Q ( n ) ,
where
P ( n ) = 768 ( 4406400 n 4 + 7490400 n 3 + 2117280 n 2 1647796 n 606027 ) ( n + a ) 6 ( n + a + 1 ) 6
17 n ( n + 1 ) 2 ( 5760 n 4 + 2880 n 3 + 240 n 2 120 n + 23 ) ( 5760 n 4 + 25920 n 3 + 43440 n 2 + 32040 n + 8783 ) ·
· [ ( n + a + 1 ) 6 ( n + a ) 6 ] ,
and
Q ( n ) = 768 n ( n + 1 ) 2 ( 5760 n 4 + 2880 n 3 + 240 n 2 120 n + 23 ) ·
· ( 5760 n 4 + 25920 n 3 + 43440 n 2 + 32040 n + 8783 ) ( n + a ) 6 ( n + a + 1 ) 6 .
By using MATLAB software, we obtain that
P ( n ) = ( 23688806400 a 6091776000 ) n 15 +
+ ( 189510451200 a 2 + 140097945600 a 54101237760 ) n 14 +
+ ( 710664192000 a 3 + 1208781619200 a 2 + 283562311680 a 216840281088 ) n 13 +
+ ( 1658216448000 a 4 + 4345122816000 a 3 + 3195768176640 a 2 + 27217096704 a 517434349824 ) n 12 +
+ ( 2676835123200 a 5 + 9421194240000 a 4 + 11191051468800 a 3 +
+ 4313542551552 a 2 951258977280 a 816556190976 ) n 11 +
+ ( 3126922444800 a 6 + 13913159270400 a 5 + 22443335884800 a 4 +
+ 15431215165440 a 3 + 2584804713984 a 2 2085448478976 a 895178414400 ) n 10 +
+ ( 2680219238400 a 7 + 14696194867200 a 6 + 29955583918080 a 5 + 28487564835840 a 4 +
+ 11558431964160 a 3 677704596480 a 2 2380540040640 a 696766207680 ) n 9 +
+ ( 1675137024000 a 8 + 11256628838400 a 7 + 28108735119360 a 6 + 33662464303104 a 5 +
+ 19582377488640 a 4 + 3364432450560 a 3 2380953893760 a 2 1694043099360 a 386195711526 ) n 8 +
+ ( 744505344000 a 9 + 6197824512000 a 8 + 18769457479680 a 7 + 27144229367808 a 6 + 19496312727552 a 5 +
+ 5329924312320 a 4 1566049991040 a 3 1857543344640 a 2 777633703566 a 149937998355 ) n 7 +
+ ( 223351603200 a 10 + 2382336000000 a 9 + 87842838528008 a 8 + 15008630759424 a 7 +
+ 12269823390720 a 6 + 3216811753728 a 5 1958475850560 a 4 1844984923200 a 3
744713732028 a 2 224024317080 a 38882029144 ) n 6 +
+ ( 40609382400 a 11 + 603024998400 a 10 + 2763719884800 a 9 + 5475548298240 a 8 +
+ 4600589211648 a 7 + 13519070208 a 6 2858407439040 a 5 2140061613120 a 4
720254785500 a 3 155641811586 a 2 36388303746 a 6000763190 ) n 5 +
+ ( 3384115200 a 12 + 89336217600 a 11 + 537755811840 a 10 + 1188768215040 a 9 +
+ 700593096960 a 8 1318070983680 a 7 2664208535040 a 6 1999216550880 a 5
736245769470 a 4 1130981320660 a 3 12904066140 a 2 2408847810 a 423322168 ) n 4 +
+ ( 5752627200 a 12 + 54028615680 a 11 + 110086612992 a 10 161048540160 a 9
936009699840 a 8 1519292712960 a 7 1239385743360 a 6 540538312566 a 5
116468696355 a 4 9205598920 a 3 99484425 a 2 131085198 a 40496924 ) n 3 +
+ ( 1626071040 a 12 5429661696 a 11 89850714624 a 10 310896161280 a 9
517564650240 a 8 477213143040 a 7 247005305856 a 6 66245936460 a 5
7106635020 a 4 235621700 a 3 228228570 a 2 111896346 a 22083544 ) n 2
( 1265507328 a 12 + 13178188800 a 11 + 49700906496 a 10 + 95124456960 a 9 +
+ 102759782400 a 8 + 63444492288 a 7 + 20813514240 a 6 + 2813177334 a 5 +
+ 51512295 a 4 + 68683060 a 3 + 51512295 a 2 + 20604918 a + 3434153 ) n
465428736 a 12 2792572416 a 11 6981431040 a 10 9308574720 a 9
6981431040 a 8 2792572416 a 7 465428736 a 6 .
If 23688806400 a 6091776000 = 0 , so that a = 3305 12852 , then
P ( n ) = 1978301112320 357 n 14 6614222397555712 127449 n 13 267750738778833992704 1228480911 n 12
6410863378097015826387904 11841327501129 n 11 11203462396425132464117874560 12682061753709159 n 10
283656463491678607733321331433820 285232250902672695069 n 9 9458940152242502727508996226916173 11979754537912253192898 n 8
31432492089149854440508935518270759137255 70669386642452959618122419064 n 7
80478660328007330472740977151857448170459391 454121478564402718506054664905264 n 6
16214760589885408521174449082511424923648820905 324242735694983541013323030742358496 n 5
1566232538811809753079292526805082299432018352507841 150018035009469424887716193279628490061312 n 4
508047894224609605857698089286221126579528398762921383 275433112277385864093846930861397907752568832 n 3
20244841378617164823764709930798913021994554417695397 68858278069346466023461732715349476938142208 n 2
197879846675513964816443737481433155667954876842757889 6610394694657260738252326340673549786061651968 n
4683428037913070737204329712156882479692563209390625 8813859592876347651003101787564733048082202624 < 0 ,
for all n 1 , and then f is strictly decreasing.
We have l i m n f ( n ) = 0 and then it follows f ( n ) > 0 for all n 1 , such that ( a n ) n 1 is strictly increasing. Since ( a n ) converges to zero it results that a n < 0 for all n 1 , such that
L n γ < 17 3840 ( n + 3305 12852 ) 5 ,   f o r   a l l   n 1 .
If a = 17 3840 [ 1 γ ln ( 8783 5760 ) ] 5 1 = 0 , 37407 , then a 1 = L 1 γ 17 3840 ( 1 + a ) 5 = 0 ,
P ( n ) > 0 for all n 2 and then f is strictly increasing on [ 2 , ) .
Since l i m n f ( n ) = 0 it results that f ( n ) < 0 for all n 2 , such that ( a n ) n 2 is strictly decreasing.
The sequence ( a n ) converges to zero and then it results that a n > 0 for all n 2 , such that
17 3840 ( n + a ) 5 L n γ ,   f o r   a l l   n 1 .
Remark 1. Let us remark that, if a > 3305 12852 , then 23688806400 a 6091776000 > 0 and then there exists n a 1 such that P ( n ) > 0 for all n n a and then
17 3840 ( n + a ) 5 < L n γ < 17 3840 ( n + 3305 12852 ) 5 ,
for all n n a .
Remark 2. Returning to the sequences
R n = 1 + 1 2 + + 1 n ln ( n + 1 2 )
T n = 1 + 1 2 + + 1 n ln ( n + 1 2 + 1 24 n )
S n = 1 + 1 2 + + 1 n ln ( n + 1 2 + 1 24 n 1 48 n 2 ) ,
L n = 1 + 1 2 + + 1 n ln ( n + 1 2 + 1 24 n 1 48 n 2 + 23 5760 n 3 )
with rates of convergence n 2 , n 3 , n 4 and respectively n 5 , after a few iterations we can observe the faster convergence of the sequence L n to γ = 0 , 577215664901 compared to R n , T n and S n :
n R n T n S n L n
10 0.5775929968 0.5771962501 0.5772160837 0.5772157035
11 0.5775303095 0.5772009829 0.5772159500 0.5772156892
12 0.5774820339 0.5772042946 0.5772158656 0.5772156808
13 0.5774440696 0.5772066809 0.5772158102 0.5772156756
14 0.5774136771 0.5772084436 0.5772157727 0.5772156723
15 0.5773889693 0.5772097738 0.5772157465 0.5772156702
16 0.5773686123 0.5772107964 0.5772157278 0.5772156687
17 0.5773516417 0.5772115954 0.5772157142 0.5772156677
18 0.5773373461 0.5772122288 0.5772157040 0.5772156670
19 0.5773251915 0.5772127372 0.5772156964 0.5772156665
20 0.5773147709 0.5772131501 0.5772156905 0.5772156661
21 0.5773057696 0.5772134889 0.5772156859 0.5772156659
22 0.5772979410 0.5772137694 0.5772156823 0.5772156657
23 0.5772910899 0.5772140037 0.5772156795 0.5772156655
24 0.5772850602 0.5772142010 0.5772156772 0.5772156654
25 0.5772797255 0.5772143682 0.5772156753 0.5772156653
26 0.5772749832 0.5772145109 0.5772156738 0.5772156652
27 0.5772707485 0.5772146334 0.5772156725 0.5772156651
28 0.5772669516 0.5772147391 0.5772156715 0.5772156651
29 0.5772635342 0.5772148309 0.5772156706 0.5772156651
30 0.5772604473 0.5772149110 0.5772156699 0.5772156650
40 0.5772410648 0.5772153449 0.5772156664 0.5772156649
50 0.5772320020 0.5772155005 0.5772156654 0.5772156649

3. Conclusion

By modifying the logarithmic term of γ n we have constructed another new sequence that converges faster to the Euler-Mascheroni constant, with the convergence rate n 5 , compared to the sequences in [7,8] with convergence rates n 2 or those in [13,14,15] with convergence rates n 3 , or those in [15,16] with convergence rates n 4 . Also the idea of constructing the sequence L n allows the construction of a new sequence with the convergence rate n 6 , starting from the family of sequences
L n ( 5 ) ( a , b , c , d , e ) = 1 + 1 2 + + 1 n ln ( n + a + b n + c n 2 + d n 3 + e n 4 ) ,
for a , b , c , d , e R , n 1 .
More generally, starting from the family of sequences
L n ( k ) ( a 1 , a 2 , , a k ) = 1 + 1 2 + + 1 n ln ( n + a 1 + a 2 n + + a k n k 1 ) ,
for a 1 , a 2 , , a k R , k 5 , n 1 , we find a sequence with a convergence rate n k 1 .

Funding

The APC is funded by “Dunarea de Jos” University of Galati, Romania.

Data Availability Statement

The data used to support the findings of this study are available from the author upon request.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. H.Alzer, Inequalities for the gamma and polygamma functions, Abh. Math. Sem. Univ. Hamburg 68 (1998) 363-372. [CrossRef]
  2. G.D.Anderson, R.W.Barnard, K.C.Richards, M.K.Vamanamurthy, M.Vuorinen, Inequalities for zero-balanced hypergeometric functions, Trans. Amer. Math. Soc. 345 (1995) 1713-1723. [CrossRef]
  3. S.R.Tims, J.A.Tyrrel, Approximate evaluation of Euler’s constant, Math. Gaz., 55 (1971) 65-67.
  4. L.Toth, Probem E3432, Amer. Math. Monthly, 98 (3) (1991) 264.
  5. A.Vernescu, Convergence order of the definition sequence of Euler’s constant, Gaz. Mat., (1983), nr. 10-11, 380-381 (in Romanian).
  6. R.M.Young, Euler’s constant, Math. Gaz. 75 (472) (1991) 187-190.
  7. D.W.DeTemple, A quicker convergence to Euler’s constant, Amer. Math. Monthly 100 (5) (1993) 468-470. [CrossRef]
  8. C.P.Chen, Inequalities for the Euler-Mascheroni constant, Applied Mathematics Letters 23 (2010) 161-164. [CrossRef]
  9. A.Vernescu, A new accelerate convergence to the constant of Euler, Gaz. Mat., Ser. A 104(4), 273–278 (1999) (in Romanian).
  10. D.M.Ivan, Calculus, Editura Mediamira, Cluj-Napoca, 2002, pg. 215.
  11. V.G.Cristea, C.Mortici, Latter research on Euler–Mascheroni constant, arXiv:1312.4397 [math.CA] (2013).
  12. D.Lu, A new quicker sequence convergent to Euler’s constant, J. Number Theory 136, 320–329 (2014). [CrossRef]
  13. T.Negoi, A faster convergence to the constant of Euler, Gaz. Mat., Ser. A 15 (1997) 111-113 ( in Romanian).
  14. C.P.Chen, C.Mortici, Limits and inequalities associated with the Euler–Mascheroni constant, Applied Mathematics and Computation 219 (2013) 9755–9761. [CrossRef]
  15. X.You, D.R.Chen, A new sequence convergent to Euler–Mascheroni constant, Journal of Inequalities and Applications (2018) 2018:75, 2-8. [CrossRef]
  16. J. Cringanu, A new sequence which converges faster towards to the Euler-Mascheroni constant, Journal of Mathematics, Volume 2023, Article ID 7408231, 5 pages. [CrossRef]
  17. C.Mortici, New approximations of the gamma function in terms of the digamma function, Applied Mathematics Letters 23 (2010) 97–100. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated