Submitted:
06 June 2025
Posted:
09 June 2025
You are already at the latest version
Abstract
Keywords:
Introduction
Current Applications of AI in Imaging and Radiological Analysis
- Automated Detection and Classification of Spinal Pathologies
- II.
- Advanced Morphometric Analysis and Quantitative Assessment
Surgical Planning and Robotic-Assisted Interventions
- Advanced Preoperative Planning and Simulation
- II.
- Robotic-Assisted Surgical Execution
- III.
- Integration with Advanced Navigation and Guidance Systems
- IV.
- Functional Outcome Prediction and Treatment Optimization
- V.
- Cost-Effectiveness Analysis
| AI/ML Application Area | Key Tools/Systems | Validation Status | Clinical Benefit | Limitations |
|---|---|---|---|---|
| Fracture Detection and Classification | Zebra HealthJOINT, Aidoc Cervical Spine AI | FDA Approved; Real-world validation | Reduced under-detection; Improved triage accuracy | Limited chronic fracture detection; Sensitivity varies |
| Spinal Segmentation and Grading | SpineNet, Multimodal Segmentation Platforms | External validation across modalities | Automated grading of stenosis, disc degeneration | Performance may vary across demographics |
| Morphometric Analysis | CobbAngle Pro, Yeh et al. Ensemble Model | Validated vs. clinical experts | Reduced measurement error; Field-applicable | Dependence on image quality |
| Ultrasound-based Imaging | UGBNet, Attention-UNet | Peer-reviewed feasibility studies | Segmentation of low-contrast images | Noise sensitivity in complex anatomy |
| Muscle Quality Quantification | CTSpine1K, TrinetX | Open-source annotated datasets | Cross-sectional muscle area & fat infiltration | Need for standardized protocols |
| Preoperative Planning | Mazor X, ExcelsiusGPS | Clinical integration with robotic systems | Optimized screw trajectory, virtual planning | Variable accuracy in deformed anatomy |
| Robotic Execution | VELYS, ROSA Spine, Mazor Robotics | FDA-cleared, commercial use | Real-time trajectory correction; Error reduction | Cost and infrastructure requirements |
| Navigation and Guidance | Brainlab Curve, Medtronic StealthStation | Integrated AI + imaging validation | Adaptive navigation; Improved pedicle accuracy | Setup complexity; Intraoperative variability |
| Outcome Prediction | GNNs, Transformers, Sentiment NLP | Ongoing studies; Cross-disciplinary use | Predict functional recovery, mental health monitoring | Integration of heterogeneous data types |
| Cost-Effectiveness and QOL Modeling | Dynamic Simulations, Complexity Economics | Emerging models; Not yet widespread | Forecasting long-term impact; Behavioral insights | Lack of spine-specific QOL instruments |
Genomic Applications and Precision Medicine
- Genome-Wide Association Studies in Spine Surgery Risk Assessment
- II.
- Pharmacogenomics and Personalized Pain Management
- III.
- Multi-Omics Analysis
Clinical Decision Support and Documentation Systems
- Ambient Clinical Intelligence and Documentation Automation
- II.
- Clinical Decision Support Systems
Current Challenges, Limitations, and Implementation Barriers
- Technical and Algorithmic Limitations
- II.
- Regulatory and Validation Challenges
- III.
- Clinical Integration and Workflow Challenges
| Category | Barrier | Technical Detail | Clinical/Operational Consequence |
|---|---|---|---|
| Imaging & Model Generalizability | Cross-Vendor Imaging Variability | Heterogeneity in scanner vendor output (e.g., GE vs. Siemens vs. Philips) causes domain shift in AI models; non-uniform slice thickness and FOV distort CNN feature extraction layers. | Decreased classification precision for compression fractures; high false-negative rates in under-standardized imaging environments. |
| Hardware-Induced Artifacts | Metallic Implant Interference | Titanium-induced susceptibility artifacts in T1/T2 MRI sequences disrupt segmentation accuracy in deep neural networks like SpineNet and V-Net variants. | Invalidated predictions in post-fusion patients; potential for underestimation of central canal and foraminal compromise. |
| Pathological Heterogeneity | Low Representation of Rare Tumors | Model sensitivity drops when exposed to rare presentations (e.g., sacral chordomas, extradural myxopapillary ependymomas) due to weak class priors and minimal edge-case training data. | False negatives in tumor surveillance; unreliable outputs for oncological follow-up assessments. |
| Training Data Bias | Geographic and Socioeconomic Overfitting | Training sets skewed toward tertiary care centers cause latent space misalignment for rural/underserved demographics; manifests as calibration drift in diagnostic AI systems. | Inaccurate prioritization in triage algorithms; potential exacerbation of healthcare disparities. |
| Model Explainability | Opacity in Neural Attribution Maps | Lack of saliency map interpretability or explainable AI (XAI) frameworks in real-time decision support; attention-based models still fall short in spine-specific pathologies. | Limited clinician trust in AI output; inability to validate or refute system recommendations during multidisciplinary rounds. |
| Infrastructure & Cost | High-Cost HPC Requirements | Inference latency optimization via GPU clusters (e.g., NVIDIA A100) requires capital investment exceeding $500k; suboptimal throughput without federated inference pipelines. | Barriers to adoption in rural and small private clinics; delayed implementation in mid-tier health systems. |
| Regulatory and Legal Complexity | Validation of Continuous Learning Systems | Regulatory frameworks not equipped for post-deployment model drift; challenge in validating self-updating AI modules under FDA’s Good Machine Learning Practice (GMLP) guidelines. | Post-market liability ambiguity; disincentivizes procurement by risk-averse hospital administrators. |
| Workflow & Physician Engagement | Non-Interoperability with Legacy EHRs | Lack of native HL7/FHIR compliance in AI tools (e.g., DeepScribe); interface incompatibility leads to fragmented data workflows and redundancy in documentation. | Cognitive overload and duplication of work; rejection by high-volume providers. |
| Patient-Centric Barriers | Privacy Anxiety from Data Breaches | 2024 cyberattack exposure of biometric and imaging datasets undermines patient confidence in AI-driven diagnostics; hesitancy persists even with federated learning protocols. | Consent withdrawal and decreased utilization of AI-assisted care; limits scalability of patient-facing applications. |
Discussion
Conclusions
Author Contributions
Funding
Acknowledgments
Ethical Approval
References
- Voter, A.F.; Larson, M.E.; Garrett, J.W.; Yu, J.J. Diagnostic Accuracy and Failure Mode Analysis of a Deep Learning Algorithm for the Detection of Cervical Spine Fractures. AJNR Am J Neuroradiol. 2021, 42, 1550–1556. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Page, J.H.; Moser, F.G.; Maya, M.M.; Prasad, R.; Pressman, B.D. Opportunistic CT Screening-Machine Learning Algorithm Identifies Majority of Vertebral Compression Fractures: A Cohort Study. JBMR Plus. 2023, 7, e10778. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nigru, A.S.; Benini, S.; Bonetti, M.; Bragaglio, G.; Frigerio, M.; Maffezzoni, F.; Leonardi, R. External validation of SpineNetV2 on a comprehensive set of radiological features for grading lumbosacral disc pathologies. N Am Spine Soc J. 2024, 20, 100564. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Elhaddad, M.; Hamam, S. AI-Driven Clinical Decision Support Systems: An Ongoing Pursuit of Potential. Cureus. 2024, 16, e57728. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- O'Connor, T.E.; O'Hehir, M.M.; Khan, A.; Mao, J.Z.; Levy, L.C.; Mullin, J.P.; Pollina, J. Mazor X Stealth Robotic Technology: A Technical Note. World Neurosurg. 2021, 145, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Sigala, R.E.; Lagou, V.; Shmeliov, A.; Atito, S.; Kouchaki, S.; Awais, M.; Prokopenko, I.; Mahdi, A.; Demirkan, A. Machine Learning to Advance Human Genome-Wide Association Studies. Genes (Basel). 2023, 15, 34. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Monchka, B.A.; Schousboe, J.T.; Davidson, M.J.; Kimelman, D.; Hans, D.; Raina, P.; Leslie, W.D. Development of a manufacturer-independent convolutional neural network for the automated identification of vertebral compression fractures in vertebral fracture assessment images using active learning. Bone. 2022, 161, 116427. [Google Scholar] [CrossRef] [PubMed]
- Zebra Medical Vision Ltd. HealthJOINT – 510(k) Premarket Notification Clearance (K202487). US Food and Drug Administration. November 3, 2020. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm (accessed on 5 June 2025).
- Clark, P.; Kim, J.; Aphinyanaphongs, Y. Marketing and US Food and Drug Administration Clearance of Artificial Intelligence and Machine Learning Enabled Software in and as Medical Devices: A Systematic Review. JAMA Netw Open. 2023, 6, e2321792. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chouffani El Fassi, S.; Abdullah, A.; Fang, Y.; Natarajan, S.; Masroor, A.B.; Kayali, N.; Prakash, S.; Henderson, G.E. Not all AI health tools with regulatory authorization are clinically validated. Nat Med. Erratum in: Nat Med. 2024, 30, 3381. https://doi.org/10.1038/s41591-024-03293-z. 2024, 30, 2718–2720. [Google Scholar] [CrossRef] [PubMed]
- Small, J.E.; Osler, P.; Paul, A.B.; Kunst, M. CT Cervical Spine Fracture Detection Using a Convolutional Neural Network. AJNR Am J Neuroradiol. 2021, 42, 1341–1347. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramadanov, N.; John, P.; Hable, R.; Schreyer, A.G.; Shabo, S.; Prill, R.; Salzmann, M. Artificial intelligence-guided distal radius fracture detection on plain radiographs in comparison with human raters. J Orthop Surg Res. 2025, 20, 468. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Harper, J.P.; Lee, G.R.; Pan, I.; Nguyen, X.V.; Quails, N.; Prevedello, L.M. External Validation of a Winning AI-Algorithm from the RSNA 2022 Cervical Spine Fracture Detection Challenge. AJNR Am J Neuroradiol. 2025, ajnr.A8715. [Google Scholar] [CrossRef] [PubMed]
- Jamaludin, A.; Kadir, T.; Zisserman, A. SpineNet: Automated classification and evidence visualization in spinal MRIs. Med Image Anal. 2017, 41, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Jamaludin, A.; Kadir, T.; Zisserman, A.; McCall, I.; Williams, F.M.K.; Lang, H.; Buchanan, E.; Urban, J.P.G.; Fairbank, J.C.T. ISSLS PRIZE in Clinical Science 2023: comparison of degenerative MRI features of the intervertebral disc between those with and without chronic low back pain. An exploratory study of two large female populations using automated annotation. Eur Spine J. 2023, 32, 1504–1516. [Google Scholar] [CrossRef] [PubMed]
- McSweeney, T.P.; Tiulpin, A.; Saarakkala, S.; Niinimäki, J.; Windsor, R.; Jamaludin, A.; Kadir, T.; Karppinen, J.; Määttä, J. External Validation of SpineNet, an Open-Source Deep Learning Model for Grading Lumbar Disk Degeneration MRI Features, Using the Northern Finland Birth Cohort 1966. Spine (Phila Pa 1976). 2023, 48, 484–491. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Grob, A.; Loibl, M.; Jamaludin, A.; Winklhofer, S.; Fairbank, J.C.T.; Fekete, T.; Porchet, F.; Mannion, A.F. External validation of the deep learning system "SpineNet" for grading radiological features of degeneration on MRIs of the lumbar spine. Eur Spine J. 2022, 31, 2137–2148. [Google Scholar] [CrossRef] [PubMed]
- Gstoettner, M.; Sekyra, K.; Walochnik, N.; Winter, P.; Wachter, R.; Bach, C.M. Inter- and intraobserver reliability assessment of the Cobb angle: manual versus digital measurement tools. Eur Spine J. 2007, 16, 1587–92. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yeh, Y.C.; Weng, C.H.; Huang, Y.J.; Fu, C.J.; Tsai, T.T.; Yeh, C.Y. Deep learning approach for automatic landmark detection and alignment analysis in whole-spine lateral radiographs. Sci Rep. 2021, 11, 7618. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Obuchowicz, R.; Strzelecki, M.; Piórkowski, A. Clinical Applications of Artificial Intelligence in Medical Imaging and Image Processing-A Review. Cancers (Basel). 2024, 16, 1870. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kumar, R.; Sporn, K.; Ong, J.; Waisberg, E.; Paladugu, P.; Vaja, S.; Hage, T.; Sekhar, T.C.; Vadhera, A.S.; Ngo, A.; et al. Integrating Artificial Intelligence in Orthopedic Care: Advancements in Bone Care and Future Directions. Bioengineering 2025, 12, 513. [Google Scholar] [CrossRef]
- Sporn, K.; Kumar, R.; Paladugu, P.; Ong, J.; Sekhar, T.; Vaja, S.; Hage, T.; Waisberg, E.; Gowda, C.; Jagadeesan, R.; et al. Artificial Intelligence in Orthopedic Medical Education: A Comprehensive Review of Emerging Technologies and Their Applications. Int. Med. Educ. 2025, 4, 14. [Google Scholar] [CrossRef]
- Li, H.; Qian, C.; Yan, W.; Fu, D.; Zheng, Y.; Zhang, Z.; Meng, J.; Wang, D. Use of Artificial Intelligence in Cobb Angle Measurement for Scoliosis: Retrospective Reliability and Accuracy Study of a Mobile App. J Med Internet Res. 2024, 26, e50631. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chui, C.E.; He, Z.; Lam, T.P.; Mak, K.K.; Ng, H.R.; Fung, C.E.; Chan, M.S.; Law, S.W.; Lee, Y.W.; Hung, L.A.; Chu, C.W.; Mak, S.S.; Yau, W.E.; Liu, Z.; Li, W.J.; Zhu, Z.; Wong, M.Y.R.; Cheng, C.J.; Qiu, Y.; Yung, S.P. Deep Learning-Based Prediction Model for the Cobb Angle in Adolescent Idiopathic Scoliosis Patients. Diagnostics (Basel). 2024, 14, 1263. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Jiang, W.; Mei, F.; Xie, Q. Novel automated spinal ultrasound segmentation approach for scoliosis visualization. Front Physiol. 2022, 13, 1051808. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lou, H.; Wen, X.; Lin, F.; Peng, Z.; Wang, Q.; Ren, R.; Xu, J.; Fan, J.; Song, H.; Ji, X.; Wang, H.; Sun, X.; Dong, Y. Multi-spatial-attention U-Net: a novel framework for automated gallbladder segmentation on CT images. BMC Med Imaging. 2025, 25, 197. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhao, P.; Zhang, J.; Fang, W.; Deng, S. SCAU-Net: Spatial-Channel Attention U-Net for Gland Segmentation. Front Bioeng Biotechnol. 2020, 8, 670. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y.; Wen, Z.; Bao, S.; Huang, D.; Wang, Y.; Yang, B.; Li, Y.; Zhou, P.; Zhang, H.; Pang, H. Diffusion-CSPAM U-Net: A U-Net model integrated hybrid attention mechanism and diffusion model for segmentation of computed tomography images of brain metastases. Radiat Oncol. 2025, 20, 50. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Al Qurri, A.; Almekkawy, M. Improved UNet with Attention for Medical Image Segmentation. Sensors (Basel). 2023, 23, 8589. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Landriel, F.; Franchi, B.C.; Mosquera, C.; Lichtenberger, F.P.; Benitez, S.; Aineseder, M.; Guiroy, A.; Hem, S. Artificial Intelligence Assistance for the Measurement of Full Alignment Parameters in Whole-Spine Lateral Radiographs. World Neurosurg. 2024, 187, e363–e382. [Google Scholar] [CrossRef] [PubMed]
- Harake, E.S.; Linzey, J.R.; Jiang, C.; Joshi, R.S.; Zaki, M.M.; Jones, J.C.; Khalsa, S.S.S.; Lee, J.H.; Wilseck, Z.; Joseph, J.R.; Hollon, T.C.; Park, P. Development and validation of an artificial intelligence model to accurately predict spinopelvic parameters. J Neurosurg Spine. 2024, 41, 88–96. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cina, A.; Galbusera, F. Advancing spine care through AI and machine learning: overview and applications. EFORT Open Rev. 2024, 9, 422–433. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Leis, A.; Fradera, M.; Peña-Gómez, C.; Aguilera, P.; Hernandez, G.; Parralejo, A.; Ramírez-Anguita, J.M.; Mayer, M.A. Real World Data and Real World Evidence Using TriNetX: The TauliMar Clinical Research Network. Stud Health Technol Inform. 2025, 327, 759–760. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Sporn, K.; Borole, A.; Khanna, A.; Gowda, C.; Paladugu, P.; Ngo, A.; Jagadeesan, R.; Zaman, N.; Tavakkoli, A. Biomarker-Guided Imaging and AI-Augmented Diagnosis of Degenerative Joint Disease. Diagnostics 2025, 15, 1418. [Google Scholar] [CrossRef]
- Smith, A.; Picheca, L.; Mahood, Q. Robotic Surgical Systems for Orthopedics: Emerging Health Technologies [Internet]. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health; 2022 Nov. Available online: https://www.ncbi.nlm.nih.gov/books/NBK602663/.
- Bhimreddy, M.; Hersh, A.M.; Jiang, K.; Weber-Levine, C.; Davidar, A.D.; Menta, A.K.; Judy, B.F.; Lubelski, D.; Bydon, A.; Weingart, J.; Theodore, N. Accuracy of Pedicle Screw Placement Using the ExcelsiusGPS Robotic Navigation Platform: An Analysis of 728 Screws. Int J Spine Surg. 2024, 18, 712–20. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Anderson, P.A.; Kadri, A.; Hare, K.J.; Binkley, N. Preoperative bone health assessment and optimization in spine surgery. Neurosurg Focus. 2020, 49, E2. [Google Scholar] [CrossRef] [PubMed]
- Ammarullah, M.I. Integrating finite element analysis in total hip arthroplasty for childhood hip disorders: Enhancing precision and outcomes. World J Orthop. 2025, 16, 98871. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, J.; Miao, J.; Zhan, Y.; Duan, Y.; Wang, Y.; Hao, D.; Wang, B. Spine Surgical Robotics: Current Status and Recent Clinical Applications. Neurospine. 2023, 20, 1256–1271. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Johnson; Johnson MedTech. DePuy Synthes launches its first active spine robotics and navigation platform. Johnson & Johnson Newsroom. August 2, 2024. Available online: https://www.jnjmedtech.com/en-US/newsroom/depuy-synthes-launches-first-active-spine-robotics-and-navigation-platform (accessed on 5 June 2025).
- DePuy Synthes. DePuy Synthes launches its first active spine robotics and navigation platform. DePuy Synthes Newsroom. August 2, 2024. Available online: https://www.depuysynthes.com/news/depuy-synthes-launches-active-spine-robotics-navigation-platform (accessed on 5 June 2025).
- Quiceno, E.; Soliman, M.A.R.; Khan, A.; Mullin, J.P.; Pollina, J. How Do Robotics and Navigation Facilitate Minimally Invasive Spine Surgery? A Case Series and Narrative Review. Neurosurgery. 2025, 96, S84–S93. [Google Scholar] [CrossRef] [PubMed]
- Khalsa, S.S.S.; Mummaneni, P.V.; Chou, D.; Park, P. Present and Future Spinal Robotic and Enabling Technologies. Oper Neurosurg (Hagerstown). 2021, 21 (Suppl. 1), S48–S56. [Google Scholar] [CrossRef] [PubMed]
- Haida, D.M.; Mohr, P.; Won, S.Y.; Möhlig, T.; Holl, M.; Enk, T.; Hanschen, M.; Huber-Wagner, S. Hybrid-3D robotic suite in spine and trauma surgery - experiences in 210 patients. J Orthop Surg Res. 2024, 19, 565. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Judy, B.F.; Pennington, Z.; Botros, D.; Tsehay, Y.; Kopparapu, S.; Liu, A.; Theodore, N.; Zakaria, H.M. Spine Image Guidance and Robotics: Exposure, Education, Training, and the Learning Curve. Int J Spine Surg. 2021, 15, S28–S37. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ellis, C.A.; Gu, P.; Sendi, M.S.E.; Huddleston, D.; Sharma, A.; Mahmoudi, B. A Cloud-based Framework for Implementing Portable Machine Learning Pipelines for Neural Data Analysis. Annu Int Conf IEEE Eng Med Biol Soc. 2019, 2019, 4466–4469. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wood, J.S.; Purzycki, A.; Thompson, J.; David, L.R.; Argenta, L.C. The Use of Brainlab Navigation in Le Fort III Osteotomy. J Craniofac Surg. 2015, 26, 616–9. [Google Scholar] [CrossRef] [PubMed]
- Asada, T.; Subramanian, T.; Simon, C.Z.; Singh, N.; Hirase, T.; Araghi, K.; Lu, A.Z.; Mai, E.; Kim, Y.E.; Tuma, O.; Allen, M.R.J.; Kim, E.; Korsun, M.; Zhang, J.; Kwas, C.; Dowdell, J.; Iyer, S.; Qureshi, S.A. Level-specific comparison of 3D navigated and robotic arm-guided screw placement: an accuracy assessment of 1210 pedicle screws in lumbar surgery. Spine J. 2024, 24, 1872–1880. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, S.; Du, J.; Huang, Y.; Hao, D.; Zhao, Z.; Chang, Z.; Zhang, X.; Gao, S.; He, B. Comparison of the S8 navigation system and the TINAVI orthopaedic robot in the treatment of upper cervical instability. Sci Rep. 2024, 14, 6487. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kirchner, G.J.; Kim, A.H.; Kwart, A.H.; Weddle, J.B.; Bible, J.E. Reported Events Associated With Spine Robots: An Analysis of the Food and Drug Administration's Manufacturer and User Facility Device Experience Database. Global Spine J. 2023, 13, 855–860. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lefranc, M.; Peltier, J. Evaluation of the ROSA™ Spine robot for minimally invasive surgical procedures. Expert Rev Med Devices. 2016, 13, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Pojskić, M.; Bopp, M.; Nimsky, C.; Carl, B.; Saβ, B. Initial Intraoperative Experience with Robotic-Assisted Pedicle Screw Placement with Cirq® Robotic Alignment: An Evaluation of the First 70 Screws. J Clin Med. 2021, 10, 5725. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kumar, R.; Waisberg, E.; Ong, J.; Lee, A.G. The potential power of Neuralink - how brain-machine interfaces can revolutionize medicine. Expert Rev Med Devices. 2025, 22, 521–524. [Google Scholar] [CrossRef] [PubMed]
- Paladugu, P.S.; Ong, J.; Nelson, N.; et al. Generative Adversarial Networks in Medicine: Important Considerations for this Emerging Innovation in Artificial Intelligence. Ann Biomed Eng 2023, 51, 2130–2142. [Google Scholar] [CrossRef]
- Lee, R.; Ong, J.; Waisberg, E.; Ben-David, G.; Jaiswal, S.; Arogundade, E.; … Lee, A.G. (2025). Applications of Artificial Intelligence in Neuro-Ophthalmology: Neuro-Ophthalmic Imaging Patterns and Implementation Challenges. Neuro-Ophthalmology, 1–12. [CrossRef]
- Alzubaidi, L.; Al-Dulaimi, K.; Salhi, A.; Alammar, Z.; Fadhel, M.A.; Albahri, A.S.; Alamoodi, A.H.; Albahri, O.S.; Hasan, A.F.; Bai, J.; Gilliland, L.; Peng, J.; Branni, M.; Shuker, T.; Cutbush, K.; Santamaría, J.; Moreira, C.; Ouyang, C.; Duan, Y.; Manoufali, M.; Jomaa, M.; Gupta, A.; Abbosh, A.; Gu, Y. Comprehensive review of deep learning in orthopaedics: Applications, challenges, trustworthiness, and fusion. Artif Intell Med. 2024, 155, 102935. [Google Scholar] [CrossRef] [PubMed]
- Baydili, İ.; Tasci, B.; Tasci, G. Artificial Intelligence in Psychiatry: A Review of Biological and Behavioral Data Analyses. Diagnostics (Basel). 2025, 15, 434. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Minerva, F.; Giubilini, A. Is AI the Future of Mental Healthcare? Topoi (Dordr). 2023, 42, 1–9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bouguettaya, A.; Stuart, E.M.; Aboujaoude, E. Racial bias in AI-mediated psychiatric diagnosis and treatment: a qualitative comparison of four large language models. npj Digit. Med. 2025, 8, 332. [Google Scholar] [CrossRef]
- Miller, D.J.; Lastella, M.; Scanlan, A.T.; Bellenger, C.; Halson, S.L.; Roach, G.D.; Sargent, C. A validation study of the WHOOP strap against polysomnography to assess sleep. J Sports Sci. 2020, 38, 2631–2636. [Google Scholar] [CrossRef] [PubMed]
- Grosicki, G.J.; Fielding, F.; Kim, J.; Chapman, C.J.; Olaru, M.; Hippel, W.V.; Holmes, K.E. Wearing WHOOP More Frequently Is Associated with Better Biometrics and Healthier Sleep and Activity Patterns. Sensors (Basel). 2025, 25, 2437. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kumar, R.; Waisberg, E.; Ong, J.; Paladugu, P.; Amiri, D.; Nahouraii, R.; Jagadeesan, R.; Tavakkoli, A. Integration of Multi-Modal Imaging and Machine Learning Visualization Techniques to Optimize Structural Neuroimaging. Preprints 2024, 2024111128. [Google Scholar] [CrossRef]
- National Academies of Sciences, Engineering, and Medicine; Division of Behavioral and Social Sciences and Education; Board on Behavioral, Cognitive, and Sensory Sciences; Committee on Future Directions for Applying Behavioral Economics to Policy; Beatty, A.; Moffitt, R.; Buttenheim, A.; editors. Behavioral Economics: Policy Impact and Future Directions. Washington (DC): National Academies Press (US); 2023 Apr 20. 2, Development of Behavioral Economics. Available online: https://www.ncbi.nlm.nih.gov/books/NBK593518/.
- Fayers, P.; Bottomley, A. ; EORTC Quality of Life Group, et al. Quality of life research within the EORTC-the EORTC QLQ-C30. European Organisation for Research and Treatment of Cancer. Eur J Cancer 2002, 38 (Suppl. 4), S125–S133. [Google Scholar] [CrossRef]
- Taphoorn, M.J.; Claassens, L.; Aaronson, N.K.; et al. An international validation study of the EORTC brain cancer module (EORTC QLQ-BN20) for assessing health-related quality of life and symptoms in brain cancer patients. Eur J Cancer 2010, 46, 1033–40. [Google Scholar] [CrossRef]
- Bushnell, D.M.; Atkinson, T.M.; McCarrier, K.P.; et al. Non-Small Cell Lung Cancer Symptom Assessment Questionnaire: Psychometric Performance and Regulatory Qualification of a Novel Patient-Reported Symptom Measure. Curr Ther Res Clin Exp 2021, 95, 100642. [Google Scholar] [CrossRef]
- Kumar, R.; Sporn, K.; Khanna, A.; Paladugu, P.; Gowda, C.; Ngo, A.; Jagadeesan, R.; Zaman, N.; Tavakkoli, A. Integrating Radiogenomics and Machine Learning in Musculoskeletal Oncology Care. Diagnostics 2025, 15, 1377. [Google Scholar] [CrossRef] [PubMed]
- Salo, V.; Määttä, J.; Sliz, E.; FinnGen; Reimann, E.; Mägi, R.; Estonian Biobank Research, Team; Reis, K.; Elhanas, A.G.; Reigo, A.; Palta, P.; Esko, T.; Karppinen, J.; Kettunen, J. Genome-wide meta-analysis conducted in three large biobanks expands the genetic landscape of lumbar disc herniations. Nat Commun. 2024, 15, 9424. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tkachenko, A.A.; Changalidis, A.I.; Maksiutenko, E.M.; Nasykhova, Y.A.; Barbitoff, Y.A.; Glotov, A.S. Replication of Known and Identification of Novel Associations in Biobank-Scale Datasets: A Survey Using UK Biobank and FinnGen. Genes 2024, 15, 931. [Google Scholar] [CrossRef]
- Kurki, M.I.; Karjalainen, J.; Palta, P.; et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 2023, 613, 508–518. [Google Scholar] [CrossRef]
- Theodore, N.; Ahmed, A.K.; Fulton, T.; Mousses, S.; Yoo, C.; Goodwin, C.R.; Danielson, J.; Sciubba, D.M.; Giers, M.B.; Kalani, M.Y.S. Genetic Predisposition to Symptomatic Lumbar Disk Herniation in Pediatric and Young Adult Patients. Spine (Phila Pa 1976). 2019, 44, E640–E649. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Xu, W.; Chen, D.; Liu, Y.; Hu, X. Evidence from Mendelian randomization analysis combined with meta-analysis for the causal validation of the relationship between 91 inflammatory factors and lumbar disc herniation. Medicine (Baltimore). 2024, 103, e40323. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Scott, H.; Panin, V.M. The role of protein N-glycosylation in neural transmission. Glycobiology. 2014, 24, 407–17. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- He, M.; Zhou, X.; Wang, X. Glycosylation: mechanisms, biological functions and clinical implications. Sig Transduct Target Ther 2024, 9, 194. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, A.; McHugh, J.; Hayward, J.; Rafi, I.; Qureshi, N. Polygenic risk scores: improving the prediction of future disease or added complexity? Br J Gen Pract. 2022, 72, 396–398. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singh, O.; Verma, M.; Dahiya, N.; Senapati, S.; Kakkar, R.; Kalra, S. Integrating Polygenic Risk Scores (PRS) for Personalized Diabetes Care: Advancing Clinical Practice with Tailored Pharmacological Approaches. Diabetes Ther. 2025, 16, 149–168. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sporn, K.; Kumar, R.; Paladugu, P.; Ong, J.; Sekhar, T.; Vaja, S.; Hage, T.; Waisberg, E.; Gowda, C.; Jagadeesan, R.; et al. Artificial Intelligence in Orthopedic Medical Education: A Comprehensive Review of Emerging Technologies and Their Applications. Int. Med. Educ. 2025, 4, 14. [Google Scholar] [CrossRef]
- Krupkova, O.; Cambria, E.; Besse, L.; Besse, A.; Bowles, R.; Wuertz-Kozak, K. The potential of CRISPR/Cas9 genome editing for the study and treatment of intervertebral disc pathologies. JOR Spine. 2018, 1, e1003. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dean, L.; Kane, M. Codeine Therapy and CYP2D6 Genotype. 2012 Sep 20 [Updated 2025 Jan 17]. In: Pratt, V.M.; Scott, S.A.; Pirmohamed, M.; et al. editors. Medical Genetics Summaries [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2012. Available online: https://www.ncbi.nlm.nih.gov/books/NBK100662/.
- Li, B.; Sangkuhl, K.; Keat, K.; Whaley, R.M.; Woon, M.; Verma, S.; Dudek, S.; Tuteja, S.; Verma, A.; Whirl-Carrillo, M.; Ritchie, M.D.; Klein, T.E. How to Run the Pharmacogenomics Clinical Annotation Tool (PharmCAT). Clin Pharmacol Ther. 2023, 113, 1036–1047. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tippenhauer, K.; Philips, M.; Largiadèr, C.; Sariyar, M. Using the PharmCAT tool for Pharmacogenetic clinical decision support. Briefings in Bioinformatics 2024, 25, bbad452. [Google Scholar] [CrossRef] [PubMed]
- Sadee, W.; Wang, D.; Hartmann, K.; Toland, A.E. Pharmacogenomics: Driving Personalized Medicine. Pharmacol Rev. 2023, 75, 789–814. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guarneri, M.; Scola, L.; Giarratana, R.M.; Bova, M.; Carollo, C.; Vaccarino, L.; Calandra, L.; Lio, D.; Balistreri, C.R.; Cottone, S. MIF rs755622 and IL6 rs1800795 Are Implied in Genetic Susceptibility to End-Stage Renal Disease (ESRD). Genes (Basel). 2022, 13, 226. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Górczyńska-Kosiorz, S.; Tabor, E.; Niemiec, P.; Pluskiewicz, W.; Gumprecht, J. Associations between the VDR Gene rs731236 (TaqI) Polymorphism and Bone Mineral Density in Postmenopausal Women from the RAC-OST-POL. Biomedicines. 2024, 12, 917. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De La Vega, R.E.; van Griensven, M.; Zhang, W.; Coenen, M.J.; Nagelli, C.V.; Panos, J.A.; Peniche Silva, C.J.; Geiger, J.; Plank, C.; Evans, C.H.; Balmayor, E.R. Efficient healing of large osseous segmental defects using optimized chemically modified messenger RNA encoding BMP-2. Sci Adv. 2022, 8, eabl6242. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Robinson, C.; Dalal, S.; Chitneni, A.; Patil, A.; Berger, A.A.; Mahmood, S.; Orhurhu, V.; Kaye, A.D.; Hasoon, J. A Look at Commonly Utilized Serotonin Noradrenaline Reuptake Inhibitors (SNRIs) in Chronic Pain. Health Psychol Res. 2022, 10, 32309. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wiffen, P.J.; Derry, S.; Bell, R.F.; Rice, A.S.; Tölle, T.R.; Phillips, T.; Moore, R.A. Gabapentin for chronic neuropathic pain in adults. Cochrane Database Syst Rev. 2017, 6, CD007938. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mukherjee, A.; Abraham, S.; Singh, A.; Balaji, S.; Mukunthan, K.S. From Data to Cure: A Comprehensive Exploration of Multi-omics Data Analysis for Targeted Therapies. Mol Biotechnol. 2025, 67, 1269–1289. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Assi, I.Z.; Landzberg, M.J.; Becker, K.C.; Renaud, D.; Reyes, F.B.; Leone, D.M.; Benson, M.; Michel, M.; Gerszten, R.E.; Opotowsky, A.R. Correlation between Olink and SomaScan proteomics platforms in adults with a Fontan circulation. Int J Cardiol Congenit Heart Dis. 2025, 20, 100584. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, L.; Liu, B.; Dong, X.; Wu, J.; Sun, C.; Xi, L.; Cheng, R.; Wu, B.; Wang, H.; Tong, S.; Wang, D.; Luo, F. Clinical severity prediction in children with osteogenesis imperfecta caused by COL1A1/2 defects. Osteoporos Int. 2022, 33, 1373–1384. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Haberle, T.; Cleveland, C.; Snow, G.L.; Barber, C.; Stookey, N.; Thornock, C.; Younger, L.; Mullahkhel, B.; Ize-Ludlow, D. The impact of nuance DAX ambient listening AI documentation: a cohort study. J Am Med Inform Assoc. 2024, 31, 975–979. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shah, S.J.; Devon-Sand, A.; Ma, S.P.; Jeong, Y.; Crowell, T.; Smith, M.; Liang, A.S.; Delahaie, C.; Hsia, C.; Shanafelt, T.; Pfeffer, M.A.; Sharp, C.; Lin, S.; Garcia, P. Ambient artificial intelligence scribes: physician burnout and perspectives on usability and documentation burden. J Am Med Inform Assoc. 2025, 32, 375–380. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, W.S.; Ahn, S.M.; Chung, J.W.; Kim, K.O.; Kwon, K.A.; Kim, Y.; Sym, S.; Shin, D.; Park, I.; Lee, U.; Baek, J.H. Assessing Concordance With Watson for Oncology, a Cognitive Computing Decision Support System for Colon Cancer Treatment in Korea. JCO Clin Cancer Inform. 2018, 2, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kohn, M.S.; Sun, J.; Knoop, S.; Shabo, A.; Carmeli, B.; Sow, D.; Syed-Mahmood, T.; Rapp, W. IBM's Health Analytics and Clinical Decision Support. Yearb Med Inform. 2014, 9, 154–62. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- van den Wittenboer, G.J.; van der Kolk, B.Y.M.; Nijholt, I.M.; Langius-Wiffen, E.; van Dijk, R.A.; van Hasselt, B.A.A.M.; Podlogar, M.; van den Brink, W.A.; Bouma, G.J.; Schep, N.W.L.; Maas, M.; Boomsma, M.F. Diagnostic accuracy of an artificial intelligence algorithm versus radiologists for fracture detection on cervical spine CT. Eur Radiol. 2024, 34, 5041–5048. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Gosain, A.; Saintyl, J.J.; Zheng, A.; Chima, K.; Cassagnol, R. Bridging gaps in orthopedic residency admissions: embracing diversity beyond research metrics. Can Med Educ J. 2025, 16, 68–70. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Morsbach, F.; Zhang, Y.H.; Martin, L.; Lindqvist, C.; Brismar, T. Body composition evaluation with computed tomography: Contrast media and slice thickness cause methodological errors. Nutrition. 2019, 59, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Riem, L.; DuCharme, O.; Cousins, M.; et al. AI driven analysis of MRI to measure health and disease progression in FSHD. Sci Rep 2024, 14, 15462. [Google Scholar] [CrossRef]
- Moraes da Silva, W.; Cazella, S.C.; Rech, R.S. Deep learning algorithms to assist in imaging diagnosis in individuals with disc herniation or spondylolisthesis: a scoping review. Int J Med Inform. 2025, 201, 105933. [Google Scholar] [CrossRef]
- Murto, N.; Lund, T.; Kautiainen, H.; et al. Comparison of lumbar disc degeneration grading between deep learning model SpineNet and radiologist: a longitudinal study with a 14-year follow-up. Eur Spine J 2025. [CrossRef] [PubMed]
- van Wulfften Palthe, O.D.R.; Tromp, I.; Ferreira, A.; Fiore, A.; Bramer, J.A.M.; van Dijk, N.C.; DeLaney, T.F.; Schwab, J.H.; Hornicek, F.J. Sacral chordoma: a clinical review of 101 cases with 30-year experience in a single institution. Spine J. 2019, 19, 869–879. [Google Scholar] [CrossRef] [PubMed]
- O'Hanlon, C.E.; Kranz, A.M.; DeYoreo, M.; Mahmud, A.; Damberg, C.L.; Timbie, J. Access, Quality, And Financial Performance Of Rural Hospitals Following Health System Affiliation. Health Aff (Millwood). 2019, 38, 2095–2104. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vaughan, L.; Edwards, N. The problems of smaller, rural and remote hospitals: Separating facts from fiction. Future Healthc J. 2020, 7, 38–45. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ramedani, S.; George, D.R.; Leslie, D.L.; Kraschnewski, J. The bystander effect: Impact of rural hospital closures on the operations and financial well-being of surrounding healthcare institutions. J Hosp Med. 2022, 17, 901–906. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kumar, R.; Waisberg, E.; Ong, J.; et al. Precision health monitoring in spaceflight with integration of lower body negative pressure and advanced large language model artificial intelligence. Life Sci Space Res. 2025, 47, 57–60. [Google Scholar] [CrossRef]
- 2022 National Healthcare Quality and Disparities Report [Internet]. Rockville (MD): Agency for Healthcare Research and Quality (US); 2022 Oct. PORTRAIT OF AMERICAN HEALTHCARE. Available online: https://www.ncbi.nlm.nih.gov/books/NBK587178/.
- Gillespie, E.F.; Santos, P.M.G.; Curry, M.; et al. Implementation Strategies to Promote Short-Course Radiation for Bone Metastases. JAMA Netw Open. 2024, 7, e2411717. [Google Scholar] [CrossRef]
- Allen, J.; Shepherd, C.; Heaton, T.; Behrens, N.; Dorius, A.; Grimes, J. Differences in Medicare payment and practice characteristics for orthopedic surgery subspecialties. Proc (Bayl Univ Med Cent). 2024, 38, 175–178. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, C.; Britto, S.; Diwan, K. Evaluating the Impact of Artificial Intelligence (AI) on Clinical Documentation Efficiency and Accuracy Across Clinical Settings: A Scoping Review. Cureus. 2024, 16, e73994. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Seh, A.H.; Zarour, M.; Alenezi, M.; Sarkar, A.K.; Agrawal, A.; Kumar, R.; Khan, R.A. Healthcare Data Breaches: Insights and Implications. Healthcare (Basel). 2020, 8, 133. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
