Submitted:
27 May 2025
Posted:
28 May 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Harness the Incidence of Anti-Drug Antibody and Pharmacokinetics
2.1. Mechanism for the Incidence of Anti-Drug Antibody (ADA)
2.2. Pharmacokinetic Challenges and Solutions
2.2.1. Molecular Weight: Balancing the Tissue Penetration, Half-Life, & “Switch”
2.2.2. Strategy to Improve Half-Life: Fc Fusion
2.2.3. Strategy to Improve Half-Life: Targeting Serum Albumin
3. Features of fbAb (Fragment-Based Antibody) Immune Cell Engager Platforms
4. T cell Engagers (TCE)
4.1. T Cell Engagers in Cancer
4.1.3. Improving and Examining the Safety of TCE in Treating Solid Tumor
4.1.4. Targeting 4-1BB and CD28 in TCE Design
6. Myeloid Cell Engagers (MCE) and B Cell Engager (BCE)
6.1. MCE and BCE in Treating Cancer
6.2. MCE and BCE in Treating Infectious Disease
6.3. MCE and BCE in Treating Autoimmune Disease
7. Immune Checkpoint Blocker (ICB) and Immune Checkpoint Agonist (ICA)
8. Conclusion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
References
- Elshiaty M, Schindler H, Christopoulos P. Principles and Current Clinical Landscape of Multispecific Antibodies against Cancer. Int J Mol Sci. 2021;22(11).
- Wang J, Kang G, Yuan H, Cao X, Huang H, de Marco A. Research Progress and Applications of Multivalent, Multispecific and Modified Nanobodies for Disease Treatment. Front Immunol. 2021;12:838082.
- Ding L, Tian C, Feng S, Fida G, Zhang C, Ma Y, et al. Small sized EGFR1 and HER2 specific bifunctional antibody for targeted cancer therapy. Theranostics. 2015;5(4):378-98.
- Larbouret C, Robert B, Navarro-Teulon I, Thèzenas S, Ladjemi MZ, Morisseau S, et al. In vivo therapeutic synergism of anti-epidermal growth factor receptor and anti-HER2 monoclonal antibodies against pancreatic carcinomas. Clin Cancer Res. 2007;13(11):3356-62.
- Xu Z, Qiu C, Wen B, Wang S, Zhu L, Zhao L, et al. A bispecific nanobody targeting the dimerization interface of epidermal growth factor receptor: Evidence for tumor suppressive actions in vitro and in vivo. Biochem Biophys Res Commun. 2021;548:78-83.
- Vallera DA, Oh F, Kodal B, Hinderlie P, Geller MA, Miller JS, et al. A HER2 Tri-Specific NK Cell Engager Mediates Efficient Targeting of Human Ovarian Cancer. Cancers (Basel). 2021;13(16).
- Lu Y, Li Q, Fan H, Liao C, Zhang J, Hu H, et al. A Multivalent and Thermostable Nanobody Neutralizing SARS-CoV-2 Omicron (B.1.1.529). Int J Nanomedicine. 2023;18:353-67.
- Henry KA, MacKenzie CR. Antigen recognition by single-domain antibodies: structural latitudes and constraints. MAbs. 2018;10(6):815-26.
- Schriek AI, van Haaren MM, Poniman M, Dekkers G, Bentlage AEH, Grobben M, et al. Anti-HIV-1 Nanobody-IgG1 Constructs With Improved Neutralization Potency and the Ability to Mediate Fc Effector Functions. Front Immunol. 2022;13:893648.
- Terryn S, Francart A, Rommelaere H, Stortelers C, Van Gucht S. Post-exposure Treatment with Anti-rabies VHH and Vaccine Significantly Improves Protection of Mice from Lethal Rabies Infection. PLoS Negl Trop Dis. 2016;10(8):e0004902.
- Bessalah S, Jebahi S, Mejri N, Salhi I, Khorchani T, Hammadi M. Perspective on therapeutic and diagnostic potential of camel nanobodies for coronavirus disease-19 (COVID-19). 3 Biotech. 2021;11(2):89.
- Xu J, Xu K, Jung S, Conte A, Lieberman J, Muecksch F, et al. Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Nature. 2021;595(7866):278-82.
- Jin S, Sun Y, Liang X, Gu X, Ning J, Xu Y, et al. Emerging new therapeutic antibody derivatives for cancer treatment. Signal Transduction and Targeted Therapy. 2022;7(1):39.
- Ai Z, Wang B, Song Y, Cheng P, Liu X, Sun P. Prodrug-based bispecific antibodies for cancer therapy: advances and future directions. Front Immunol. 2025;16:1523693.
- Haber L, Olson K, Kelly MP, Crawford A, DiLillo DJ, Tavaré R, et al. Generation of T-cell-redirecting bispecific antibodies with differentiated profiles of cytokine release and biodistribution by CD3 affinity tuning. Sci Rep. 2021;11(1):14397.
- Asaadi Y, Jouneghani FF, Janani S, Rahbarizadeh F. A comprehensive comparison between camelid nanobodies and single chain variable fragments. Biomark Res. 2021;9(1):87.
- Binder U, Skerra A. Strategies for extending the half-life of biotherapeutics: successes and complications. Expert Opinion on Biological Therapy. 2025;25(1):93-118.
- Jones GB, Collins DS, Harrison MW, Thyagarajapuram NR, Wright JM. Subcutaneous drug delivery: An evolving enterprise. Sci Transl Med. 2017;9(405).
- Vaisman-Mentesh A, Gutierrez-Gonzalez M, DeKosky BJ, Wine Y. The Molecular Mechanisms That Underlie the Immune Biology of Anti-drug Antibody Formation Following Treatment With Monoclonal Antibodies. Front Immunol. 2020;11:1951.
- Davda J, Declerck P, Hu-Lieskovan S, Hickling TP, Jacobs IA, Chou J, et al. Immunogenicity of immunomodulatory, antibody-based, oncology therapeutics. J Immunother Cancer. 2019;7(1):105.
- Shankar G, Arkin S, Cocea L, Devanarayan V, Kirshner S, Kromminga A, et al. Assessment and reporting of the clinical immunogenicity of therapeutic proteins and peptides-harmonized terminology and tactical recommendations. Aaps j. 2014;16(4):658-73.
- Bots SJ, Parker CE, Brandse JF, Löwenberg M, Feagan BG, Sandborn WJ, et al. Anti-Drug Antibody Formation Against Biologic Agents in Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. BioDrugs. 2021;35(6):715-33.
- Chen ML, Nopsopon T, Akenroye A. Incidence of Anti-Drug Antibodies to Monoclonal Antibodies in Asthma: A Systematic Review and Meta-Analysis. J Allergy Clin Immunol Pract. 2023;11(5):1475-84.e20.
- Li M, Zhao R, Chen J, Tian W, Xia C, Liu X, et al. Next generation of anti-PD-L1 Atezolizumab with enhanced anti-tumor efficacy in vivo. Sci Rep. 2021;11(1):5774.
- Penny HL, Hainline K, Theoharis N, Wu B, Brandl C, Webhofer C, et al. Characterization and root cause analysis of immunogenicity to pasotuxizumab (AMG 212), a prostate-specific membrane antigen-targeting bispecific T-cell engager therapy. Front Immunol. 2023;14:1261070.
- Trivedi A, Stienen S, Zhu M, Li H, Yuraszeck T, Gibbs J, et al. Clinical Pharmacology and Translational Aspects of Bispecific Antibodies. Clin Transl Sci. 2017;10(3):147-62.
- Friedrich SW, Lin SC, Stoll BR, Baxter LT, Munn LL, Jain RK. Antibody-directed effector cell therapy of tumors: analysis and optimization using a physiologically based pharmacokinetic model. Neoplasia. 2002;4(5):449-63.
- Peng L, Sferruzza G, Yang L, Zhou L, Chen S. CAR-T and CAR-NK as cellular cancer immunotherapy for solid tumors. Cellular & Molecular Immunology. 2024;21(10):1089-108.
- Lee DSW, Rojas OL, Gommerman JL. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nature Reviews Drug Discovery. 2021;20(3):179-99.
- Matsumura, Y. Barriers to antibody therapy in solid tumors, and their solutions. Cancer Science. 2021;112(8):2939-47.
- Cuesta AM, Sainz-Pastor N, Bonet J, Oliva B, Alvarez-Vallina L. Multivalent antibodies: when design surpasses evolution. Trends Biotechnol. 2010;28(7):355-62.
- Matsumura Y, Gotoh M, Muro K, Yamada Y, Shirao K, Shimada Y, et al. Phase I and pharmacokinetic study of MCC-465, a doxorubicin (DXR) encapsulated in PEG immunoliposome, in patients with metastatic stomach cancer. Annals of Oncology. 2004;15(3):517-25.
- Matsumura, Y. Cancer stromal targeting therapy to overcome the pitfall of EPR effect. Adv Drug Deliv Rev. 2020;154-155:142-50.
- Sigmund AM, Sahasrabudhe KD, Bhatnagar B. Evaluating Blinatumomab for the Treatment of Relapsed/Refractory ALL: Design, Development, and Place in Therapy. Blood Lymphat Cancer. 2020;10:7-20.
- Administration USFaD. BLINCYTO® (blinatumomab) for injection, for intravenous use Initial U.S. Approval: 2014. Revised: 6/2024.
- Budde LE, Berger C, Lin Y, Wang J, Lin X, Frayo SE, et al. Combining a CD20 chimeric antigen receptor and an inducible caspase 9 suicide switch to improve the efficacy and safety of T cell adoptive immunotherapy for lymphoma. PLoS One. 2013;8(12):e82742.
- Tey SK, Dotti G, Rooney CM, Heslop HE, Brenner MK. Inducible caspase 9 suicide gene to improve the safety of allodepleted T cells after haploidentical stem cell transplantation. Biol Blood Marrow Transplant. 2007;13(8):913-24.
- Hoyos V, Savoldo B, Quintarelli C, Mahendravada A, Zhang M, Vera J, et al. Engineering CD19-specific T lymphocytes with interleukin-15 and a suicide gene to enhance their anti-lymphoma/leukemia effects and safety. Leukemia. 2010;24(6):1160-70.
- Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nature Reviews Immunology. 2007;7(9):715-25.
- Deyev SM, Lebedenko EN. Multivalency: the hallmark of antibodies used for optimization of tumor targeting by design. Bioessays. 2008;30(9):904-18.
- Bournazos S, Gupta A, Ravetch JV. The role of IgG Fc receptors in antibody-dependent enhancement. Nature Reviews Immunology. 2020;20(10):633-43.
- Vermeire G, De Smidt E, Casteels P, Geukens N, Declerck P, Hollevoet K. DNA-based delivery of anti-DR5 Nanobodies improves exposure and anti-tumor efficacy over protein-based administration. Cancer Gene Therapy. 2021;28(7):828-38.
- (FDA) USFaDA. NDA/BLA Multi-disciplinary Review and Evaluation: IMDELLTRA - Tarlatamab (BLA 761344). 2024.
- Hummel H-D, Kufer P, Grüllich C, Deschler-Baier B, Chatterjee M, Goebeler M-E, et al. Phase 1 study of pasotuxizumab (BAY 2010112), a PSMA-targeting Bispecific T cell Engager (BiTE) immunotherapy for metastatic castration-resistant prostate cancer (mCRPC). Journal of Clinical Oncology. 2019;37(15_suppl):5034-.
- Ahamadi-Fesharaki R, Fateh A, Vaziri F, Solgi G, Siadat SD, Mahboudi F, et al. Single-Chain Variable Fragment-Based Bispecific Antibodies: Hitting Two Targets with One Sophisticated Arrow. Mol Ther Oncolytics. 2019;14:38-56.
- Liu H, Xi R, Mao D, Zhao X, Wu T. Efficacy and Safety of Blinatumomab for the Treatment of Relapsed/Refractory Acute Lymphoblastic Leukemia: A Systemic Review and Meta-Analysis. Clin Lymphoma Myeloma Leuk. 2023;23(3):e139-e49.
- Ahn M-J, Cho BC, Felip E, Korantzis I, Ohashi K, Majem M, et al. Tarlatamab for Patients with Previously Treated Small-Cell Lung Cancer. New England Journal of Medicine. 2023;389(22):2063-75.
- Tang D, Kang R. Tarlatamab: the promising immunotherapy on its way from the lab to the clinic. Transl Lung Cancer Res. 2023;12(6):1355-7.
- Kang J, Sun T, Zhang Y. Immunotherapeutic progress and application of bispecific antibody in cancer. Front Immunol. 2022;13:1020003.
- Cech P, Skórka K, Dziki L, Giannopoulos K. T-Cell Engagers-The Structure and Functional Principle and Application in Hematological Malignancies. Cancers (Basel). 2024;16(8).
- Uy GL, Aldoss I, Foster MC, Sayre PH, Wieduwilt MJ, Advani AS, et al. Flotetuzumab as salvage immunotherapy for refractory acute myeloid leukemia. Blood. 2021;137(6):751-62.
- Harding JJ, Garrido-Laguna I, Chen X, Basu C, Dowlati A, Forgie A, et al. A Phase 1 Dose-Escalation Study of PF-06671008, a Bispecific T-Cell-Engaging Therapy Targeting P-Cadherin in Patients With Advanced Solid Tumors. Front Immunol. 2022;13:845417.
- Root AR, Cao W, Li B, LaPan P, Meade C, Sanford J, et al. Development of PF-06671008, a Highly Potent Anti-P-cadherin/Anti-CD3 Bispecific DART Molecule with Extended Half-Life for the Treatment of Cancer. Antibodies (Basel). 2016;5(1).
- Luke JJ, Patel MR, Blumenschein GR, Hamilton E, Chmielowski B, Ulahannan SV, et al. The PD-1- and LAG-3-targeting bispecific molecule tebotelimab in solid tumors and hematologic cancers: a phase 1 trial. Nature Medicine. 2023;29(11):2814-24.
- Luke JJ, Patel MR, Hamilton EP, Chmielowski B, Ulahannan SV, Kindler HL, et al. A phase I, first-in-human, open-label, dose-escalation study of MGD013, a bispecific DART molecule binding PD-1 and LAG-3, in patients with unresectable or metastatic neoplasms. Journal of Clinical Oncology. 2020;38(15_suppl):3004-.
- Luke JJ, Sharma M, Chandana SR, Lugowska IA, Szczylik C, Zolnierek J, et al. Lorigerlimab, a bispecific PD-1×CTLA-4 DART molecule in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC): A phase 1 expansion (exp) cohort. Journal of Clinical Oncology. 2023;41(6_suppl):155-.
- Sharma M, Sanborn RE, Cote GM, Bendell JC, Kaul S, Chen F, et al. 1020O A phase I, first-in-human, open-label, dose escalation study of MGD019, an investigational bispecific PD-1 x CTLA-4 DART® molecule in patients with advanced solid tumours. Annals of Oncology. 2020;31:S704-S5.
- Bates A, Power CA. David vs. Goliath: The Structure, Function, and Clinical Prospects of Antibody Fragments. Antibodies (Basel). 2019;8(2).
- Zaia, JA. A New Agent in the Strategy to Cure AIDS. Molecular Therapy. 2016;24(11):1894-6.
- Administration FaD. KIMMTRAK (tebentafusp-tebn) injection, for intravenous use: Highlights of prescribing information. 2022(Initial U.S. Approval: 2022).
- Lopez JS, Milhem M, Butler MO, Thistlethwaite F, Van Tine BA, D'Angelo SP, et al. Phase 1 study of IMCnyeso, a T cell receptor bispecific ImmTAC targeting NY-ESO-1-expressing malignancies. Cell Rep Med. 2025;6(4):101994.
- Dart RC, Bush SP, Heard K, Arnold TC, Sutter M, Campagne D, et al. The Efficacy of Antivenin Latrodectus (Black Widow) Equine Immune F(ab')(2) Versus Placebo in the Treatment of Latrodectism: A Randomized, Double-Blind, Placebo-Controlled, Clinical Trial. Ann Emerg Med. 2019;74(3):439-49.
- Lopardo G, Belloso WH, Nannini E, Colonna M, Sanguineti S, Zylberman V, et al. RBD-specific polyclonal F(ab´)2 fragments of equine antibodies in patients with moderate to severe COVID-19 disease: A randomized, multicenter, double-blind, placebo-controlled, adaptive phase 2/3 clinical trial. eClinicalMedicine 2021, 34. [Google Scholar]
- Gupta D, Ahmed F, Tandel D, Parthasarathy H, Vedagiri D, Sah V, et al. Equine immunoglobulin fragment F(ab')(2) displays high neutralizing capability against multiple SARS-CoV-2 variants. Clin Immunol. 2022;237:108981.
- Akiyoshi DE, Sheoran AS, Rich CM, Richard L, Chapman-Bonofiglio S, Tzipori S. Evaluation of Fab and F(ab')2 fragments and isotype variants of a recombinant human monoclonal antibody against Shiga toxin 2. Infect Immun. 2010;78(3):1376-82.
- Buist MR, Kenemans P, den Hollander W, Vermorken JB, Molthoff CJM, Burger CW, et al. Kinetics and Tissue Distribution of the Radiolabeled Chimeric Monoclonal Antibody MOv18 IgG and F(ab′)2 Fragments in Ovarian Carcinoma Patients1. Cancer Res. 1993;53(22):5413-8.
- Ruppel J, Brady A, Elliott R, Leddy C, Palencia M, Coleman D, et al. Preexisting Antibodies to an F(ab')2 Antibody Therapeutic and Novel Method for Immunogenicity Assessment. J Immunol Res. 2016;2016:2921758.
- Xue J, Ge X, Li Q, Xue L, Zhao W, Lin F, et al. A phase Ia, dose-escalation study of IMB071703 injection in patients (pts) with recurrent or metastatic, advanced solid tumors. Journal of Clinical Oncology. 2024;42(16_suppl):e14502-e.
- Gauthier L, Morel A, Anceriz N, Rossi B, Blanchard-Alvarez A, Grondin G, et al. Multifunctional Natural Killer Cell Engagers Targeting NKp46 Trigger Protective Tumor Immunity. Cell. 2019;177(7):1701-13.e16.
- Demaria O, Habif G, Le Floch F, Chiossone L, Remark R, Vetizou M, et al. IPH6501 Is a Novel NKp46-Targeting Tetraspecific Antibody-Based Natural Killer Cell Engager Therapeutic (ANKET) Armed with a Non-Alpha IL-2 Variant and Developed for the Treatment of CD20-Positive Malignancies. Blood. 2022;140(Supplement 1):11559-.
- Safran H, Cassier PA, Vicier C, Forget F, Gomez-Roca CA, Penel N, et al. Phase 1/2 Study of DF1001, a novel tri-specific, NK cell engager therapy targeting HER2, in patients with advanced solid tumors: Phase 1 DF1001 monotherapy dose-escalation results. Journal of Clinical Oncology. 2023;41(16_suppl):2508-.
- Pharma, I. Innate Pharma shares updated results from the Sanofi developed blood cancer Phase 1/2 SAR443579/IPH6101 trial. 2024.
- Austin RJ, Lemon BD, Aaron WH, Barath M, Culp PA, DuBridge RB, et al. TriTACs, a Novel Class of T-Cell–Engaging Protein Constructs Designed for the Treatment of Solid Tumors. Molecular Cancer Therapeutics. 2021;20(1):109-20.
- Molloy ME, Aaron WH, Barath M, Bush MC, Callihan EC, Carlin K, et al. HPN328, a Trispecific T Cell–Activating Protein Construct Targeting DLL3-Expressing Solid Tumors. Molecular Cancer Therapeutics. 2024;23(9):1294-304.
- Kwant KS, Rocha SS, Yu T, Stephenson K, Banzon RR, Vollhardt S, et al. Abstract 2861: TriTAC-XR: An extended-release T cell engager platform designed to minimize cytokine release syndrome. Cancer Res. 2022;82(12_Supplement):2861-.
- Montesinos P, Arnan M, De Botton S, Calbacho M, Rodriguez Veiga R, Bories P, et al. Engaging Innate Immunity By AFM28, an Innate Cell Engager (ICE®) Targeting CD123-Positive Leukemic Cells in Patients with Relapsed/Refractory Acute Myeloid Leukemia: Safety and Efficacy Results of a First-in-Human Phase 1 Study. Blood. 2024;144(Supplement 1):738-.
- Kim WS, Shortt J, Zinzani PL, Mikhailova N, Radeski D, Ribrag V, et al. A Phase II Study of Acimtamig (AFM13) in Patients with CD30-Positive, Relapsed, or Refractory Peripheral T-cell Lymphomas. Clin Cancer Res. 2025;31(1):65-73.
- Topp M, Dlugosz-Danecka M, Skotnicki AB, Salogub G, Viardot A, Klein AK, et al. Safety of AFM11 in the treatment of patients with B-cell malignancies: findings from two phase 1 studies. Trials. 2023;24(1):4.
- Reusch U, Duell J, Ellwanger K, Herbrecht C, Knackmuss SH, Fucek I, et al. A tetravalent bispecific TandAb (CD19/CD3), AFM11, efficiently recruits T cells for the potent lysis of CD19(+) tumor cells. MAbs. 2015;7(3):584-604.
- Bartlett NL, Herrera AF, Domingo-Domenech E, Mehta A, Forero-Torres A, Garcia-Sanz R, et al. A phase 1b study of AFM13 in combination with pembrolizumab in patients with relapsed or refractory Hodgkin lymphoma. Blood. 2020;136(21):2401-9.
- Stumpp MT, Dawson KM, Binz HK. Beyond Antibodies: The DARPin(®) Drug Platform. BioDrugs. 2020;34(4):423-33.
- Link A, Juglair L, Poulet H, Lemaillet G, Reichen C, Schildknecht P, et al. Abstract 2273: Selection of first-in-human clinical dose range for the tumor-targeted 4-1BB agonist MP0310 (AMG 506) using a pharmacokinetic/pharmacodynamics modeling approach. Cancer Res. 2020;80(16_Supplement):2273-.
- Baird R, Omlin A, Kiemle-Kallee J, Fiedler U, Zitt C, Feurstein D, et al. Abstract OT1-03-02: MP0274-CP101: A phase 1, first-in-human, single-arm, multi-center, open-label, dose escalation study to assess safety, tolerability, and pharmacokinetics of MP0274 in patients with advanced HER2-positive solid tumors. Cancer Res. 2018;78(4_Supplement):OT1-03-2-OT1--2.
- Baird RD, Linossi C, Middleton M, Lord S, Harris A, Rodón J, et al. First-in-Human Phase I Study of MP0250, a First-in-Class DARPin Drug Candidate Targeting VEGF and HGF, in Patients With Advanced Solid Tumors. J Clin Oncol. 2021;39(2):145-54.
- Gomez-Roca CA, Steeghs N, Gort EH, Winter HAMD, Fernandez E, Stavropoulou V, et al. Phase I study of MP0317, a FAP-dependent DARPin, for tumor-localized CD40 activation in patients with advanced solid tumors. Journal of Clinical Oncology. 2023;41(16_suppl):2584-.
- Steeghs N, Gomez-Roca CA, Korakis I, Gort EH, Winter HAMD, Stojcheva N, et al. Effect of MP0317, a FAP x CD40 DARPin, on safety profile and tumor-localized CD40 activation in a phase 1 study in patients with advanced solid tumors. Journal of Clinical Oncology. 2024;42(16_suppl):2573-.
- Knop S, Szarejko M, Grząśko N, Bringhen S, Trautmann-Grill K, Jurczyszyn A, et al. A phase 1b/2 study evaluating efficacy and safety of MP0250, a designed ankyrin repeat protein (DARPin) simultaneously targeting vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF), in combination with bortezomib and dexamethasone, in patients with relapsed or refractory multiple myeloma. eJHaem. 2024;5(5):940-50.
- Vallera DA, Felices M, McElmurry R, McCullar V, Zhou X, Schmohl JU, et al. IL15 Trispecific Killer Engagers (TriKE) Make Natural Killer Cells Specific to CD33+ Targets While Also Inducing Persistence, In Vivo Expansion, and Enhanced Function. Clinical Cancer Research. 2016;22(14):3440-50.
- Felices M, Lenvik TR, Kodal B, Lenvik AJ, Hinderlie P, Bendzick LE, et al. Potent Cytolytic Activity and Specific IL15 Delivery in a Second-Generation Trispecific Killer Engager. Cancer Immunol Res. 2020;8(9):1139-49.
- Sarhan D, Brandt L, Felices M, Guldevall K, Lenvik T, Hinderlie P, et al. 161533 TriKE stimulates NK-cell function to overcome myeloid-derived suppressor cells in MDS. Blood Adv. 2018;2(12):1459-69.
- Felices M, Warlick E, Juckett M, Weisdorf D, Vallera D, Miller S, et al. 444 GTB-3550 tri-specific killer engager TriKE™ drives NK cells expansion and cytotoxicity in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) patients. Journal for ImmunoTherapy of Cancer. 2021;9(Suppl 2):A473-A.
- Warlick ED, Weisdorf DJ, Vallera DA, Wangen R, Lewis D, Knox J, et al. GTB-3550 TriKE™ for the Treatment of High-Risk Myelodysplastic Syndromes (MDS) and Refractory/Relapsed Acute Myeloid Leukemia (AML) Safely Drives Natural Killer (NK) Cell Proliferation At Initial Dose Cohorts. Blood. 2020;136(Supplement 1):7-8.
- GT Biopharma, I. Corporate presentation describing TriKE® platform, pipeline, and clinical data as of November 2022. GT Biopharma Corporate Presentation. 2022.
- Zhao Y, Chen G, Li X, Wu J, Chang B, Hu S, et al. KN046, a bispecific antibody against PD-L1 and CTLA-4, plus chemotherapy as first-line treatment for metastatic NSCLC: A multicenter phase 2 trial. Cell Rep Med. 2024;5(3):101470.
- Li Q, Liu J, Zhang Q, Ouyang Q, Zhang Y, Liu Q, et al. The anti-PD-L1/CTLA-4 bispecific antibody KN046 in combination with nab-paclitaxel in first-line treatment of metastatic triple-negative breast cancer: a multicenter phase II trial. Nat Commun. 2024;15(1):1015.
- Li BT, Pegram MD, Lee K-W, Sharma M, Lee J, Spira AI, et al. A phase 1/2 study of a first-in-human immune-stimulating antibody conjugate (ISAC) BDC-1001 in patients with advanced HER2-expressing solid tumors. Journal of Clinical Oncology. 2023;41(16_suppl):2538-.
- Janku F, Han S-W, Doi T, Ajani J, Kuboki Y, Mahling P, et al. 378 A first in-human, multicenter, open-label, dose-finding phase 1 study of the immune stimulator antibody conjugate NJH395 in patients with nonbreast HER2+ advanced malignancies. Journal for ImmunoTherapy of Cancer. 2020;8(Suppl 3):A230-A.
- Biotherapeutics, B. Bolt Biotherapeutics Reports First Quarter 2024 Results, Announces Strategic Pipeline Prioritization and Changes to Leadership Team. 2024.
- Li BT, Lee KW, Pegram M, Sharma MR, Lee J, Spira AI, et al. 657MO Recommended phase II dose (RP2D) selection and pharmacodynamic (PD) data of the first-in-human immune-stimulating antibody conjugate (ISAC) BDC-1001 in patients (pts) with advanced HER2-expressing solid tumors. Annals of Oncology. 2023;34:S462-S3.
- André AS, Moutinho I, Dias JNR, Aires-da-Silva F. In vivo Phage Display: A promising selection strategy for the improvement of antibody targeting and drug delivery properties. Front Microbiol. 2022;13:962124.
- Rolin C, Zimmer J, Seguin-Devaux C. Bridging the gap with multispecific immune cell engagers in cancer and infectious diseases. Cell Mol Immunol. 2024;21(7):643-61.
- Baeuerle PA, Wesche H. T-cell-engaging antibodies for the treatment of solid tumors: challenges and opportunities. Curr Opin Oncol. 2022;34(5):552-8.
- Dustin, ML. The immunological synapse. Cancer Immunol Res. 2014;2(11):1023-33.
- Poussin M, Sereno A, Wu X, Huang F, Manro J, Cao S, et al. Dichotomous impact of affinity on the function of T cell engaging bispecific antibodies. J Immunother Cancer. 2021;9(7).
- Singh K, Hotchkiss KM, Mohan AA, Reedy JL, Sampson JH, Khasraw M. For whom the T cells troll? Bispecific T-cell engagers in glioblastoma. Journal for ImmunoTherapy of Cancer. 2021;9(11):e003679.
- Dreier T, Lorenczewski G, Brandl C, Hoffmann P, Syring U, Hanakam F, et al. Extremely potent, rapid and costimulation-independent cytotoxic T-cell response against lymphoma cells catalyzed by a single-chain bispecific antibody. International Journal of Cancer. 2002;100(6):690-7.
- Administration FaD. 761324Orig1s000 Multi-Discipline Review (Epcoritamab, BLA 761324). 2023.
- Menon AP, Moreno B, Meraviglia-Crivelli D, Nonatelli F, Villanueva H, Barainka M, et al. Modulating T Cell Responses by Targeting CD3. Cancers (Basel). 2023;15(4).
- Trinklein ND, Pham D, Schellenberger U, Buelow B, Boudreau A, Choudhry P, et al. Efficient tumor killing and minimal cytokine release with novel T-cell agonist bispecific antibodies. MAbs. 2019;11(4):639-52.
- Velasco Cárdenas RM, Brandl SM, Meléndez AV, Schlaak AE, Buschky A, Peters T, et al. Harnessing CD3 diversity to optimize CAR T cells. Nat Immunol. 2023;24(12):2135-49.
- Molina JC, Shah NN. CAR T cells better than BiTEs. Blood Advances. 2021;5(2):602-6.
- Subklewe, M. BiTEs better than CAR T cells. Blood Adv. 2021;5(2):607-12.
- M E, R G, D R, D B, N K, J H, et al. - First generation anti-CD19 chimeric antigen receptor-modified T cells for management of B cell malignances: initial analysis of an ongoing Phase I clinical trial. J Immunother Cancer. 2014;2(Suppl 3):12.
- Jabbour E, Zugmaier G, Agrawal V, Martínez-Sánchez P, Rifón Roca JJ, Cassaday RD, et al. Single agent subcutaneous blinatumomab for advanced acute lymphoblastic leukemia. Am J Hematol. 2024;99(4):586-95.
- Thieblemont C, Phillips T, Ghesquieres H, Cheah CY, Clausen MR, Cunningham D, et al. Epcoritamab, a Novel, Subcutaneous CD3xCD20 Bispecific T-Cell-Engaging Antibody, in Relapsed or Refractory Large B-Cell Lymphoma: Dose Expansion in a Phase I/II Trial. J Clin Oncol. 2023;41(12):2238-47.
- Gibson A, Nunez C, Robusto L, Kammerer B, Garcia M, Roth M, et al. Combination low-intensity chemotherapy plus inotuzumab ozogamicin, blinatumomab and rituximab for pediatric patients with relapsed/refractory B-cell acute lymphoblastic leukemia. Haematologica. 2024;109(9):3042-7.
- Cords L, Schaefers C, Kamili A, Hoffmann C, Cichutek S, Haag F, et al. BCMA x CD3 T-cell engager in a patient with pentarefractory multiple myeloma and HIV: a clinical and immunological report. Haematologica. 2024;109(9):3071-7.
- Géraud A, Hueso T, Laparra A, Bige N, Ouali K, Cauquil C, et al. Reactions and adverse events induced by T-cell engagers as anti-cancer immunotherapies, a comprehensive review. European Journal of Cancer. 2024;205:114075.
- Chen B, Zou Z, Zhang Q, Chen K, Zhang X, Xiao D, et al. Efficacy and safety of blinatumomab in children with relapsed/refractory B cell acute lymphoblastic leukemia: A systematic review and meta-analysis. Frontiers in Pharmacology. 2023;13.
- Aamir S, Anwar MY, Khalid F, Khan SI, Ali MA, Khattak ZE. Systematic Review and Meta-analysis of CD19-Specific CAR-T Cell Therapy in Relapsed/Refractory Acute Lymphoblastic Leukemia in the Pediatric and Young Adult Population: Safety and Efficacy Outcomes. Clin Lymphoma Myeloma Leuk. 2021;21(4):e334-e47.
- Philipp N, Kazerani M, Nicholls A, Vick B, Wulf J, Straub T, et al. T-cell exhaustion induced by continuous bispecific molecule exposure is ameliorated by treatment-free intervals. Blood. 2022;140(10):1104-18.
- Topp MS, Duell J, Zugmaier G, Attal M, Moreau P, Langer C, et al. Anti–B-Cell Maturation Antigen BiTE Molecule AMG 420 Induces Responses in Multiple Myeloma. Journal of Clinical Oncology. 2020;38(8):775-83.
- Topp MS, Duell J, Zugmaier G, Attal M, Moreau P, Langer C, et al. Anti-B-Cell Maturation Antigen BiTE Molecule AMG 420 Induces Responses in Multiple Myeloma. J Clin Oncol. 2020;38(8):775-83.
- Bahlis NJ, Costello CL, Raje NS, Levy MY, Dholaria B, Solh M, et al. Elranatamab in relapsed or refractory multiple myeloma: the MagnetisMM-1 phase 1 trial. Nat Med. 2023;29(10):2570-6.
- Ravandi F, Stein AS, Kantarjian HM, Walter RB, Paschka P, Jongen-Lavrencic M, et al. A Phase 1 First-in-Human Study of AMG 330, an Anti-CD33 Bispecific T-Cell Engager (BiTE®) Antibody Construct, in Relapsed/Refractory Acute Myeloid Leukemia (R/R AML). Blood. 2018;132(Supplement 1):25-.
- Chichili GR, Huang L, Li H, Burke S, He L, Tang Q, et al. A CD3xCD123 bispecific DART for redirecting host T cells to myelogenous leukemia: preclinical activity and safety in nonhuman primates. Sci Transl Med. 2015;7(289):289ra82.
- Biotech, F. MacroGenics switches horses in CD123 race, canning flotetuzumab in favor of next-gen successor. 2022.
- Winer ES, Maris M, Sharma MR, Kaminker P, Zhao E, Ward A, et al. A Phase 1, First-in-Human, Dose-Escalation Study of MGD024, a CD123 x CD3 Bispecific Dart® Molecule, in Patients with Relapsed or Refractory CD123-Positive (+) Hematologic Malignancies. Blood. 2022;140(Supplement 1):11753-4.
- Hoffman LM, Gore L. Blinatumomab, a Bi-Specific Anti-CD19/CD3 BiTE(®) Antibody for the Treatment of Acute Lymphoblastic Leukemia: Perspectives and Current Pediatric Applications. Front Oncol. 2014;4:63.
- Chou J, Egusa EA, Wang S, Badura ML, Lee F, Bidkar AP, et al. Immunotherapeutic Targeting and PET Imaging of DLL3 in Small-Cell Neuroendocrine Prostate Cancer. Cancer Res. 2023;83(2):301-15.
- Giffin MJ, Cooke K, Lobenhofer EK, Estrada J, Zhan J, Deegen P, et al. AMG 757, a Half-Life Extended, DLL3-Targeted Bispecific T-Cell Engager, Shows High Potency and Sensitivity in Preclinical Models of Small-Cell Lung Cancer. Clin Cancer Res. 2021;27(5):1526-37.
- Paz-Ares L, Champiat S, Lai WV, Izumi H, Govindan R, Boyer M, et al. Tarlatamab, a First-in-Class DLL3-Targeted Bispecific T-Cell Engager, in Recurrent Small-Cell Lung Cancer: An Open-Label, Phase I Study. J Clin Oncol. 2023;41(16):2893-903.
- Plieth, J. Reality Bites again for Amgen. OncologyPipeline (ApexOnco).
- Oberst MD, Fuhrmann S, Mulgrew K, Amann M, Cheng L, Lutterbuese P, et al. CEA/CD3 bispecific antibody MEDI-565/AMG 211 activation of T cells and subsequent killing of human tumors is independent of mutations commonly found in colorectal adenocarcinomas. MAbs. 2014;6(6):1571-84.
- Rosenthal MA, Balana C, van Linde ME, Sayehli C, Fiedler WM, Wermke M, et al. ATIM-49 (LTBK-01). AMG 596, A NOVEL ANTI-EGFRVIII BISPECIFIC T CELL ENGAGER (BITE(®)) MOLECULE FOR THE TREATMENT OF GLIOBLASTOMA (GBM): PLANNED INTERIM ANALYSIS IN RECURRENT GBM (RGBM). Neuro Oncol. 2019;21(Suppl 6):vi283.
- Beltran H, Johnson ML, Jain P, Schenk EL, Sanborn RE, Thompson JR, et al. Updated results from a phase 1/2 study of HPN328, a tri-specific, half-life (T1/2) extended DLL3-targeting T-cell engager in patients (pts) with small cell lung cancer (SCLC) and other neuroendocrine cancers (NEC). Journal of Clinical Oncology. 2024;42(16_suppl):8090-.
- Bono JSD, Fong L, Beer TM, Gao X, Geynisman DM, III HAB, et al. Results of an ongoing phase 1/2a dose escalation study of HPN424, a tri-specific half-life extended PSMA-targeting T-cell engager, in patients with metastatic castration-resistant prostate cancer (mCRPC). Journal of Clinical Oncology. 2021;39(15_suppl):5013-.
- Gorges TM, Riethdorf S, von Ahsen O, Nastał YP, Röck K, Boede M, et al. Heterogeneous PSMA expression on circulating tumor cells: a potential basis for stratification and monitoring of PSMA-directed therapies in prostate cancer. Oncotarget. 2016;7(23):34930-41.
- Molloy ME, Austin RJ, Lemon BD, Aaron WH, Ganti V, Jones A, et al. Preclinical Characterization of HPN536, a Trispecific, T-Cell–Activating Protein Construct for the Treatment of Mesothelin-Expressing Solid Tumors. Clinical Cancer Research. 2021;27(5):1452-62.
- Middelburg J, Kemper K, Engelberts P, Labrijn AF, Schuurman J, van Hall T. Overcoming Challenges for CD3-Bispecific Antibody Therapy in Solid Tumors. Cancers (Basel). 2021;13(2).
- Wang L, Hoseini SS, Xu H, Ponomarev V, Cheung NK. Silencing Fc Domains in T cell-Engaging Bispecific Antibodies Improves T-cell Trafficking and Antitumor Potency. Cancer Immunol Res. 2019;7(12):2013-24.
- Labrijn AF, Meesters JI, Bunce M, Armstrong AA, Somani S, Nesspor TC, et al. Efficient Generation of Bispecific Murine Antibodies for Pre-Clinical Investigations in Syngeneic Rodent Models. Sci Rep. 2017;7(1):2476.
- Vaks L, Litvak-Greenfeld D, Dror S, Shefet-Carasso L, Matatov G, Nahary L, et al. Design Principles for Bispecific IgGs, Opportunities and Pitfalls of Artificial Disulfide Bonds. Antibodies. 2018;7(3):27.
- Kang TH, Jung ST. Boosting therapeutic potency of antibodies by taming Fc domain functions. Experimental & Molecular Medicine. 2019;51(11):1-9.
- Kebenko M, Goebeler ME, Wolf M, Hasenburg A, Seggewiss-Bernhardt R, Ritter B, et al. A multicenter phase 1 study of solitomab (MT110, AMG 110), a bispecific EpCAM/CD3 T-cell engager (BiTE®) antibody construct, in patients with refractory solid tumors. Oncoimmunology. 2018;7(8):e1450710.
- Amann M, Brischwein K, Lutterbuese P, Parr L, Petersen L, Lorenczewski G, et al. Therapeutic Window of MuS110, a Single-Chain Antibody Construct Bispecific for Murine EpCAM and Murine CD3. Cancer Res. 2008;68(1):143-51.
- Schlereth B, Lorenczewski G, Friedrich M, Lutterbuese P, Lutterbuese R, Kischel R, et al. Feasibility of repeated subcutaneous delivery supports a new route of administration for treating cancer patients with EpCAM-specific BiTE antibody MT110. Cancer Res. 2008;68(9_Supplement):2403-.
- Kerns SJ, Belgur C, Petropolis D, Kanellias M, Barrile R, Sam J, et al. Human immunocompetent Organ-on-Chip platforms allow safety profiling of tumor-targeted T-cell bispecific antibodies. Elife. 2021;10.
- Dian Y, Liu Y, Zeng F, Sun Y, Deng G. Efficacy and safety of tebentafusp in patients with metastatic uveal melanoma: A systematic review and meta-analysis. Hum Vaccin Immunother. 2024;20(1):2374647.
- Piulats JM, Watkins C, Costa-García M, Del Carpio L, Piperno-Neumann S, Rutkowski P, et al. Overall survival from tebentafusp versus nivolumab plus ipilimumab in first-line metastatic uveal melanoma: a propensity score-weighted analysis. Ann Oncol. 2024;35(3):317-26.
- Carvajal RD, Butler MO, Shoushtari AN, Hassel JC, Ikeguchi A, Hernandez-Aya L, et al. Clinical and molecular response to tebentafusp in previously treated patients with metastatic uveal melanoma: a phase 2 trial. Nature Medicine. 2022;28(11):2364-73.
- Administration USFaD. (tebentafusp ) NDA/BLA Multi-Disciplinary Review and Evaluation for Application Number 761228Orig1s000. 2022.
- Chen LN, Carvajal RD. Tebentafusp for the treatment of HLA-A*02:01-positive adult patients with unresectable or metastatic uveal melanoma. Expert Rev Anticancer Ther. 2022;22(10):1017-27.
- Martinez-Perez D, Viñal D, Solares I, Espinosa E, Feliu J. Gp-100 as a Novel Therapeutic Target in Uveal Melanoma. Cancers (Basel). 2021;13(23).
- Rojas LA, Sethna Z, Soares KC, Olcese C, Pang N, Patterson E, et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature. 2023;618(7963):144-50.
- D'Angelo SP, Araujo DM, Abdul Razak AR, Agulnik M, Attia S, Blay J-Y, et al. Afamitresgene autoleucel for advanced synovial sarcoma and myxoid round cell liposarcoma (SPEARHEAD-1): an international, open-label, phase 2 trial. The Lancet. 2024;403(10435):1460-71.
- Low L, Goh A, Koh J, Lim S, Wang CI. Targeting mutant p53-expressing tumours with a T cell receptor-like antibody specific for a wild-type antigen. Nat Commun. 2019;10(1):5382.
- Hsiue EH, Wright KM, Douglass J, Hwang MS, Mog BJ, Pearlman AH, et al. Targeting a neoantigen derived from a common TP53 mutation. Science. 2021;371(6533).
- Chai D, Wang J, Fan C, Lim JM, Wang X, Neeli P, et al. Remodeling of anti-tumor immunity with antibodies targeting a p53 mutant. J Hematol Oncol. 2024;17(1):45.
- Du J, Tang W, Jiao X, Zhao L, Du P, Zhang Y, et al. Abstract 6717: Targeting mutant KRAS proteins with novel TCR-mimic fully human antibodies. Cancer Res. 2024;84(6_Supplement):6717-.
- Du J, Tang W, Jiao X, Zhao L, Du P, Zhang Y, et al. 1168 Identification of fully human TCR-mimic antibodies targeting the KRAS G12V/HLA complex generated in HLA-transgenic RenMabTM mice. Journal for ImmunoTherapy of Cancer. 2023;11(Suppl 1):A1287-A.
- Duan Z, Ho M. Targeting the cancer neoantigens p53 and KRAS with TCR mimic antibodies. Antibody Therapeutics. 2021;4(4):208-11.
- Hamid O, Williams A, Lopez JS, Olson D, Sato T, Shaw HM, et al. Phase 1 safety and efficacy of IMC-F106C, a PRAME × CD3 ImmTAC bispecific, in post-checkpoint cutaneous melanoma (CM). Journal of Clinical Oncology. 2024;42(16_suppl):9507-.
- N, T. Roche, seeing MAGE magic wane, punts pair of solid tumor bispecifics, makes $490M bets disappear. Fierce Biotech [Internet]. 2023.
- Warmuth S, Gunde T, Snell D, Brock M, Weinert C, Simonin A, et al. Engineering of a trispecific tumor-targeted immunotherapy incorporating 4-1BB co-stimulation and PD-L1 blockade. Oncoimmunology. 2021;10(1):2004661.
- Luke J, Johnson M, Gadgeel S, Spira A, Yang J, Johnson J, et al. 732 First-in-human trial to evaluate safety, PK/PD and initial clinical activity of NM21–1480, an affinity-balanced PD-L1x4–1BBxHSA trispecific antibody: results of phase 1 dose escalation. Journal for ImmunoTherapy of Cancer. 2022;10(Suppl 2):A764-A.
- Chin SM, Kimberlin CR, Roe-Zurz Z, Zhang P, Xu A, Liao-Chan S, et al. Structure of the 4-1BB/4-1BBL complex and distinct binding and functional properties of utomilumab and urelumab. Nat Commun. 2018;9(1):4679.
- Vanamee É S, Faustman DL. Structural principles of tumor necrosis factor superfamily signaling. Sci Signal. 2018;11(511).
- Muik A, Garralda E, Altintas I, Gieseke F, Geva R, Ben-Ami E, et al. Preclinical Characterization and Phase I Trial Results of a Bispecific Antibody Targeting PD-L1 and 4-1BB (GEN1046) in Patients with Advanced Refractory Solid Tumors. Cancer Discov. 2022;12(5):1248-65.
- Gao J, Wang Z, Jiang W, Zhang Y, Meng Z, Niu Y, et al. CLDN18.2 and 4-1BB bispecific antibody givastomig exerts antitumor activity through CLDN18.2-expressing tumor-directed T-cell activation. Journal for ImmunoTherapy of Cancer. 2023;11(6):e006704.
- Correnti CE, Laszlo GS, de van der Schueren WJ, Godwin CD, Bandaranayake A, Busch MA, et al. Simultaneous multiple interaction T-cell engaging (SMITE) bispecific antibodies overcome bispecific T-cell engager (BiTE) resistance via CD28 co-stimulation. Leukemia. 2018;32(5):1239-43.
- Bourgeois S, Lim YS, Gane EJ, Lee HW, Cheng W, Heo J, et al. IMC-I109V, a novel T cell receptor (TCR) bispecific (ENVxCD3) designed to eliminate HBV-infected hepatocytes in chronic HBV patients: initial data from a first-in-human study. Poster Presentation (SAT437). The International Liver Congress 2022, 22- Journal of Hepatology2022. p. S872. 26 June.
- Zheng J-R, Wang Z-L, Feng B. Hepatitis B functional cure and immune response. Frontiers in Immunology. 2022;13.
- Yang H, Buisson S, Bossi G, Wallace Z, Hancock G, So C, et al. Elimination of Latently HIV-infected Cells from Antiretroviral Therapy-suppressed Subjects by Engineered Immune-mobilizing T-cell Receptors. Molecular Therapy. 2016;24(11):1913-25.
- Immunocore. Immunocore announces initial Phase 1 safety and pharmacodynamic activity data with first soluble TCR therapy for people living with HIV. 2023.
- Lee CM, Choe PG, Kang CK, Jo HJ, Kim NJ, Yoon SS, et al. Impact of T-Cell Engagers on COVID-19-Related Mortality in B-Cell Lymphoma Patients Receiving B-Cell Depleting Therapy. Cancer Res Treat. 2024;56(1):324-33.
- Kang S, Brown HM, Hwang S. Direct Antiviral Mechanisms of Interferon-Gamma. Immune Netw. 2018;18(5):e33.
- Zhou, F. Molecular mechanisms of IFN-gamma to up-regulate MHC class I antigen processing and presentation. Int Rev Immunol. 2009;28(3-4):239-60.
- Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer Immune Evasion Through Loss of MHC Class I Antigen Presentation. Front Immunol. 2021;12:636568.
- Mihaescu G, Chifiriuc MC, Filip R, Bleotu C, Ditu LM, Constantin M, et al. Role of interferons in the antiviral battle: from virus-host crosstalk to prophylactic and therapeutic potential in SARS-CoV-2 infection. Front Immunol. 2023;14:1273604.
- Teachey DT, Rheingold SR, Maude SL, Zugmaier G, Barrett DM, Seif AE, et al. Cytokine release syndrome after blinatumomab treatment related to abnormal macrophage activation and ameliorated with cytokine-directed therapy. Blood. 2013;121(26):5154-7.
- Chen LY, Kothari J. Supportive care measures for bispecific T-cell engager therapies in haematological malignancies. Current Opinion in Supportive and Palliative Care. 2024;18(2):92-9.
- Dogan M, Kozhaya L, Placek L, Karabacak F, Yigit M, Unutmaz D. Targeting SARS-CoV-2 infection through CAR-T-like bispecific T cell engagers incorporating ACE2. Clinical & Translational Immunology. 2022;11(10):e1421.
- Busca A, Salmanton-García J, Corradini P, Marchesi F, Cabirta A, Di Blasi R, et al. COVID-19 and CAR T cells: a report on current challenges and future directions from the EPICOVIDEHA survey by EHA-IDWP. Blood Adv. 2022;6(7):2427-33.
- Hong R, Zhao H, Wang Y, Chen Y, Cai H, Hu Y, et al. Clinical characterization and risk factors associated with cytokine release syndrome induced by COVID-19 and chimeric antigen receptor T-cell therapy. Bone Marrow Transplantation. 2021;56(3):570-80.
- Wang W, Liu X, Wu S, Chen S, Li Y, Nong L, et al. Definition and Risks of Cytokine Release Syndrome in 11 Critically Ill COVID-19 Patients With Pneumonia: Analysis of Disease Characteristics. J Infect Dis. 2020;222(9):1444-51.
- Desai, PJ. Expression and fusogenic activity of SARS CoV-2 Spike protein displayed in the HSV-1 Virion. bioRxiv. 2023.
- Pizzato M, Baraldi C, Boscato Sopetto G, Finozzi D, Gentile C, Gentile MD, et al. SARS-CoV-2 and the Host Cell: A Tale of Interactions. Frontiers in Virology. 2022;1.
- Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nature Reviews Molecular Cell Biology. 2022;23(1):3-20.
- Li F, Xu W, Zhang X, Wang W, Su S, Han P, et al. A spike-targeting bispecific T cell engager strategy provides dual layer protection against SARS-CoV-2 infection in vivo. Communications Biology. 2023;6(1):592.
- Quiñones-Parra SM, Gras S, Nguyen THO, Farenc C, Szeto C, Rowntree LC, et al. Molecular determinants of cross-strain influenza A virus recognition by αβ T cell receptors. Science Immunology. 2025;10(104):eadn3805.
- Deeks SG, Archin N, Cannon P, Collins S, Jones RB, de Jong MAWP, et al. Research priorities for an HIV cure: International AIDS Society Global Scientific Strategy 2021. Nature Medicine. 2021;27(12):2085-98.
- Gunst JD, Gohil J, Li JZ, Bosch RJ, White CSA, Chun T-W, et al. Time to HIV viral rebound and frequency of post-treatment control after analytical interruption of antiretroviral therapy: an individual data-based meta-analysis of 24 prospective studies. Nature Communications. 2025;16(1):906.
- Nordstrom JL, Ferrari G, Margolis DM. Bispecific antibody-derived molecules to target persistent HIV infection. J Virus Erad. 2022;8(3):100083.
- Promsote W, Xu L, Hataye J, Fabozzi G, March K, Almasri CG, et al. Trispecific antibody targeting HIV-1 and T cells activates and eliminates latently-infected cells in HIV/SHIV infections. Nature Communications. 2023;14(1):3719.
- Pegu A, Asokan M, Wu L, Wang K, Hataye J, Casazza JP, et al. Activation and lysis of human CD4 cells latently infected with HIV-1. Nature Communications. 2015;6(1):8447.
- Bosque A, Planelles V. Induction of HIV-1 latency and reactivation in primary memory CD4+ T cells. Blood. 2009;113(1):58-65.
- Bertoletti A, Le Bert N. Immunotherapy for Chronic Hepatitis B Virus Infection. Gut Liver. 2018;12(5):497-507.
- Fergusson JR, Wallace Z, Connolly MM, Woon AP, Suckling RJ, Hine DW, et al. Immune-Mobilizing Monoclonal T Cell Receptors Mediate Specific and Rapid Elimination of Hepatitis B-Infected Cells. Hepatology. 2020;72(5):1528-40.
- Quitt O, Luo S, Meyer M, Xie Z, Golsaz-Shirazi F, Loffredo-Verde E, et al. T-cell engager antibodies enable T cells to control HBV infection and to target HBsAg-positive hepatoma in mice. J Hepatol. 2021;75(5):1058-71.
- Rovin BH, Furie R, Latinis K, Looney RJ, Fervenza FC, Sanchez-Guerrero J, et al. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum. 2012;64(4):1215-26.
- Anolik JH, Barnard J, Cappione A, Pugh-Bernard AE, Felgar RE, Looney RJ, et al. Rituximab improves peripheral B cell abnormalities in human systemic lupus erythematosus. Arthritis Rheum. 2004;50(11):3580-90.
- Han S, Zhuang H, Shumyak S, Yang L, Reeves WH. Mechanisms of Autoantibody Production in Systemic Lupus Erythematosus. Frontiers in Immunology. 2015;6.
- Cambridge G, Leandro MJ, Teodorescu M, Manson J, Rahman A, Isenberg DA, et al. B cell depletion therapy in systemic lupus erythematosus: effect on autoantibody and antimicrobial antibody profiles. Arthritis Rheum. 2006;54(11):3612-22.
- Schett G, Nagy G, Krönke G, Mielenz D. B-cell depletion in autoimmune diseases. Ann Rheum Dis. 2024;83(11):1409-20.
- Nunez D, Patel D, Volkov J, Wong S, Vorndran Z, Müller F, et al. Cytokine and reactivity profiles in SLE patients following anti-CD19 CART therapy. Molecular Therapy Methods & Clinical Development. 2023;31.
- Mackensen A, Müller F, Mougiakakos D, Böltz S, Wilhelm A, Aigner M, et al. Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus. Nature Medicine. 2022;28(10):2124-32.
- Shah K, Leandro M, Cragg M, Kollert F, Schuler F, Klein C, et al. Disrupting B and T-cell collaboration in autoimmune disease: T-cell engagers versus CAR T-cell therapy? Clinical and Experimental Immunology. 2024;217(1):15-30.
- McHugh, J. BiTEing refractory RA. Nature Reviews Rheumatology. 2024;20(7):395-.
- Bucci L, Hagen M, Rothe T, Raimondo MG, Fagni F, Tur C, et al. Bispecific T cell engager therapy for refractory rheumatoid arthritis. Nature Medicine. 2024;30(6):1593-601.
- Subklewe M, Magno G, Gebhardt C, Bücklein V, Szelinski F, Arévalo HJR, et al. Application of blinatumomab, a bispecific anti-CD3/CD19 T-cell engager, in treating severe systemic sclerosis: A case study. Eur J Cancer. 2024;204:114071.
- Shouse GP, Blum KA, Haydu JE, Abramson JS, Narkhede M, Ip A, et al. A Phase 1, Open-Label, Dose Escalation and Dose Expansion Study of CLN-978 (CD19XCD3XHSA) in Patients with Relapsed/Refractory (R/R) B-Cell Non-Hodgkin Lymphoma (B-NHL). Blood. 2023;142(Supplement 1):3142-.
- Cullinan Therapeutics, I. Cullinan Therapeutics Announces Preclinical Data for CLN-978, a CD19-directed T Cell Engager, to be Presented at ACR Convergence 2024. Press release announcing preclinical data for CLN-978 T cell engager in autoimmune diseases Includes details of Phase 1b SLE trial design and clinical development plans. 2024.
- Máire, F. Quigley JSM, Jeffrey Jones, Farrukh T. Awan, Geoffrey P. Shouse, Yue Zhang, Todd Shearer, Judy Inumerable, Irina M. Shapiro, Patrick A. Baeuerle and Stephen Wax. CLN-978, a CD19-directed T Cell Engager (TCE), Leads to Rapid and Deep B Cell Depletion and Has Broad Potential for Development in Autoimmune Diseases. ACR Convergence 2024. 2024(Abstract Number: 0003).
- Nikkhoi SK, Li G, Hatefi A. Natural killer cell engagers for cancer immunotherapy. Front Oncol. 2024;14:1483884.
- Fenis A, Demaria O, Gauthier L, Vivier E, Narni-Mancinelli E. New immune cell engagers for cancer immunotherapy. Nature Reviews Immunology. 2024;24(7):471-86.
- Kucuksezer UC, Aktas Cetin E, Esen F, Tahrali I, Akdeniz N, Gelmez MY, et al. The Role of Natural Killer Cells in Autoimmune Diseases. Front Immunol. 2021;12:622306.
- Rosenberg J, Huang J. CD8(+) T Cells and NK Cells: Parallel and Complementary Soldiers of Immunotherapy. Curr Opin Chem Eng. 2018;19:9-20.
- Ravandi F, Bashey A, Foran J, Stock W, Mawad R, Short N, et al. Phase 1 study of vibecotamab identifies an optimized dose for treatment of relapsed/refractory acute myeloid leukemia. Blood Adv. 2023;7(21):6492-505.
- Xiao X, Cheng Y, Zheng X, Fang Y, Zhang Y, Sun R, et al. Bispecific NK-cell engager targeting BCMA elicits stronger antitumor effects and produces less proinflammatory cytokines than T-cell engager. Front Immunol. 2023;14:1113303.
- Kim HR, Saavedra O, Cervantes A, Lugowska IA, Oberoi A, El-Khoueiry AB, et al. Preliminary results from the phase 2 study of AFM24 in combination with atezolizumab in patients with EGFR wild-type (EGFR-WT) non-small cell lung cancer (NSCLC). Journal of Clinical Oncology. 2024;42(16_suppl):2522-.
- El-Khoueiry AB, Rivas D, Lee S-H, Thomas JS, Kim YJ, Cervantes A, et al. Leveraging innate immunity with AFM24, a novel CD16A and epidermal growth factor receptor (EGFR) bispecific innate cell engager: Interim results for the non-small cell lung cancer (NSCLC) cohort. Journal of Clinical Oncology. 2023;41(16_suppl):2533-.
- Kontić M, Marković F, Nikolić N, Samardžić N, Stojanović G, Simurdić P, et al. Efficacy of Atezolizumab in Subsequent Lines of Therapy for NSCLC Patients: Insights from Real-World Data. Cancers. 2024;16(21):3696.
- Chen R, Zinzani PL, Fanale MA, Armand P, Johnson NA, Brice P, et al. Phase II Study of the Efficacy and Safety of Pembrolizumab for Relapsed/Refractory Classic Hodgkin Lymphoma. Journal of Clinical Oncology. 2017;35(19):2125-32.
- Kim WS, Shortt J, Zinzani PL, Mikhaylova N, Marin-Niebla A, Radeski D, et al. Abstract CT024: REDIRECT: A Phase 2 study of AFM13 in patients with CD30-positive relapsed or refractory (R/R) peripheral T cell lymphoma (PTCL). Cancer Res. 2023;83(8_Supplement):CT024-CT.
- Sasse S, Bröckelmann PJ, Momotow J, Plütschow A, Hüttmann A, Basara N, et al. AFM13 in patients with relapsed or refractory classical Hodgkin lymphoma: final results of an open-label, randomized, multicenter phase II trial. Leuk Lymphoma. 2022;63(8):1871-8.
- Moskowitz A, Harstrick A, Emig M, Overesch A, Pinto S, Ravenstijn P, et al. AFM13 in Combination with Allogeneic Natural Killer Cells (AB-101) in Relapsed or Refractory Hodgkin Lymphoma and CD30 + Peripheral T-Cell Lymphoma: A Phase 2 Study (LuminICE). Blood. 2023;142(Supplement 1):4855-.
- Inc. ANVaNA. Affimed and NKMax America to Study the Combination of AFM24, an EGFR-Targeted Innate Cell Engager, with SNK01 Natural Killer Cell Therapy. 2020.
- GT Biopharma, I. Product Pipeline Overview. 2025.
- Yang G, Nikkhoi SK, Owji H, Li G, Massumi M, Cervelli J, et al. A Novel Tetravalent Bispecific Immune Cell Engager Activates Natural Killer Cells to Kill Cancer Cells without Mediating Fratricide. Antibodies. 2024;13(3):75.
- Bernard NF, Alsulami K, Pavey E, Dupuy FP. NK Cells in Protection from HIV Infection. Viruses. 2022;14(6).
- Li W, Wu Y, Kong D, Yang H, Wang Y, Shao J, et al. One-domain CD4 Fused to Human Anti-CD16 Antibody Domain Mediates Effective Killing of HIV-1-Infected Cells. Sci Rep. 2017;7(1):9130.
- Harris A, Borgnia MJ, Shi D, Bartesaghi A, He H, Pejchal R, et al. Trimeric HIV-1 glycoprotein gp140 immunogens and native HIV-1 envelope glycoproteins display the same closed and open quaternary molecular architectures. Proc Natl Acad Sci U S A. 2011;108(28):11440-5.
- Tohmé M, Davis T, Zhang M, Lemar H, Duong B, Tan J, et al. 902 NKX019, an off-the-shelf CD19 CAR-NK cell, mediates improved anti-tumor activity and persistence in combination with CD20-directed therapeutic mAbs. Journal for ImmunoTherapy of Cancer. 2022;10(Suppl 2):A940-A.
- Askanase A, Khalili L, Chang C, Blaus A, Gip P, Karis E, et al. A Phase 1 Study of NKX019, an Allogeneic Chimeric Antigen Receptor Natural Killer (CAR-NK) Cell Therapy in Patients with Systemic Lupus Erythematosus. Blood. 2024;144:4846.1.
- Cichocki F, Goodridge JP, Bjordahl R, Mahmood S, Davis ZB, Gaidarova S, et al. Dual antigen-targeted off-the-shelf NK cells show durable response and prevent antigen escape in lymphoma and leukemia. Blood. 2022;140(23):2451-62.
- Koh SK, Kim H, Han B, Jo H, Doh J, Park J, et al. Anti-CD19 antibody cotreatment enhances serial killing activity of anti-CD19 CAR-T/-NK cells and reduces trogocytosis. Blood. 2025;145(9):956-69.
- Bachanova V, Deol A, Al-Juhaishi TMS, Lulla PD, Byrne MT, Wong C, et al. Safety and Efficacy of FT522, a First-in-Class, Multi-Antigen Targeted, Off-the-Shelf, iPSC-Derived CD19 CAR NK Cell Therapy with Alloimmune Defense Receptor (ADR) in Relapsed/Refractory B-Cell Lymphoma. Blood. 2024;144(Supplement 1):6543-.
- Le RQ, Li L, Yuan W, Shord SS, Nie L, Habtemariam BA, et al. FDA Approval Summary: Tocilizumab for Treatment of Chimeric Antigen Receptor T Cell-Induced Severe or Life-Threatening Cytokine Release Syndrome. Oncologist. 2018;23(8):943-7.
- James ND, Atherton PJ, Jones J, Howie AJ, Tchekmedyian S, Curnow RT. A phase II study of the bispecific antibody MDX-H210 (anti-HER2 x CD64) with GM-CSF in HER2+ advanced prostate cancer. Br J Cancer. 2001;85(2):152-6.
- Fury MG, Lipton A, Smith KM, Winston CB, Pfister DG. A phase-I trial of the epidermal growth factor receptor directed bispecific antibody MDX-447 without and with recombinant human granulocyte-colony stimulating factor in patients with advanced solid tumors. Cancer Immunol Immunother. 2008;57(2):155-63.
- Repp R, van Ojik HH, Valerius T, Groenewegen G, Wieland G, Oetzel C, et al. Phase I clinical trial of the bispecific antibody MDX-H210 (anti-FcγRI × anti-HER-2/neu) in combination with Filgrastim (G-CSF) for treatment of advanced breast cancer. British Journal of Cancer. 2003;89(12):2234-43.
- Valone FH, Kaufman PA, Guyre PM, Lewis LD, Memoli V, Deo Y, et al. Phase Ia/Ib trial of bispecific antibody MDX-210 in patients with advanced breast or ovarian cancer that overexpresses the proto-oncogene HER-2/neu. Journal of Clinical Oncology. 1995;13(9):2281-92.
- Borchmann P, Schnell R, Fuss I, Manzke O, Davis T, Lewis LD, et al. Phase 1 trial of the novel bispecific molecule H22xKi-4 in patients with refractory Hodgkin lymphoma. Blood. 2002;100(9):3101-7.
- Pegram MD, Calfa C, Chen C, Salgado AC, Heeke AL, Kang I, et al. Phase 2 study of novel HER2-targeting, TLR7/8 immune-stimulating antibody conjugate (ISAC) BDC-1001 (trastuzumab imbotolimod) +/- pertuzumab (P) in patients (pts) with HER2-positive metastatic breast cancer (MBC) previously treated with trastuzumab deruxtecan (T-DXd). Journal of Clinical Oncology. 2024;42(16_suppl):TPS1121-TPS.
- Janku F, Han SW, Doi T, Amatu A, Ajani JA, Kuboki Y, et al. Preclinical Characterization and Phase I Study of an Anti-HER2-TLR7 Immune-Stimulator Antibody Conjugate in Patients with HER2+ Malignancies. Cancer Immunol Res. 2022;10(12):1441-61.
- Perez C, Henry J, Kim S, El-Khoueiry A, Gutierrez M, Pavlick A, et al. 743 INCLINE-101: preliminary safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of TAC-001 (TLR9 agonist conjugated to a CD22 mAb) in patients with advanced or metastatic solid tumors. Journal for ImmunoTherapy of Cancer. 2023;11(Suppl 1):A838-A.
- Kuo TC, Harrabi O, Chen A, Sangalang ER, Doyle L, Fontaine D, et al. Abstract 1721: TAC-001, a toll-like receptor 9 (TLR9) agonist antibody conjugate targeting B cells, promotes anti-tumor immunity and favorable safety profile following systemic administration in preclinical models. Cancer Res. 2021;81(13_Supplement):1721-.
- Lin N, Du T, Zhou H, Li Y, Wang L, Dong X, et al. BR105 Is a Novel Anti-Sirpα Monoclonal Antibody That Demonstrates a Favorable Safety Profile and Potent Anti-Tumor Efficacy in Patients with Relapsed/Refractory Lymphoid Malignancies: Preliminary Results from a Phase I Study. Blood. 2024;144(Supplement 1):4175-.
- Pandya N, Chen W, Lohr J, Yao X-T, Burns R, Li H, et al. OP0201 Safety, Tolerability, and Functional Activity of MGD010, A Dart® Molecule Targeting CD32B and CD79B, Following A Single Dose Administration in Healthy Volunteers. Annals of the Rheumatic Diseases. 2016;75(Suppl 2):132-3.
- Holtrop T, Budding K, Brandsma AM, Leusen JHW. Targeting the high affinity receptor, FcγRI, in autoimmune disease, neuropathy, and cancer. Immunother Adv. 2022;2(1):ltac011.
- Heemskerk N, Gruijs M, Temming AR, Heineke MH, Gout DY, Hellingman T, et al. Augmented antibody-based anticancer therapeutics boost neutrophil cytotoxicity. J Clin Invest. 2021;131(6).
- Wang B, Liu Y, Yuan R, Dou X, Qian N, Pan X, et al. XFab-α4-1BB/CD40L fusion protein activates dendritic cells, improves expansion of antigen-specific T cells, and exhibits antitumour efficacy in multiple solid tumour models. Cancer Immunol Immunother. 2023;72(12):4015-30.
- Bender AT, Tzvetkov E, Pereira A, Wu Y, Kasar S, Przetak MM, et al. TLR7 and TLR8 Differentially Activate the IRF and NF-κB Pathways in Specific Cell Types to Promote Inflammation. ImmunoHorizons. 2020;4(2):93-107.
- Desnues B, Macedo AB, Roussel-Queval A, Bonnardel J, Henri S, Demaria O, et al. TLR8 on dendritic cells and TLR9 on B cells restrain TLR7-mediated spontaneous autoimmunity in C57BL/6 mice. Proc Natl Acad Sci U S A. 2014;111(4):1497-502.
- Sun K, Salmon SL, Lotz SA, Metzger DW. Interleukin-12 promotes gamma interferon-dependent neutrophil recruitment in the lung and improves protection against respiratory Streptococcus pneumoniae infection. Infect Immun. 2007;75(3):1196-202.
- Nickerson KM, Christensen SR, Shupe J, Kashgarian M, Kim D, Elkon K, et al. TLR9 Regulates TLR7- and MyD88-Dependent Autoantibody Production and Disease in a Murine Model of Lupus. The Journal of Immunology. 2010;184(4):1840-8.
- Janku F, Han S-W, Doi T, Amatu A, Ajani JA, Kuboki Y, et al. Preclinical Characterization and Phase I Study of an Anti–HER2-TLR7 Immune-Stimulator Antibody Conjugate in Patients with HER2+ Malignancies. Cancer Immunology Research. 2022;10(12):1441-61.
- Le Naour J, Kroemer G. Trial watch: Toll-like receptor ligands in cancer therapy. Oncoimmunology. 2023;12(1):2180237.
- AxisPharm. ADC: All You Need to Know About Targeting, Termination, Optimization, and Phase II/III Clinical Trials.
- Bonacorsi MZ, Chen A, Harrabi O, Li M, Sangalang ER, Fontaine D, et al. Abstract 6746: A B-cell targeted TLR9 agonist antibody conjugate potentiates cancer vaccine efficacy and rejuvenates vaccine responses in the elderly. Cancer Res. 2024;84(6_Supplement):6746-.
- Wu ZH, Li N, Mei XF, Chen J, Wang XZ, Guo TT, et al. Preclinical characterization of the novel anti-SIRPα antibody BR105 that targets the myeloid immune checkpoint. J Immunother Cancer. 2022;10(3).
- Appleman V, Matsuda A, Ganno M, Lopez AM, Rosentrater E, Christensen C, et al. 1153 Preclinical activity of C-C chemokine receptor 2 (CCR2)-targeted immune stimulating antibody conjugate (ISAC), motivating clinical testing of TAK-500. Journal for ImmunoTherapy of Cancer. 2022;10(Suppl 2):A1196-A.
- Schalper KA, Matsuda A, Ganno-Sherwood M, Maldonado-Lopez AE, Rosentrater E, Porciuncula A, et al. Abstract 1841: TAK-500 is a clinical stage immune-cell directed antibody drug conjugate (iADC) inducing STING activation in CCR2-expressing intratumor myeloid cells and favorable immunomodulation. Cancer Res. 2023;83(7_Supplement):1841-.
- Ackerman ME, Dugast AS, McAndrew EG, Tsoukas S, Licht AF, Irvine DJ, et al. Enhanced phagocytic activity of HIV-specific antibodies correlates with natural production of immunoglobulins with skewed affinity for FcγR2a and FcγR2b. J Virol. 2013;87(10):5468-76.
- Pantaleo G, Correia B, Fenwick C, Joo VS, Perez L. Antibodies to combat viral infections: development strategies and progress. Nature Reviews Drug Discovery. 2022;21(9):676-96.
- Flipse J, Diosa-Toro MA, Hoornweg TE, van de Pol DPI, Urcuqui-Inchima S, Smit JM. Antibody-Dependent Enhancement of Dengue Virus Infection in Primary Human Macrophages; Balancing Higher Fusion against Antiviral Responses. Sci Rep. 2016;6(1):29201.
- Yang X, Zhang X, Zhao X, Yuan M, Zhang K, Dai J, et al. Antibody-Dependent Enhancement: ″Evil″ Antibodies Favorable for Viral Infections. Viruses. 2022;14(8).
- Janoff EN, Wahl SM, Thomas K, Smith PD. Modulation of human immunodeficiency virus type 1 infection of human monocytes by IgA. J Infect Dis. 1995;172(3):855-8.
- Wan Y, Shang J, Sun S, Tai W, Chen J, Geng Q, et al. Molecular Mechanism for Antibody-Dependent Enhancement of Coronavirus Entry. J Virol. 2020;94(5).
- Genovese MC, Becker J-C, Schiff M, Luggen M, Sherrer Y, Kremer J, et al. Abatacept for Rheumatoid Arthritis Refractory to Tumor Necrosis Factor α Inhibition. New England Journal of Medicine. 2005;353(11):1114-23.
- Cope AP, Jasenecova M, Vasconcelos JC, Filer A, Raza K, Qureshi S, et al. Abatacept in individuals at high risk of rheumatoid arthritis (APIPPRA): a randomised, double-blind, multicentre, parallel, placebo-controlled, phase 2b clinical trial. The Lancet. 2024;403(10429):838-49.
- Baer AN, Gottenberg J-E, St Clair EW, Sumida T, Takeuchi T, Seror R, et al. Efficacy and safety of abatacept in active primary Sjögren’s syndrome: results of a phase III, randomised, placebo-controlled trial. Annals of the Rheumatic Diseases. 2021;80(3):339-48.
- de Wolff L, van Nimwegen JF, Mossel E, van Zuiden GS, Stel AJ, Majoor KI, et al. Long-term abatacept treatment for 48 weeks in patients with primary Sjögren's syndrome: The open-label extension phase of the ASAP-III trial. Seminars in Arthritis and Rheumatism. 2022;53:151955.
- Shock A, Burkly L, Wakefield I, Peters C, Garber E, Ferrant J, et al. CDP7657, an anti-CD40L antibody lacking an Fc domain, inhibits CD40L-dependent immune responses without thrombotic complications: an in vivo study. Arthritis Res Ther. 2015;17(1):234.
- Furie RA, Bruce IN, Dörner T, Leon MG, Leszczyński P, Urowitz M, et al. Phase 2, randomized, placebo-controlled trial of dapirolizumab pegol in patients with moderate-to-severe active systemic lupus erythematosus. Rheumatology (Oxford). 2021;60(11):5397-407.
- Clowse M ID, Merrill J, Dörner T, Petri M, Vital E, Morand E, Jimenez T, Brookes S, Gaiha-Rohrbach J, Martin C, Nelde A, Stach C. Dapirolizumab Pegol Demonstrated Significant Improvement in Systemic Lupus Erythematosus Disease Activity: Efficacy and Safety Results of a Phase 3 Trial [abstract]. Arthritis Rheumatology. 2024;76(suppl 9).
- Ackerman SE, Pearson CI, Gregorio JD, Gonzalez JC, Kenkel JA, Hartmann FJ, et al. Immune-stimulating antibody conjugates elicit robust myeloid activation and durable antitumor immunity. Nature Cancer. 2021;2(1):18-33.
- Romano E, Kusio-Kobialka M, Foukas PG, Baumgaertner P, Meyer C, Ballabeni P, et al. Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc Natl Acad Sci U S A. 2015;112(19):6140-5.
- Gubser C, Chiu C, Lewin SR, Rasmussen TA. Immune checkpoint blockade in HIV. eBioMedicine. 2022;76.
- Moreno-Vicente J, Willoughby JE, Taylor MC, Booth SG, English VL, Williams EL, et al. Fc-null anti-PD-1 monoclonal antibodies deliver optimal checkpoint blockade in diverse immune environments. J Immunother Cancer. 2022;10(1).
- Papadakis M, Karniadakis I, Mazonakis N, Akinosoglou K, Tsioutis C, Spernovasilis N. Immune Checkpoint Inhibitors and Infection: What Is the Interplay? In Vivo. 2023;37(6):2409-20.
- King HAD, Lewin SR. Immune checkpoint inhibitors in infectious disease. Immunological Reviews. 2024;328(1):350-71.
- Wykes MN, Lewin SR. Immune checkpoint blockade in infectious diseases. Nature Reviews Immunology. 2018;18(2):91-104.
- Uldrick TS, Adams SV, Fromentin R, Roche M, Fling SP, Gonçalves PH, et al. Pembrolizumab induces HIV latency reversal in people living with HIV and cancer on antiretroviral therapy. Sci Transl Med. 2022;14(629):eabl3836.
- Safety, pharmacokinetics, and exploratory efficacy of the PD-1 inhibitor budigalimab in antiretroviral treatment-suppressed people living with HIV-1: preliminary analysis of 2 Phase 1b studies including an analytical treatment interruption. 19th European AIDS Conference (EACS 2023.
- Italiano A, Cassier PA, Lin CC, Alanko T, Peltola KJ, Gazzah A, et al. First-in-human phase 1 study of budigalimab, an anti-PD-1 inhibitor, in patients with non-small cell lung cancer and head and neck squamous cell carcinoma. Cancer Immunol Immunother. 2022;71(2):417-31.
- Scapin G, Yang X, Prosise WW, McCoy M, Reichert P, Johnston JM, et al. Structure of full-length human anti-PD1 therapeutic IgG4 antibody pembrolizumab. Nat Struct Mol Biol. 2015;22(12):953-8.
- Hale G, De Vos J, Davy AD, Sandra K, Wilkinson I. Systematic analysis of Fc mutations designed to reduce binding to Fc-gamma receptors. MAbs. 2024;16(1):2402701.
- Fromentin R, DaFonseca S, Costiniuk CT, El-Far M, Procopio FA, Hecht FM, et al. PD-1 blockade potentiates HIV latency reversal ex vivo in CD4(+) T cells from ART-suppressed individuals. Nat Commun. 2019;10(1):814.
- Karunarathne DS, Horne-Debets JM, Huang JX, Faleiro R, Leow CY, Amante F, et al. Programmed Death-1 Ligand 2-Mediated Regulation of the PD-L1 to PD-1 Axis Is Essential for Establishing CD4(+) T Cell Immunity. Immunity. 2016;45(2):333-45.
- Esfahani K, Meti N, Miller WH, Jr., Hudson M. Adverse events associated with immune checkpoint inhibitor treatment for cancer. Cmaj. 2019;191(2):E40-e6.
- Paluch C, Santos AM, Anzilotti C, Cornall RJ, Davis SJ. Immune Checkpoints as Therapeutic Targets in Autoimmunity. Front Immunol. 2018;9:2306.
- Luu K, Dahl M, Hare E, Sibley C, Lizzul P, Randazzo B. DOP81 Rosnilimab, a novel PD-1 agonist monoclonal antibody, reduces T cell proliferation, inflammatory cytokine secretion, and PD-1high expressing CD4 and CD8 T cells: Results from a Phase 1 healthy volunteer clinical trial. Journal of Crohn's and Colitis. 2024;18(Supplement_1):i226-i.
- AnaptysBio, I. naptys announces rosnilimab achieved positive results in RA Phase 2b trial and highest ever reported CDAI LDA response over 6 months. 2025.
- Tuttle J, Drescher E, Simón-Campos JA, Emery P, Greenwald M, Kivitz A, et al. A Phase 2 Trial of Peresolimab for Adults with Rheumatoid Arthritis. New England Journal of Medicine. 2023;388(20):1853-62.
- Farhangnia P, Ghomi SM, Akbarpour M, Delbandi AA. Bispecific antibodies targeting CTLA-4: game-changer troopers in cancer immunotherapy. Front Immunol. 2023;14:1155778.
- Almutairi AR, McBride A, Slack M, Erstad BL, Abraham I. Potential Immune-Related Adverse Events Associated With Monotherapy and Combination Therapy of Ipilimumab, Nivolumab, and Pembrolizumab for Advanced Melanoma: A Systematic Review and Meta-Analysis. Front Oncol. 2020;10:91.
- Wang J, Lou H, Cai H-B, Huang X, Li G, Wang L, et al. A study of AK104 (an anti-PD1 and anti-CTLA4 bispecific antibody) combined with standard therapy for the first-line treatment of persistent, recurrent, or metastatic cervical cancer (R/M CC). Journal of Clinical Oncology. 2022;40(16_suppl):106-.
- Ma Y, Xue J, Zhao Y, Zhang Y, Huang Y, Yang Y, et al. Phase I trial of KN046, a novel bispecific antibody targeting PD-L1 and CTLA-4 in patients with advanced solid tumors. Journal for ImmunoTherapy of Cancer. 2023;11(6):e006654.
- Xing B, Da X, Zhang Y, Ma Y. A phase II study combining KN046 (an anti-PD-L1/CTLA-4 bispecific antibody) and lenvatinib in the treatment for advanced unresectable or metastatic hepatocellular carcinoma (HCC): Updated efficacy and safety results. Journal of Clinical Oncology. 2022;40(16_suppl):4115-.
- Jin G, Guo S, Xu J, Liu R, Liang Q, Yang Y, et al. A multicenter, randomized, double-blind phase III clinical study to evaluate the efficacy and safety of KN046 combined with nab-paclitaxel and gemcitabine versus placebo combined with nab-paclitaxel and gemcitabine in patients with advanced pancreatic cancer (ENREACH-PDAC-01). Journal of Clinical Oncology. 2022;40(16_suppl):TPS4189-TPS.
- Gang J, Guo S, Zhang Y, Ma Y, Guo X, Zhou X, et al. A phase II study of KN046 monotherapy as 2nd line and above treatment for unresectable locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC). Journal of Clinical Oncology. 2022;40(16_suppl):e16305-e.
- Labanieh L, Mackall CL. CAR immune cells: design principles, resistance and the next generation. Nature. 2023;614(7949):635-48.
- Immunocore Holdings plc. Immunocore presents initial multiple ascending dose data for HIV functional cure candidate in an oral presentation at CROI 2025. 2025.
- Bourgeois S LY, Gane E, Lee HW, Cheng W, Heo J, Kim W, Buti Ferret M, Thompson A, Matthews G, Janczewska E, Ryder S, Andrade RJ, Yuan Y, Benlahrech A, Wustner J, Dorrell L, Yuen MF. Title: IMC-I109V, a novel soluble T cell receptor (TCR) bispecific (ENVxCD3) designed to eliminate HBV-infected hepatocytes in chronic HBV patients: initial data from a first-in-human study. The International Liver Congress (ILC) 2022. 2022.
- Chamberlain C, Colman PJ, Ranger AM, Burkly LC, Johnston GI, Otoul C, et al. Repeated administration of dapirolizumab pegol in a randomised phase I study is well tolerated and accompanied by improvements in several composite measures of systemic lupus erythematosus disease activity and changes in whole blood transcriptomic profiles. Ann Rheum Dis. 2017;76(11):1837-44.
- Webster JA, Luskin MR, Rimando J, Blackford A, Zeidan AM, Sharon E, et al. Blinatumomab in Combination with Immune Checkpoint Inhibitors (ICIs) of PD-1 and CTLA-4 in Adult Patients with Relapsed/Refractory (R/R) CD19 Positive B-Cell Acute Lymphoblastic Leukemia (ALL): Results of a Phase I Study. Blood. 2023;142(Supplement 1):966-.
- Institute, NC. A Dose Escalation Study of Duvortuxizumab in Participants With Relapsed or Refractory B-cell Malignancies (NCT02454270). US National Library of Medicine.
- Liu L, Lam C-YK, Long V, Widjaja L, Yang Y, Li H, et al. MGD011, A CD19 x CD3 Dual-Affinity Retargeting Bi-specific Molecule Incorporating Extended Circulating Half-life for the Treatment of B-Cell Malignancies. Clinical Cancer Research. 2017;23(6):1506-18.
- MacroGenics, I. MacroGenics Announces Termination of Duvortuxizumab Collaboration and License Agreement with Janssen. 2017.
- Howlett S, Carter TJ, Shaw HM, Nathan PD. Tebentafusp: a first-in-class treatment for metastatic uveal melanoma. Ther Adv Med Oncol. 2023;15:17588359231160140.
- Hamid O, Hassel JC, Shoushtari AN, Meier F, Bauer TM, Salama AKS, et al. Tebentafusp in combination with durvalumab and/or tremelimumab in patients with metastatic cutaneous melanoma: a phase 1 study. J Immunother Cancer. 2023;11(6).
- Ravandi F, Subklewe M, Walter RB, Vachhani P, Ossenkoppele G, Buecklein V, et al. Safety and tolerability of AMG 330 in adults with relapsed/refractory AML: a phase 1a dose-escalation study. Leuk Lymphoma. 2024;65(9):1281-91.
- NIH. A Study of AMG 330 With Pembrolizumab in Adult Patients With Relapsed/Refractory Acute Myeloid Leukemia.ClinicalTrials.gov identifier: NCT04478695.
- Johnson ML, Dy GK, Mamdani H, Dowlati A, Schoenfeld AJ, Pacheco JM, et al. Interim results of an ongoing phase 1/2a study of HPN328, a tri-specific, half-life extended, DLL3-targeting, T-cell engager, in patients with small cell lung cancer and other neuroendocrine cancers. Journal of Clinical Oncology. 2022;40(16_suppl):8566-.
- Moek KL, Waaijer SJH, Kok IC, Suurs FV, Brouwers AH, Menke-van der Houven van Oordt CW, et al. (89)Zr-labeled Bispecific T-cell Engager AMG 211 PET Shows AMG 211 Accumulation in CD3-rich Tissues and Clear, Heterogeneous Tumor Uptake. Clin Cancer Res. 2019;25(12):3517-27.
- E, DV. Continuous intravenous administration of AMG 211 (CEA CD3 BiTE®) in patients with relapsed/refractory gastrointestinal adenocarcinomas. 2025 ASCO Annual Meeting. 2025;Abstract 148667.
- Amgen) LDeA. Summary of clinical trials and development status for AMG 596 (etevritamab), an anti-EGFRvIII bispecific T cell engager (BiTE) for glioblastoma, including trial outcomes and preclinical data. 2024.
- El-Khoueiry A, Saavedra O, Thomas J, Livings C, Garralda E, Hintzen G, et al. First-in-Human Phase I Study of a CD16A Bispecific Innate Cell Engager, AFM24, Targeting EGFR-Expressing Solid Tumors. Clin Cancer Res. 2025;31(7):1257-67.

| antibody characteristic | clinical result | reference | |||||||||||||||||||||
| antibody name(s) | format | half-life | incidence of ADA | disease | target(s) | development stage | prospect | patient sample size (N) | Efficacy/Outcome | ≥grade 3 events | reference | ||||||||||||
| T cell engager (Infectious disease) | |||||||||||||||||||||||
| IMC-M113V | ImmTAV | N/A | N/A | AIDS/HIV | CD3 x gag (HLA-A*02:01) | phase 1/2 on going | on going development | 16 | Dose-dependent delayed viral rebound and/or viremia control (18.8%) | "no serious adverse events" | [305] | ||||||||||||
| IMC-I109V | ImmTAV | N/A | N/A | Chronic HBV infection | CD3 x env (HBV; HLA-A*02:01) | phase 1 ongoing | on going development | 21 | decline of serum viral surface antigen level (HBsAg); elevation in ALT and IL-6 | 0% | [306] | ||||||||||||
| MGD014 | DART-Fc | 12 d | 8.30% | AIDS/HIV | CD3 x gp120 | phase I completed | on going development | 24 | N/A | "well tolerated" | [194] | ||||||||||||
| Myeloid cell engager and B cell engager (infectious disease) | |||||||||||||||||||||||
| MDX-240 | bispecific | N/A | N/A | AIDS/HIV | FcγRI x gp41 | Clinical phase | development terminated | N/A | efficacy unknown; reduce infectivity in human monocyte-derived macrophages | N/A | [101] | ||||||||||||
| T cell engager (autoimmune disease) | |||||||||||||||||||||||
| Blinatumomab | BiTE | N/A | N/A | multidrug-resistant rheumatoid arthritis (RA) | CD3 x CD19 | clinical (compassionate use) | ongoing development | 6 | Sustained remission at month3; reduced autoantibody level | "no serious adverse events" | [209,210] | ||||||||||||
| Blinatumomab | BiTE | N/A | N/A | severe systemic sclerosis | CD3 x CD19 | case report | possible development | 1 | "significant improvement of symptom, regained ability to move" | "well tolerated" | [211] | ||||||||||||
| CLN-978 | BiTE-albumin | N/A | N/A | systemic lupus erythematosus (SLE) | CD3 x CD19 x albumin | phase 1b ongoing | ongoing development | 2 | N/A | N/A | [214] | ||||||||||||
| Myeloid cell engager and B cell engager (autoimmune disease) | |||||||||||||||||||||||
| MGD010 | DART-Fc | 8 d | N/A | autoimmunity | CD32B x CD79B | phase I completed | Collaborative development terminated | 8 | "decreased B cell activation with no signs of B-cell depletion" | 0% | [250] | ||||||||||||
| dapirolizumab pegol | Fab (PEG) | N/A | N/A | autoimmunity | CD40L | phase 3 completed | ongoing development | 208 | 60.1% SRI-4 vs control (41.1%) | 9.9% (TEAE) | [277,307] | ||||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
