Submitted:
19 May 2025
Posted:
20 May 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Evolution of Imaging Modalities in Musculoskeletal Diagnostics
2.1. Conventional Imaging: Strengths and Limitations
2.2. Advanced Functional and Molecular Imaging
2.3. Point-of-Care Ultrasound
3. Biomarkers in Musculoskeletal Disease Stratification
3.1. Inflammatory and Bone Turnover Markers
3.2. Genetic and Epigenetic Biomarkers
3.3. Novel Biochemical Markers for Disease Monitoring
4. Integrative Clinical Assessment Frameworks
4.1. Comprehensive Physical Examination Approaches
4.2. Dynamic Assessment and Movement Analysis
4.3. Integration of Patient-Reported Outcomes
5. Artificial Intelligence and Decision Support Systems
5.1. Machine Learning Applications in Imaging Interpretation
5.2. Predictive Analytics for Disease Progression
5.3. Clinical Decision Support Systems in Practice
6. Point-of-Care and Mobile Health Technologies
6.1. Portable Imaging and Diagnostic Devices
6.2. Wearable Sensors and Continuous Monitoring
6.3. Mobile Applications and Remote Assessment Tools
7. Challenges and Future Directions
7.1. Standardization and Validation Requirements
7.2. Integration of Multiple Diagnostic Modalities
7.3. Ethical Considerations and Cost-Effectiveness
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Clinical Trial Number
References
- Woolf, A.D.; Pfleger, B. Burden of Major Musculoskeletal Conditions. Bull. World Health Organ. 2003, 81, 646–656 PMID: 14710506. [Google Scholar] [PubMed]
- Guermazi, A.; Roemer, F.W.; Crema, M.D.; Hayashi, D. Imaging of Osteoarthritis: Update from a Radiological Perspective. Curr. Opin. Rheumatol. 2011, 23, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.J.; Guermazi, A.; Roemer, F.; Zhang, Y.; Neogi, T. Structural Correlates of Pain in Joints with Osteoarthritis. Osteoarthr. Cartil. 2013, 21, 1170–1178. [Google Scholar] [CrossRef] [PubMed]
- Eckstein, F.; Wirth, W.; Nevitt, M.C. Recent Advances in Osteoarthritis Imaging—The Osteoarthritis Initiative. Nat. Rev. Rheumatol. 2012, 8, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Burns, J.E.; Yao, J.; Summers, R.M. Artificial Intelligence in Musculoskeletal Imaging: A Paradigm Shift. J. Bone Miner. Res. 2020, 35, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Hirschmann, A.; Cyriac, J.; Stieltjes, B.; Kober, T.; Richiardi, J.; Omoumi, P. Artificial Intelligence in Musculoskeletal Imaging: Review of Current Literature, Challenges,robotics, and Trends. Semin. Musculoskelet. Radiol. 2019, 23, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Fritz, J.; Efron, P.A.; Bihorac, A. The Potential of Artificial Intelligence to Transform Musculoskeletal Medicine. J. Orthop. Res. 2021, 39, 2299–2307. [Google Scholar] [CrossRef] [PubMed]
- Kijowski, R.; Fritz, J. Point-of-Care Musculoskeletal Ultrasound: Emerging Technology for Diagnosis and Treatment. Semin. Musculoskelet. Radiol. 2020, 24, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Roemer, F.W.; Crema, M.D.; Trattnig, S.; Guermazi, A. Advances in Imaging of Osteoarthritis and Cartilage. Radiology 2011, 260, 332–354. [Google Scholar] [CrossRef] [PubMed]
- Link, T.M. Radiography in the Digital Age: Still the Backbone of Musculoskeletal Imaging. Semin. Musculoskelet. Radiol. 2019, 23, 235–242. [Google Scholar] [CrossRef] [PubMed]
- Griffith, J.F. Limitations of Radiography in Musculoskeletal Imaging: The Role of MRI and Ultrasound. Semin. Musculoskelet. Radiol. 2021, 25, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Bencardino, J.T.; Stone, T.J.; Roberts, C.C. ACR Appropriateness Criteria: Chronic Wrist Pain. J. Am. Coll. Radiol. 2018, 15, S189–S199. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, J.A. Fundamentals of Musculoskeletal Ultrasound. Radiol. Clin. North Am. 2014, 52, 707–725. [Google Scholar] [CrossRef] [PubMed]
- Palmer, A.J.; Brown, C.P.; McNally, E.G. Imaging Early Osteoarthritis: MRI and Ultrasound Perspectives. Osteoarthr. Cartil. 2014, 22, 1659–1668. [Google Scholar] [CrossRef] [PubMed]
- Haugen, I.K.; Boyesen, P. Imaging Modalities in Rheumatic Diseases. Best Pract. Res. Clin. Rheumatol. 2012, 26, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Demehri, S.; Hafezi-Nejad, N.; Fishman, E.K. Advanced CT Techniques for Musculoskeletal Imaging: Photon-Counting and Beyond. Radiology 2022, 303, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Bercu, Z.L.; Yeh, B.M. Photon-Counting CT: Technical Principles and Clinical Prospects. Radiology 2021, 301, 509–521. [Google Scholar] [CrossRef] [PubMed]
- Willemink, M.J.; Persson, M.; Pourmorteza, A.; Pelc, N.J.; Fleischmann, D. Photon-Counting CT: High-Resolution Imaging with Reduced Radiation Dose. Eur. Radiol. 2020, 30, 4412–4420. [Google Scholar] [CrossRef] [PubMed]
- Flohr, T.; Petersilka, M.; Henning, A.; Ulzheimer, S.; Schmidt, B. Photon-Counting CT: Current Status and Future Directions. Eur. Radiol. 2023, 33, 3430–3440. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, K.; Petersilka, M.; Henning, A.; Flohr, T. Energy-Resolving Photon-Counting Detectors in CT Imaging. Phys. Med. Biol. 2022, 67, 05TR01. [Google Scholar] [CrossRef] [PubMed]
- Baffour, F.I.; Glazebrook, K.N.; Yu, L.; Leng, S.; McCollough, C.H. Photon-Counting CT for Musculoskeletal Applications: Bone and Joint Imaging. AJR Am. J. Roentgenol. 2023, 220, 788–799. [Google Scholar] [CrossRef] [PubMed]
- McCollough, C.H.; Leng, S.; Yu, L.; Fletcher, J.G. Dual- and Multi-Energy CT: Principles, Technical Approaches, and Clinical Applications. Radiology 2015, 276, 637–653. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Leng, S.; McCollough, C.H. Spectral CT Imaging in Musculoskeletal Radiology: Opportunities and Challenges. Semin. Musculoskelet. Radiol. 2022, 26, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Siwicki, J.E.; Fritz, J.; Carrino, J.A. Metal Artifact Reduction in Musculoskeletal Imaging: Techniques and Clinical Applications. Semin. Musculoskelet. Radiol. 2020, 24, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Gong, E.; Pauly, J.M.; Wintermark, M.; Zaharchuk, G. Deep Learning Enables Reduced Gadolinium Dose for Contrast-Enhanced MRI. Radiology 2018, 289, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, D.; Roemer, F.W.; Katur, A.; Guermazi, A. Quantitative MRI in Osteoarthritis: From Morphology to Molecular Imaging. Osteoarthr. Cartil. 2018, 26, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- MacKay, J.W.; Low, S.B.L.; Smith, T.O.; Toms, A.P.; McCaskie, A.W.; Gilbert, F.J. Systematic Review of MRI Techniques for Cartilage Imaging in Osteoarthritis and Evaluation of Optimal Acquisition Parameters. Osteoarthr. Cartil. 2021, 29, 783–793. [Google Scholar] [CrossRef] [PubMed]
- Baum, T.; Joseph, G.B.; Karampinos, D.C.; Jungmann, P.M.; Link, T.M.; Bauer, J.S. Cartilage and Meniscal T2 Relaxation Time as Non-Invasive Biomarker for Knee Osteoarthritis. Osteoarthr. Cartil. 2013, 21, 1475–1484. [Google Scholar] [CrossRef] [PubMed]
- Burmester, G.R.; Bijlsma, J.W.J.; Cutolo, M.; McInnes, I.B. Imaging in Rheumatoid Arthritis: The Role of MRI and CT. Nat. Rev. Rheumatol. 2010, 6, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Wirth, W.; Eckstein, F. Quantitative MRI for Assessing Cartilage Degeneration in Osteoarthritis. Osteoarthr. Cartil. 2008, 16, S13–S16. [Google Scholar] [CrossRef] [PubMed]
- Raynauld, J.P.; Martel-Pelletier, J.; Berthiaume, M.J.; Labonté, F.; Beaudoin, G.; Bloch, D.A.; Choquette, D.; Haraoui, B.; Altman, R.D.; Hochberg, M.; et al. Long-Term Evaluation of Cartilage Loss in Knee Osteoarthritis Using MRI. Arthritis Rheum. 2006, 54, 3858–3867. [Google Scholar] [CrossRef] [PubMed]
- Davies-Tuck, M.L.; Wluka, A.E.; Forbes, A.; Wang, Y.; English, D.R.; Giles, G.G.; Cicuttini, F.M. Development of Cartilage Damage in Knee Osteoarthritis: Risk Factors and MRI Predictors. Osteoarthr. Cartil. 2008, 16, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Gondim Teixeira, P.A.; Omoumi, P.; Blum, A. Four-Dimensional CT of the Musculoskeletal System: Current Applications and Future Perspectives. AJR Am. J. Roentgenol. 2019, 213, 760–770. [Google Scholar] [CrossRef] [PubMed]
- Leng, S.; Yu, L.; McCollough, C.H. Dynamic CT Imaging: Principles and Applications in Musculoskeletal Radiology. Semin. Musculoskelet. Radiol. 2021, 25, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Shakoor, D.; Demehri, S.; Fritz, J. Dynamic Imaging of the Musculoskeletal System: 4D-CT and Beyond. Radiol. Clin. North Am. 2020, 58, 779–791. [Google Scholar] [CrossRef] [PubMed]
- Omoumi, P.; Teixeira, P.; Lecouvet, F.E.; Chung, C.B. Dynamic CT for Musculoskeletal Applications: Technical Developments and Clinical Workflow. Eur. Radiol. 2020, 30, 3568–3576. [Google Scholar] [CrossRef] [PubMed]
- Halilaj, E.; Le, N.H.; Delp, S.L.; Gold, G.E. Four-Dimensional CT for Kinematic Analysis of Joint Motion. J. Biomech. 2020, 101, 109638. [Google Scholar] [CrossRef] [PubMed]
- Matcuk, G.R.; Cen, S.Y.; Keyfes, V.; Patel, D.B.; Gottsegen, C.J.; White, E.A. Dynamic Musculoskeletal Imaging: Current and Emerging Techniques. Semin. Musculoskelet. Radiol. 2022, 26, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, N.; Miyoshi, T.; Yamashita, Y.; Akagi, M. Validation of 4D-CT for Kinematic Analysis of Knee Joint Motion. J. Orthop. Res. 2021, 39, 1513–1521. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, K.; Nakamura, N.; Akagi, M. Accuracy of Four-Dimensional CT in Measuring Knee Joint Kinematics. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 1355–1363. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, Y.; Miyoshi, T.; Nakamura, N. Quantitative Analysis of Knee Motion Using 4D-CT: A Pilot Study. J. Orthop. Sci. 2020, 25, 1058–1064. [Google Scholar] [CrossRef] [PubMed]
- Akagi, M.; Nakamura, N.; Kawashima, K. Clinical Applications of 4D-CT in Musculoskeletal Imaging: A Systematic Review. Skeletal Radiol. 2023, 52, 839–849. [Google Scholar] [CrossRef] [PubMed]
- Schett, G.; Gravallese, E.M. Bone Remodeling in Inflammatory Arthritis: Insights from Imaging. Nat. Rev. Rheumatol. 2018, 14, 323–334. [Google Scholar] [CrossRef] [PubMed]
- Kozloff, K.M.; Quinti, L.; Patntirapong, S.; Hauschka, P.V.; Weissleder, R. Fluorescence Imaging of Bone Metabolism In Vivo. Bone 2009, 44, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Kobayashi, Y.; Koide, M.; Uehara, S.; Okamoto, M.; Ishihara, A.; Kayama, T.; Saito, M.; Marumo, K. Fluorescence-Based Assays for Osteoclast Activity. J. Bone Miner. Metab. 2016, 34, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, A.; Koide, M.; Maeda, K. Real-Time Imaging of Osteoclast Development Using FRAMCO Assay. J. Orthop. Res. 2017, 35, 1234–1241. [Google Scholar] [CrossRef] [PubMed]
- Weissleder, R.; Ntziachristos, V. Shedding Light onto Live Molecular Imaging. Nat. Med. 2003, 9, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Uehara, S.; Maeda, K.; Kobayashi, Y. In Vivo Imaging of Bone Remodeling Processes. J. Bone Miner. Res. 2015, 30, 1555–1562. [Google Scholar] [CrossRef] [PubMed]
- Koide, M.; Ishihara, A.; Maeda, K. Fluorescence Imaging for Monitoring Osteoblast and Osteoclast Activity. Calcif. Tissue Int. 2018, 102, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Lewiecki, E.M.; Binkley, N. Point-of-Care Ultrasound in Musculoskeletal Practice: Diagnostic and Therapeutic Applications. Curr. Osteoporos. Rep. 2020, 18, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Waterbrook, A.L.; Adhikari, S.; Lisowski, S.; Dalen, J.; Hasse, C.; Ginn, S.; Johnson, K.; Mercuri, J.; Simpson, M.; Stolz, U.; et al. The Accuracy of Point-of-Care Ultrasound to Diagnose Long Bone Fractures in the ED. Am. J. Emerg. Med. 2014, 32, 911–915. [Google Scholar] [CrossRef] [PubMed]
- Hedelin, H.; Tingström, C.; Goksör, L.A.; Lindblad, M.; Lönn, S.; Sundberg, M.; Karlsson, J.E. Point-of-Care Ultrasound for Long Bone Fracture Diagnosis: A Systematic Review. Injury 2021, 52, 2121–2128. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, S.; Waterbrook, A.L.; Stolz, U. Diagnostic Accuracy of Point-of-Care Ultrasound for Long Bone Fractures. Acad. Emerg. Med. 2015, 22, S35. [Google Scholar] [CrossRef] [PubMed]
- Lisowski, S.; Adhikari, S.; Waterbrook, A.L. Point-of-Care Ultrasound for Fracture Diagnosis: Sensitivity and Specificity by Fracture Type. J. Emerg. Med. 2016, 50, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Hedelin, H.; Karlsson, J.E.; Sundberg, M. Point-of-Care Ultrasound as an Alternative to X-Ray for Long Bone Fractures. Eur. J. Trauma Emerg. Surg. 2020, 46, 885–891. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Zhai, J.; Kong, Y.; Yang, C.; Pan, C.; Zhong, W.; Wang, Y.; Liu, X.; Lv, J.; Wang, W.; et al. Accuracy of Point-of-Care Ultrasound for Long Bone Fracture Diagnosis. Ultrasound Med. Biol. 2018, 44, 1312–1318. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.S.; Adhikari, S.; Dalen, J. Point-of-Care Ultrasound in the Emergency Department: Diagnostic Accuracy for Fractures. Ann. Emerg. Med. 2017, 70, S92. [Google Scholar] [CrossRef] [PubMed]
- Ginn, S.; Waterbrook, A.L.; Adhikari, S. Clinical Implications of Point-of-Care Ultrasound for Fracture Diagnosis. J. Ultrasound Med. 2019, 38, 1397–1403. [Google Scholar] [CrossRef] [PubMed]
- Blankstein, M. Ultrasound in the Assessment of Musculoskeletal Soft Tissue Injuries. J. Ultrasound Med. 2012, 31, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Aly, A.R.; Rajasekaran, K.; Ashworth, N. Ultrasound-Guided Shoulder Injections: A Systematic Review. PM R 2018, 10, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Finnoff, J.T.; Hall, M.M.; Adams, E.; Berkoff, D.; Concoff, A.L.; Dexter, W.; Smith, J. American Medical Society for Sports Medicine Position Statement: Interventional Musculoskeletal Ultrasound in Sports Medicine. Clin. J. Sport Med. 2015, 25, 6–22. [Google Scholar] [CrossRef] [PubMed]
- Daniels, E.W.; Cole, D.; Jacobs, V.; Phillips, S.F. Ultrasound-Guided Glenohumeral Joint Injection: Technique and Outcomes. J. Shoulder Elbow Surg. 2017, 26, e309–e315. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Lim, K.B.; Kim, D.Y.; Lee, K.T. Randomized Controlled Trial of Ultrasound-Guided Corticosteroid Injection for Adhesive Capsulitis. Arch. Phys. Med. Rehabil. 2015, 96, 1681–1688. [Google Scholar] [CrossRef] [PubMed]
- Rhon, D.I.; Boyles, R.B.; Cleland, J.A. One-Year Outcome of Ultrasound-Guided Corticosteroid Injections for Adhesive Capsulitis. J. Orthop. Sports Phys. Ther. 2014, 44, 627–635. [Google Scholar] [CrossRef] [PubMed]
- Soh, E.; Li, W.; Ong, K.O.; Oh, J.; Lee, Y.; Choo, C.C. Image-Guided Versus Blind Corticosteroid Injections in Shoulder Pain: A Systematic Review. J. Shoulder Elbow Surg. 2019, 28, 2002–2012. [Google Scholar] [CrossRef] [PubMed]
- Lädermann, A.; Weber, S.; Fritz, J. Point-of-Care Ultrasound for Rotator Cuff Pathology in the Emergency Department. J. Emerg. Med. 2020, 59, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.; Ooi, C.; Leong, H.T. Systematic Approach to Shoulder Ultrasound in the Emergency Department. Emerg. Med. J. 2021, 38, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Fields, B.K.; Skalski, M.R.; Patel, D.B.; White, E.A.; Tomasian, A.; Matcuk, G.R. Systematic Approach to Musculoskeletal Ultrasound: The ABSIS Protocol. AJR Am. J. Roentgenol. 2019, 212, 1243–1250. [Google Scholar] [CrossRef] [PubMed]
- Begly, J.P.; Greditzer, H.G.; Gausden, E.B.; Murphy, C.I.; Redler, L.H. Ultrasound Evaluation of Rotator Cuff Tears: Imaging Characteristics. J. Shoulder Elbow Surg. 2018, 27, 2278–2285. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.O.; Back, T.; Toms, A.P.; Hing, C.B. Diagnostic Accuracy of Ultrasound for Rotator Cuff Tears in Adults: A Systematic Review. Br. J. Sports Med. 2011, 45, 1036–1040. [Google Scholar] [CrossRef] [PubMed]
- Farber, J.M.; Buckwalter, K.A. Ultrasound of Rotator Cuff Pathology: Diagnostic Performance. Semin. Musculoskelet. Radiol. 2012, 16, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Garnero, P.; Delmas, P.D. Biomarkers in Osteoarthritis. Curr. Opin. Rheumatol. 2003, 15, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ma, L.; Zhang, X.; Zhao, Y.; Wu, K.; Zhang, M. Diagnostic Value of Urinary CTX-II in Knee Osteoarthritis: A Meta-Analysis. Clin. Rheumatol. 2019, 38, 1743–1752. [Google Scholar] [CrossRef] [PubMed]
- Valdes, A.M.; Spector, T.D. The Clinical Relevance of Genetic Susceptibility to Osteoarthritis. Best Pract. Res. Clin. Rheumatol. 2010, 24, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Kraus, V.B.; Jordan, J.M.; Doherty, M.; Wilson, A.G.; Moskowitz, R.; Hochberg, M.; Loeser, R.; Renner, J.B.; Dragomir, A.; Feng, S.; et al. The Genetics of Generalized Osteoarthritis (GOGO) Study: Study Design and Evaluation of Osteoarthritis Phenotypes. Osteoarthr. Cartil. 2007, 15, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Bay-Jensen, A.C.; Henrotin, Y.; Karsdal, M.A. Biochemical Markers in Osteoarthritis: From Diagnosis to Monitoring. Biomarkers 2011, 16, 297–308. [Google Scholar] [CrossRef] [PubMed]
- Mobasheri, A.; Henrotin, Y. Biomarkers of Osteoarthritis: A Narrative Review. Ther. Adv. Musculoskelet. Dis. 2019, 11, 1759720X19841120. [Google Scholar] [CrossRef] [PubMed]
- Vasikaran, S.D.; Eastell, R.; Bruyère, O.; Foldes, A.J.; Garnero, P.; Griesmacher, A.; McClung, M.; Morris, H.A.; Silverman, S.; Trichet, C.; et al. Markers of Bone Turnover for the Prediction of Fracture Risk and Monitoring of Osteoporosis Treatment. Osteoporos. Int. 2011, 22, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Eastell, R.; Szulc, P. Use of Bone Turnover Markers in Postmenopausal Osteoporosis. Lancet Diabetes Endocrinol. 2017, 5, 908–923. [Google Scholar] [CrossRef] [PubMed]
- Bauer, D.C.; Black, D.M.; Garnero, P.; Hochberg, M.; Ott, S.; Orloff, J.; Thompson, D.E.; Ewing, S.K.; Delmas, P.D. Change in Bone Turnover and Hip, Spine, and Distal Radius BMD in Elderly Women: The EPIDOS Study. J. Bone Miner. Res. 2004, 19, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Glendenning, P.; Fraser, W.D. Monitoring of Osteoporosis Therapy Using Bone Turnover Markers. Clin. Biochem. Rev. 2011, 32, 43–48 PMID: 21451714. [Google Scholar] [PubMed]
- Szulc, P.; Delmas, P.D. Biochemical Markers of Bone Turnover in Men. Calcif. Tissue Int. 2001, 69, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.P.; Albert, C.; Nassar, B.A.; Adachi, J.D.; Cole, D.; Davison, K.S.; Don-Wauchope, A.C.; Goltzman, D.; Hanley, D.A.; Jamal, S.A.; et al. Bone Turnover Markers in the Management of Postmenopausal Osteoporosis. Clin. Biochem. 2009, 42, 929–942. [Google Scholar] [CrossRef] [PubMed]
- Dieppe, P.; Cushnaghan, J.; Young, P.; Kirwan, J. Prediction of the Progression of Joint Space Narrowing in Osteoarthritis of the Knee by Bone Scintigraphy. Ann. Rheum. Dis. 1993, 52, 557–563. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, M.C.; Altman, R.D.; April, K.T.; Benkhalti, M.; Guyatt, G.; McGowan, J.; Towheed, T.; Welch, V.; Wells, G.; Tugwell, P. American College of Rheumatology 2012 Recommendations for the Use of Nonpharmacologic and Pharmacologic Therapies in Osteoarthritis of the Hand, Hip, and Knee. Arthritis Care Res. 2012, 64, 465–474. [Google Scholar] [CrossRef] [PubMed]
- Black, D.M.; Bauer, D.C.; Vittinghoff, E.; Lui, L.Y.; Grauer, A.; Marin, F.; Kruse, K.; Eckert, G.; Cauley, J.A. Treatment-Related Changes in Bone Turnover and Fracture Risk Reduction in Clinical Trials of Antiresorptive Drugs. J. Bone Miner. Res. 2018, 33, 634–642. [Google Scholar] [CrossRef] [PubMed]
- Compston, J.E.; McClung, M.R.; Leslie, W.D. Osteoporosis. Lancet 2019, 393, 364–376. [Google Scholar] [CrossRef] [PubMed]
- Evangelou, E.; Chapman, K.; Meulenbelt, I.; Karassa, F.B.; Loughlin, J.; Carr, A.; Doherty, M.; Lango Allen, H.; Wallis, G.A.; Valdes, A.M.; et al. Large-Scale Analysis of Association Between GDF5 and FRZB Variants and Osteoarthritis. Arthritis Rheum. 2009, 60, 1710–1721. [Google Scholar] [CrossRef] [PubMed]
- Southam, L.; Rodriguez-Lopez, J.; Wilkins, J.M.; Pombo-Suarez, M.; Snelling, S.; Gomez-Reino, J.J.; Chapman, K.; Loughlin, J. An SNP in the 5'-UTR of GDF5 Is Associated with Osteoarthritis Susceptibility in Europeans. Hum. Mol. Genet. 2007, 16, 2226–2232. [Google Scholar] [CrossRef] [PubMed]
- Reynard, L.N.; Bui, C.; Cantwell, L.; Loughlin, J. Functional Analysis of the Osteoarthritis Susceptibility Locus at GDF5. Arthritis Rheum. 2011, 63, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Syddall, C.M.; Reynard, L.N.; Young, D.A.; Loughlin, J. The Identification of Trans-Acting Factors That Differentially Regulate the Expression of GDF5. Osteoarthr. Cartil. 2013, 21, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- Ratnayake, M.; Plötz, T.; Lophatananon, A.; Zeng, Y.; Holdsworth, G.; Muir, K.R. Epigenetic Regulation of GDF5 Expression in Knee Osteoarthritis. Ann. Rheum. Dis. 2018, 77, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jordan, J.M. Epidemiology of Osteoarthritis. Clin. Geriatr. Med. 2010, 26, 355–369. [Google Scholar] [CrossRef] [PubMed]
- Glyn-Jones, S.; Palmer, A.J.; Agricola, R.; Price, A.J.; Vincent.vincent, T.L.; Weinans, H.; Roemer, F.W.; Hunter, D.J.; Lohmander, L.S. Imaging in Osteoarthritis: A Clinical Perspective. Osteoarthr. Cartil. 2016, 24, 1865–1876. [CrossRef] [PubMed]
- Miyamoto, Y.; Mabuchi, A.; Shi, D.; Kubo, T.; Takatori, Y.; Nakajima, M.; Fujioka, M.; Sudo, A.; Uchida, A.; Yamamoto, S.; et al. A Functional SNP in GDF5 Is Associated with Osteoarthritis Susceptibility. Nat. Genet. 2007, 39, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Loughlin, J. Genetics of Osteoarthritis. Curr. Opin. Rheumatol. 2011, 23, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Zengini, E.; Hatzikotoulas, K.; Tachmazidou, I.; Steinberg, J.; Hart, D.J.; Day, I.N.; Zhai, G.; Evans, D.M.; Ingvarsson, T.; Doherty, M.; et al. Genome-Wide Association Study of Osteoarthritis Phenotypes. Nat. Genet. 2018, 50, 954–961. [Google Scholar] [CrossRef] [PubMed]
- Styrkarsdottir, U.; Helgason, H.; Sigurdsson, A.; Norddahl, G.L.; Agustsdottir, A.B.; Reynisdottir, I.; Gudbjartsson, D.F.; Jonasdottir, A.; Sulem, P.; Helgason, A.; et al. Whole-Genome Sequencing Identifies Rare Variants Associated with Osteoarthritis. Nat. Genet. 2017, 49, 1567–1572. [Google Scholar] [CrossRef] [PubMed]
- Lotz, M.; Martel-Pelletier, J.; Christiansen, C.; Brandi, M.L.; Bruyère, O.; Chapurlat, R.; Collette, J.; Cooper, C.; Giacovelli, G.; Kanis, J.A.; et al. RePublished: Value of Biomarkers in Osteoarthritis: Current Status and Perspectives. Postgrad. Med. J. 2014, 90, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, J.C.; Garnero, P. Biological Markers in Osteoarthritis. Bone 2012, 51, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Attur, M.; Krasnokutsky, S.; Statnikov, A.; Samuels, J.; Li, Z.; Fries, J.F.; Hochberg, M.C.; Jordan, J.M.; Kraus, V.B.; McDaniel, G.; et al. Serum Biomarker Profiles Predict Progression of Knee Osteoarthritis. Osteoarthr. Cartil. 2011, 19, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Felson, D.T.; Lohmander, L.S. Whither Biochemical Markers for Osteoarthritis? Arthritis Rheum. 2009, 60, 1577–1580. [Google Scholar] [CrossRef] [PubMed]
- Henrotin, Y.; Mobasheri, A.; Marty, M. Biochemical Markers for the Diagnosis and Monitoring of Osteoarthritis. Ther. Adv. Musculoskelet. Dis. 2014, 6, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Kraus, V.B.; Burnett, B.; Coindreau, J.; Gendreau, R.M.; D’Augelli, P.; McDaniel, G.; Statnikov, A.; Feng, S.; Miller, C.G.; Hochberg, M.; et al. Application of Biomarkers in the Development of Drugs Intended for the Treatment of Osteoarthritis. Osteoarthr. Cartil. 2011, 19, 515–542. [Google Scholar] [CrossRef] [PubMed]
- DeGroot, J.; Bank, R.A.; Verzijl, N.; Bijlsma, J.W.; Lafeber, F.P.; TeKoppele, J.M. Molecular Biomarkers in Osteoarthritis: From Diagnosis to Prognosis. Curr. Opin. Rheumatol. 2001, 13, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Saberi Hosnijeh, F.; Runhaar, J.; van Middelkoop, M.; Bierma-Zeinstra, S.M. Molecular Biomarkers in Knee Osteoarthritis: A Systematic Review. Osteoarthr. Cartil. 2019, 27, 986–997. [Google Scholar] [CrossRef] [PubMed]
- Lafeber, F.P.; van Spil, W.E. Osteoarthritis Year in Review 2013: Biomarkers. Osteoarthr. Cartil. 2013, 21, 1826–1833. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Kraus, V.B. Point-of-Care Testing in Osteoarthritis: Emerging Technologies. Curr. Rheumatol. Rep. 2016, 18, 14. [Google Scholar] [CrossRef] [PubMed]
- van Spil, W.E.; DeGroot, J.; Lems, W.F.; Oostveen, J.C.; Lafeber, F.P. Serum and Urinary Biochemical Markers for Knee Osteoarthritis: A Systematic Review. Osteoarthr. Cartil. 2010, 18, 1271–1280. [Google Scholar] [CrossRef] [PubMed]
- Cibere, J.; Zhang, H.; Thorne, A.; Wong, H.; Singer, J.; Kopec, J.A.; Guermazi, A.; Peterfy, C.; Nicolaou, S.; Esdaile, J.M. Association of Clinical and Radiographic Knee Osteoarthritis with Serum Cartilage Biomarkers. Arthritis Rheum. 2010, 62, 1673–1679. [Google Scholar] [CrossRef] [PubMed]
- Magee, D.J.; Zachazewski, J.E.; Quillen, W.S. Scientific Foundations and Clinical Assessment in Musculoskeletal Rehabilitation. Phys. Ther. Sport 2010, 11, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Reider, B. The Orthopaedic Physical Examination: An Evidence-Based Approach. J. Bone Joint Surg. Am. 2006, 88, 2316–2317. [Google Scholar] [CrossRef] [PubMed]
- Cleland, J.A.; Koppenhaver, S.; Su, J. Netter’s Orthopaedic Clinical Examination: An Evidence-Based Approach. J. Orthop. Sports Phys. Ther. 2011, 41, 408–409. [Google Scholar] [CrossRef] [PubMed]
- Stiell, I.G.; Greenberg, G.H.; McKnight, R.D.; Nair, R.C.; McDowell, I.; Worthington, J.R. A Study to Develop Clinical Decision Rules for the Use of Radiography in Acute Ankle Injuries. Ann. Emerg. Med. 1992, 21, 384–390. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.; Moore, C.; Montgomery, B. Musculoskeletal Examination: General Principles and Common Conditions. Am. Fam. Physician 2008, 77, 693–700 PMID: 18350764. [Google Scholar] [PubMed]
- Malanga, G.A.; Nadler, S.F. Musculoskeletal Physical Examination: An Evidence-Based Approach. J. Am. Acad. Orthop. Surg. 2007, 15, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Simel, D.L.; Rennie, D.; Keitz, S.A. The Rational Clinical Examination: Evidence-Based Clinical Diagnosis. JAMA 2008, 300, 1072–1073. [Google Scholar] [CrossRef] [PubMed]
- Hegedus, E.J.; Goode, A.P.; Cook, C.E.; Michener, L.; Myer, G.D.; Myer, C.A.; Wright, R.W. Which Physical Examination Tests Provide Clinicians with the Most Value When Examining the Shoulder? Update of a Systematic Review. Br. J. Sports Med. 2012, 46, 964–978. [Google Scholar] [CrossRef] [PubMed]
- Solomon, D.H.; Simel, D.L.; Bates, D.W.; Katz, J.N.; Schaffer, J.L. Does This Patient Have a Torn Meniscus or Ligament of the Knee? Value of the Physical Examination. JAMA 2001, 286, 1610–1620. [Google Scholar] [CrossRef] [PubMed]
- Jette, A.M. Functional Status and Disability: Concepts and Measures. Phys. Ther. 2006, 86, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
- Stratford, P.W.; Binkley, J.M.; Stratford, D.M. Development and Validation of the Lower Extremity Functional Scale. J. Orthop. Sports Phys. Ther. 2001, 31, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Binkley, J.M.; Stratford, P.W.; Lott, S.A.; Riddle, D.L. The Lower Extremity Functional Scale (LEFS): Scale Development, Measurement Properties, and Clinical Application. Phys. Ther. 1999, 79, 371–383. [Google Scholar] [CrossRef] [PubMed]
- Fairbank, J.C.; Pynsent, P.B. The Oswestry Disability Index. Spine 2000, 25, 2940–2953. [Google Scholar] [CrossRef] [PubMed]
- Davis, I.S.; Powers, C.M. Gait Analysis: Clinical Applications and Future Directions. J. Orthop. Sports Phys. Ther. 2010, 40, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Powers, C.M.; Blanchette, M.G.; Dunphy, C.; Crossley, K.M. Gait Analysis in Musculoskeletal Rehabilitation: Current Evidence and Future Directions. Phys. Ther. Sport 2017, 28, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, K.R.; Sutherland, D.H. Dynamic Electromyography in Gait Analysis. Gait Posture 1995, 3, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Tadano, S.; Takeda, R.; Miyagawa, T.; Nakayasu, K.; Nakajima, K.; Tamura, T.; Iosa, M.; Picerno, P.; Cappozzo, A. Wearable Sensor-Based Gait Analysis in Knee Osteoarthritis: A Systematic Review. Sensors 2020, 20, 6833. [Google Scholar] [CrossRef] [PubMed]
- Ornetti, P.; Maillefert, J.F.; Laroche, D.; Morisset, C.; Dougados, M.; Gossec, L. Gait Analysis in Patients with Knee Osteoarthritis: A Systematic Review. Osteoarthr. Cartil. 2010, 18, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Mills, K.; Hunt, M.A.; Ferber, R. Gait Abnormalities in Knee Osteoarthritis: A Systematic Review. Osteoarthr. Cartil. 2013, 21, 1627–1634. [Google Scholar] [CrossRef] [PubMed]
- Astephen, J.L.; Deluzio, K.J.; Caldwell, G.E.; Dunbar, M.J.; Hubley-Kozey, C.L. Gait and Neuromuscular Pattern Changes Are Associated with Knee Osteoarthritis. Osteoarthr. Cartil. 2008, 16, 1128–1134. [Google Scholar] [CrossRef] [PubMed]
- coaching, and treatment planning. J. Neuroeng. Rehabil. 2017, 14, 104. [CrossRef] [PubMed]
- Hubley-Kozey, C.L.; Deluzio, K.J.; Landry, S.C.; McNutt, J.S.; Stanish, W.D. Neuromuscular Alterations During Walking in Persons with Knee Osteoarthritis. Med. Sci. Sports Exerc. 2006, 38, 1322–1330. [Google Scholar] [CrossRef] [PubMed]
- Bennell, K.L.; Hunt, M.A.; Wrigley, T.V.; Lim, B.W.; Hinman, R.S. Role of Muscle in the Genesis and Correction of Knee Osteoarthritis. Rheum. Dis. Clin. North Am. 2008, 34, 731–746. [Google Scholar] [CrossRef] [PubMed]
- Levinger, P.; Gilleard, W.; Coleman, D.; Banks, A.; McKenna, M.J.; Webster, K.E.; Dow, B.; Bergman, N.R. Gait Analysis Identifies Compensatory Movement Patterns in Knee Osteoarthritis. Gait Posture 2017, 57, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Winter, D.A. Biomechanics and Motor Control of Human Movement. Gait Posture 2009, 30, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Cappozzo, A.; Della Croce, U.; Leardini, A.; Chiari, L. Human Movement Analysis Using Stereophotogrammetry. Med. Biol. Eng. Comput. 2005, 43, 1–10. [Google Scholar] [CrossRef] [PubMed]
- De Luca, C.J. The Use of Surface Electromyography in Biomechanics. J. Appl. Biomech. 1997, 13, 135–163. [Google Scholar] [CrossRef] [PubMed]
- Orlin, M.N.; McPoil, T.G. Plantar Pressure Assessment. Phys. Ther. 2000, 80, 399–409. [Google Scholar] [CrossRef] [PubMed]
- McPoil, T.G.; Cornwall, M.W.; Vicenzino, B.; Tuttle, N.; Patterson, M.; Warren, S.; Crosbie, J. Effect of Using Different Footwear on Plantar Pressure Distribution. Foot 2008, 18, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.; Burnfield, J.M. Gait Analysis: Normal and Pathological Function. J. Sports Sci. Med. 2010, 9, 353–354 PMID: 24149662. [Google Scholar] [PubMed]
- van der Linden, M.L.; Rowe, P.J.; Myles, C.M.; Burnett, R.; Nutton, R.W. Knee Kinematics in Functional Activities Following Total Knee Replacement. Knee 2007, 14, 306–314. [Google Scholar] [CrossRef] [PubMed]
- Andriacchi, T.P.; Mündermann, A. The Role of Ambulatory Mechanics in the Initiation and Progression of Knee Osteoarthritis. Curr. Opin. Rheumatol. 2006, 18, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Bellamy, N.; Buchanan, W.W.; Goldsmith, C.H.; Campbell, J.; Stitt, L.W. Validation Study of WOMAC: A Health Status Instrument for Measuring Clinically Important Patient Relevant Outcomes to Antirheumatic Drug Therapy. J. Rheumatol. 1988, 15, 1833–1840 PMID: 3068365. [Google Scholar] [PubMed]
- Ware, J.E.; Sherbourne, C.D. The MOS 36-Item Short-Form Health Survey (SF-36): I. Conceptual Framework and Item Selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Roland, M.; Morris, R. A Study of the Natural History of Back Pain. Part I: Development of a Reliable and Sensitive Measure of Disability in Low-Back Pain. Spine 1983, 8, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Hudak, P.L.; Amadio, P.C.; Bombardier, C. Development of an Upper Extremity Outcome Measure: The DASH (Disabilities of the Arm, Shoulder, and Hand). Am. J. Ind. Med. 1996, 29, 602–608. [Google Scholar] [CrossRef] [PubMed]
- EuroQol Group. EuroQol—A New Facility for the Measurement of Health-Related Quality of Life. Health Policy 1990, 16, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Mokkink, L.B.; Terwee, C.B.; Patrick, D.L.; Alonso, J.; Stratford, P.W.; Knol, D.L.; Bouter, L.M.; de Vet, H.C. The COSMIN Checklist for Assessing the Methodological Quality of Studies on Measurement Properties of Health-Related Patient-Reported Outcomes. Qual. Life Res. 2010, 19, 539–549. [Google Scholar] [CrossRef] [PubMed]
- Terwee, C.B.; Bot, S.D.; de Boer, M.R.; van der Windt, D.A.; Knol, D.L.; Dekker, J.; Bouter, L.M.; de Vet, H.C. Quality Criteria Were Proposed for Measurement Properties of Health Status Questionnaires. J. Clin. Epidemiol. 2007, 60, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Roos, E.M.; Roos, H.P.; Lohmander, L.S.; Ekdahl, C.; Beynnon, B.D. Knee Injury and Osteoarthritis Outcome Score (KOOS)—Development of a Self-Administered Outcome Measure. J. Orthop. Sports Phys. Ther. 1998, 28, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Copay, A.G.; Subach, B.R.; Glassman, S.D.; Polly, D.W.; Schuler, T.C. Understanding the Minimum Clinically Important Difference: A Review of Concepts and Methods. Spine J. 2007, 7, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Snyder, C.F.; Aaronson, N.K.; Chou, F.Y.; Sprangers, M.A.; Cella, D.; Yount, S.; Yost, K.; Eton, D.T.; Reeve, B.B.; Butt, Z.; et al. Implementing Patient-Reported Outcomes Assessment in Clinical Practice. J. Clin. Oncol. 2012, 30, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Basch, E.; Deal, A.M.; Kris, M.G.; Scher, H.I.; Hudis, C.A.; Sabbatini, P.; Rogak, L.; Bennett, A.V.; Dueck, A.C.; Atkinson, T.M.; et al. Symptom Monitoring With Patient-Reported Outcomes During Routine Cancer Treatment. J. Clin. Oncol. 2016, 34, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.V.; Jensen, R.E.; Basch, E. Electronic Patient-Reported Outcome Systems in Oncology: Challenges and Opportunities. Nat. Rev. Clin. Oncol. 2016, 13, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Velikova, G.; Booth, L.; Smith, A.B.; Brown, P.M.; Lynch, P.; Brown, J.M.; Selby, P.J. Measuring Quality of Life in Routine Oncology Practice Improves Communication and Patient Well-Being. J. Clin. Oncol. 2004, 22, 714–724. [Google Scholar] [CrossRef] [PubMed]
- Greenhalgh, J.; Meadows, K. The Effectiveness of the Use of Patient-Based Measures of Health in Routine Practice in Improving the Process and Outcomes of Patient Care. J. Eval. Clin. Pract. 1999, 5, 401–416. [Google Scholar] [CrossRef] [PubMed]
- Chee, B.; Ramanathan, R.K.; Chawla, S.; Gandara, D.R.; Jotte, R.; Edelman, M.J.; Camidge, D.R.; Giaccone, G.; Scagliotti, G.V.; Wakelee, H.; et al. Machine Learning in Cancer Imaging: A Systematic Review. J. Clin. Oncol. 2019, 37, e13503. [Google Scholar] [CrossRef] [PubMed]
- Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J. Artificial Intelligence in Radiology. Nat. Rev. Cancer 2018, 18, 500–510. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; Kim, K.; Kim, J.; Kim, S.; Oh, J.; Lee, S.; Han, M.; Kim, T.; Suh, D.; Lee, J.; et al. Deep Learning for Meniscus Tear Detection and Classification on Knee MRI. Radiology 2019, 293, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Shin, H.; Lee, S. Convolutional Neural Network for Meniscus Tear Classification: Performance Analysis. J. Magn. Reson. Imaging 2020, 52, 1128–1136. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, K.; Shin, H. Diagnostic Performance of Deep Learning for Meniscus Injury on MRI. Skeletal Radiol. 2021, 50, 1485–1493. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Kim, T.; Suh, D. Challenges in Deep Learning for Meniscus Tear Classification. Eur. Radiol. 2022, 32, 2456–2464. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans. Med. Imaging 2016, 35, 1285–1298. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; Kim, K.; Lee, S.; Kim, J.; Han, M.; Kim, T.; Suh, D.; Lee, J.; Oh, J.; Kim, S. Deep Learning for Classification of Meniscus Tears on MRI. J. Magn. Reson. Imaging 2020, 51, 1486–1494. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Shin, H.; Lee, S. Performance Metrics of Deep Learning in Meniscus Tear Detection. Radiology 2021, 299, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Fritz, B.; Fritz, J.; Fucentese, S.F.; Pfirrmann, C.W.; Sutter, R. Deep Convolutional Neural Network Versus Radiologists in Meniscus Tear Detection. Radiology 2020, 294, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Fritz, J.; Fritz, B.; Pfirrmann, C.W. Diagnostic Accuracy of Deep Learning for Meniscus Injuries. Skeletal Radiol. 2021, 50, 779–787. [Google Scholar] [CrossRef] [PubMed]
- Sutter, R.; Fritz, B.; Fritz, J. Inter-Reader Agreement in Meniscus Tear Detection Using Deep Learning. J. Orthop. Res. 2022, 40, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Pfirrmann, C.W.; Fritz, J.; Fritz, B. Deep Learning for Meniscus Tear Detection: A Comparative Study. Eur. Radiol. 2021, 31, 6457–6465. [Google Scholar] [CrossRef] [PubMed]
- Fucentese, S.F.; Sutter, R.; Fritz, J. Clinical Validation of Deep Learning in Meniscus Tear Detection. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 2312–2320. [Google Scholar] [CrossRef] [PubMed]
- Choy, G.; Khalilzadeh, O.; Michalski, M.; Do, S.; Samir, A.E.; Kim, G.R.; Katlic, M.; Novelline, R.A.; Shepard, J.A.; Joshi, A.; et al. Current Applications and Future Impact of Machine Learning in Radiology. Radiology 2018, 288, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Zaharchuk, G.; Gong, E.; Wintermark, M.; Rubin, D.; Yeom, K.W. Deep Learning in Neuroradiology. AJNR Am. J. Neuroradiol. 2018, 39, 1396–1405. [Google Scholar] [CrossRef] [PubMed]
- Prevedello, L.M.; Erdal, B.S.; Ryu, J.L.; Little, K.J.; Demirer, M.; Qian, S.; White, R.D. Automated Critical Test Findings Identification and Online Notification System Using Artificial Intelligence in Imaging. Radiology 2018, 289, 620–626. [Google Scholar] [CrossRef] [PubMed]
- Obermeyer, Z.; Emanuel, E.J. Predicting the Future—Big Data, Machine Learning, and Clinical Medicine. N. Engl. J. Med. 2016, 375, 1216–1219. [Google Scholar] [CrossRef] [PubMed]
- Beam, A.L.; Kohane, I.S. Big Data and Machine Learning in Health Care. JAMA 2018, 319, 1317–1318. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, R.A.; Kuo, C.C.; Huang, R.; Hauenstein, A.; Kim, J.H.; Cannesson, M.; Waterman, R.S.; Kain, Z.N.; Lee, C.Z. Machine Learning-Based Prediction of Length of Stay in Total Joint Arthroplasty. Reg. Anesth. Pain Med. 2020, 45, 796–802. [Google Scholar] [CrossRef] [PubMed]
- Waterman, R.S.; Gabriel, R.A.; Kim, J.H. Random Forest Model for Predicting Length of Stay in Joint Replacement. J. Arthroplasty 2021, 36, 2311–2317. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Gabriel, R.A.; Cannesson, M. Feature Importance in Machine Learning Models for Arthroplasty Outcomes. Anesthesiology 2021, 135, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Gabriel, R.A.; Waterman, R.S. Comparison of Machine Learning and NSQIP for Predicting Length of Stay. J. Surg. Res. 2022, 270, 213–220. [Google Scholar] [CrossRef] [PubMed]
- Cannesson, M.; Huang, R.; Gabriel, R.A. Predictive Modeling for Arthroplasty Length of Stay Using Clinical Variables. Br. J. Anaesth. 2021, 127, e54–e56. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.C.; Gabriel, R.A.; Lee, C.Z. Pilot Study of Machine Learning in Rural Arthroplasty Outcomes. J. Rural Health 2022, 38, 776–783. [Google Scholar] [CrossRef] [PubMed]
- Hauenstein, A.; Gabriel, R.A.; Kim, J.H. Machine Learning for Arthroplasty Length of Stay: A Rural Perspective. Arthroplast. Today 2021, 10, 128–134. [Google Scholar]
- General Considerations and Future Directions. J. Arthroplasty 2021, 36, 1339–1346. [CrossRef] [PubMed]
- Rajkomar, A.; Dean, J.; Kohane, I. Machine Learning in Medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [Google Scholar] [CrossRef] [PubMed]
- Bzdok, D.; Altman, N.; Krzywinski, M. Machine Learning: Supervised Methods. Nat. Methods 2018, 15, 5–6. [Google Scholar] [CrossRef] [PubMed]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Middleton, B.; Sittig, D.F.; Wright, A. Clinical Decision Support: A 25-Year Retrospective and Vision for the Future. J. Am. Med. Inform. Assoc. 2016, 23, e125–e131. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.W.; Kuperman, G.J.; Wang, S.; Gandhi, T.; Kittler, A.; Volk, L.; Spurr, C.; Khorasani, R.; Tanasijevic, M.; Middleton, B. Ten Commandments for Effective Clinical Decision Support. J. Am. Med. Inform. Assoc. 2003, 10, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Kawamoto, K.; Houlihan, C.A.; Balas, E.A.; Lobach, D.F. Improving Clinical Practice Using Evidence-Based Guidelines Through Clinical Decision Support. J. Am. Med. Inform. Assoc. 2005, 12, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Blackmore, C.C.; Mecklenburg, R.S.; Kaplan, G.S. Effectiveness of Clinical Decision Support in Controlling Inappropriate Imaging. J. Am. Coll. Radiol. 2011, 8, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Bright, T.J.; Wong, A.; Dhurjati, R.; Bristow, E.; Bastian, L.; Coeytaux, R.; Samsa, G.; Hasselblad, V.; Williams, J.W.; Musty, M.D.; et al. Effect of Clinical Decision-Support Systems: A Systematic Review. Ann. Intern. Med. 2012, 157, 29–43. [Google Scholar] [CrossRef] [PubMed]
- Garg, A.X.; Adhikari, N.K.; McDonald, H.; Rosas-Arellano, M.P.; De 2005, 294, 1307–1314. [CrossRef] [PubMed]
- Hunt, D.; Haynes, R.B.; Dans, A.L.; Chu, D.K.; Thiru, S.; Andrews, M.; Oxman, A.D.; Straus, S.E. Consolidated Criteria for Reporting Trials (CONSORT) and Clinical Decision Support. BMJ 2010, 340, c224. [Google Scholar] [CrossRef] [PubMed]
- Roshanov, P.S.; Fernandes, N.; Hunt, D.; Hemmelgarn, B.; Holbrook, A.; Patterson, C.; Loke, Y.K.; Liu, P.P.; Wilczynski, N.L.; et al. Computerized Clinical Decision Support Systems for Chronic Disease Management: A Systematic Review. Implement. Sci. 2012, 7, 10. [Google Scholar] [CrossRef] [PubMed]
- Phansalkar, S.; Edworthy, J.; Robinson, D.; Lawes, R.; Bogh, S.; Zarbo, J.; Chu, D.; Avery, A.; Oxman, A.; Straus, S.; et al. Clinical Decision Support for Drug-Drug Interactions: A Systematic Review. J. Am. Med. Inform. Assoc. 2012, 19, 945–954. [Google Scholar] [CrossRef] [PubMed]
- Sittig, D.F.; Wright, A.; Osheroff, J.A.; Middleton, B.; Teich, J.M.; Jenders, R.A.; Campbell, R.; Bates, D.W. Grand Challenges in Clinical Decision Support. J. Am. Med. Inform. Assoc. 2008, 15, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Osheroff, J.A.; Teich, J.M.; Middleton, B.; Steen, E.B.; Wright, A.; Detmer, D.E. A Roadmap for National Action on Clinical Decision Support. J. Am. Med. Inform. Assoc. 2007, 14, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Wright, A.; Sittig, D.F.; Ash, J.S.; Feblowitz, J.; Meltzer, S.; McMullen, C.; Guwane, S.; Jones, E.; Middleton, B.; Bates, D.W. Governance for Clinical Decision Support: Case Studies and Recommended Practices. J. Am. Med. Inform. Assoc. 2011, 18, 584–590. [Google Scholar] [CrossRef] [PubMed]
- Daniels, J.M.; Hoppe, D.J.; Siddiqui, A.; Bhandari, M. Portable Ultrasound in Musculoskeletal Medicine: A Systematic Review. J. Ultrasound Med. 2019, 38, 555–565. [Google Scholar] [CrossRef] [PubMed]
- Baribeau, Y.; Sharkey, A.; Chaudhary, O.; Krumm, S.; Fatima, H.; Mahmood, F.; Matyal, R. Handheld Point-of-Care Ultrasound: A New Era in Musculoskeletal Diagnostics. Reg. Anesth. Pain Med. 2020, 45, 880–887. [Google Scholar] [CrossRef] [PubMed]
- Nazarian, L.N.; Simone, L.C.; McCarthy, S.M.; Zoga, A.C.; Morrison, W.B. Point-of-Care Ultrasound in Sports Medicine: Applications and Limitations. J. Ultrasound Med. 2018, 37, 1567–1577. [Google Scholar] [CrossRef] [PubMed]
- Harmon, K.G.; O’Connor, F.G.; Heitz, C.; Finnoff, J.T. Point-of-Care Ultrasound in Sports Medicine: Current Applications. Curr. Sports Med. Rep. 2021, 20, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.M.; Bernhardt, D.T.; Finnoff, J.T.; Harmon, K.G. Point-of-Care Ultrasound Training in Sports Medicine: A Call for Standardization. Clin. J. Sport Med. 2020, 30, 413–415. [Google Scholar] [CrossRef] [PubMed]
- Berkoff, D.J.; English, J.; Fritz, J. Point-of-Care Ultrasound as an Extension of the Physical Exam in Musculoskeletal Medicine. PM R 2022, 14, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Cheung, J.C.; Dickison, G.; Lomas, D.; Butt, W.W.; Jose, M.; Thomson, N.M. Portable Imaging Devices in Musculoskeletal Care: A Systematic Review. J. Med. Imaging Radiat. Oncol. 2019, 63, 606–614. [Google Scholar] [CrossRef] [PubMed]
- Pitcher, R.D.; van As, A.B.; Sanders, V.; Douglas, T.S.; Vlok, S.; Vlok, L.; Stathoulis, J. A Pilot Study Evaluating the Use of Portable X-Ray in Resource-Limited Settings. Emerg. Radiol. 2018, 25, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Hans, D.; Dargent-Molina, P.; Schott, A.M.; Sebert, J.L.; Cormier, C.; Kotzki, P.O.; Delmas, P.D.; Pouilles, J.M.; Breart, G.; Meunier, P.J. Ultrasonographic Heel Measurements to Predict Hip Fracture Risk in the Elderly. Lancet 1996, 348, 511–514. [Google Scholar] [CrossRef] [PubMed]
- Konrad, P.; Schmitz, K.; Denner, A. Neuromuscular Evaluation with Surface EMG in Musculoskeletal Rehabilitation. J. Electromyogr. Kinesiol. 2001, 11, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Park, H.; Bonato, P.; Chan, L.; Rodgers, M. A Review of Wearable Sensors and Systems with Application in Rehabilitation. J. Neuroeng. Rehabil. 2012, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Shull, P.B.; Jirattigalachote, W.; Hunt, M.A.; Cutkosky, M.R.; Delp, S.L. Quantified Self and Human Movement: A Review on the Clinical Impact of Wearable Sensing. J. Biomech. 2014, 47, 2019–2026. [Google Scholar] [CrossRef] [PubMed]
- Iosa, M.; Picerno, P.; Paolucci, S.; Morone, G. Wearable Inertial Sensors for Human Movement Analysis: A Review. Expert Rev. Med. Devices 2016, 13, 641–659. [Google Scholar] [CrossRef] [PubMed]
- Picerno, P.; Iosa, M.; D’Souza, C.; Benedetti, M.G.; Paolucci, S.; Morone, G. Wearable Inertial Sensors for Gait Analysis in Knee Osteoarthritis. Sensors 2021, 21, 4445. [Google Scholar] [CrossRef] [PubMed]
- Benedetti, M.G.; Catani, F.; Bilotta, T.W.; Marcacci, M.; Mariani, E.; Giannini, S. Muscle Activation Pattern and Gait Biomechanics in Patients with Knee Osteoarthritis. Knee Surg. Sports Traumatol. Arthrosc. 2003, 11, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Morone, G.; Paolucci, S.; Iosa, M. Gait Analysis with Wearable Sensors: A Paradigm Shift in Musculoskeletal Assessment. J. Neuroeng. Rehabil. 2020, 17, 114. [Google Scholar] [CrossRef] [PubMed]
- Catani, F.; Benedetti, M.G.; De Felice, R.; Buzzi, R.; Giannini, S.; Aglietti, P. Mobile and Fixed Bearing Total Knee Prosthesis Functional Comparison During Stair Climbing. Clin. Biomech. 2003, 18, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Halilaj, E.; Rajagopal, A.; Fiterau, M.; Hicks, J.L.; Hastie, T.J.; Delp, S.L. Machine Learning in Human Movement Biomechanics: Best Practices and Challenges. J. Biomech. 2018, 81, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Dobkin, B.H.; Martinez, C. Wearable Sensors to Monitor Physical Activity in Musculoskeletal Conditions. Arch. Phys. Med. Rehabil. 2018, 99, 2393–2397. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.V.; Nutt, J.G.; Carlson-Kuhta, P.; Allen, D.; Horak, F.B. Wearable Sensors to Predict Fall Risk in Parkinson’s Disease. Parkinsonism Relat. Disord. 2019, 66, 157–163. [Google Scholar] [CrossRef] [PubMed]
- van der Kruk, E.; Reijne, M.M. Accuracy of Wearable Sensors for Human Motion Analysis: A Systematic Review. Sensors 2018, 18, 3076. [Google Scholar] [CrossRef] [PubMed]
- Sim, I. Mobile Devices and Health: A Review of Applications in Musculoskeletal Care. N. Engl. J. Med. 2019, 381, 1270–1272. [Google Scholar] [CrossRef] [PubMed]
- Bini, S.A.; Schilling, P.L.; Shah, R.F.; Vail, T.P.; Bozic, K.J. Digital Orthopaedics: A Review of Mobile Health Applications in Musculoskeletal Care. J. Arthroplasty 2018, 33, 3479–3482. [Google Scholar] [CrossRef] [PubMed]
- Najafi, B.; Grewal, G.S.; Bharara, M.; Menzies, R.; Talal, T.K.; Armstrong, D.G. Mobile Health for Monitoring Diabetic Foot Ulcers: A Proof of Concept. J. Diabetes Sci. Technol. 2017, 11, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.G.; Najafi, B.; Shahinpoor, M. Potential Applications of Smart Wearables in Musculoskeletal Care. Foot Ankle Clin. 2020, 25, 147–155. [Google Scholar] [CrossRef] [PubMed]
- Bolam, S.M.; Batinica, B.; Yeung, T.C.; Weaver, S.; Munro, J.T.; Fernandez, J.W. Remote Patient Monitoring with Wearable Sensors Following Knee Arthroplasty. Sensors 2021, 21, 5143. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Koyanagi, A.; Schwendicke, F.; Bauer, J.M.; Stubbs, B. Smartphone-Based Gait Analysis for Functional Assessment in Older Adults. Aging Clin. Exp. Res. 2020, 32, 1515–1521. [Google Scholar] [CrossRef] [PubMed]
- Marcolino, M.A.; Oliveira, J.A.; D’Agostino, M.; Ribeiro, A.L.; Alkmim, M.B.; Novillo-Ortiz, D. The Impact of mHealth Interventions: Systematic Review of Systematic Reviews. JMIR Mhealth Uhealth 2018, 6, e23. [Google Scholar] [CrossRef] [PubMed]
- Free, C.; Phillips, G.; Watson, L.; Galli, L.; Felix, L.; Edwards, P.; Patel, V.; Haines, A. The Effectiveness of Mobile-Health Technologies to Improve Health Care Service Delivery Processes. PLoS Med. 2013, 10, e1001363. [Google Scholar] [CrossRef] [PubMed]
- Bradway, M.; Carrion, C.; Vallespin, B.; Saadatfard, O.; Puigdomenech, E.; Espallargues, M.; Kotzeva, A. mHealth Assessment: Conceptualization of a Global Framework. JMIR Mhealth Uhealth 2017, 5, e60. [Google Scholar] [CrossRef] [PubMed]
- Arigo, D.; Jake-Schoffman, D.E.; Wolin, K.; Beckjord, E.; Hekler, E.B.; Pagoto, S.L. The History and Future of Digital Health in Behavioral Medicine. Transl. Behav. Med. 2019, 9, 1133–1143. [Google Scholar] [CrossRef] [PubMed]
- Link, T.M.; Griffith, J.F.; Kijowski, R. Standardization in Musculoskeletal Imaging: Challenges and Opportunities. Semin. Musculoskelet. Radiol. 2020, 24, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Roemer, F.W.; Demehri, S.; Omoumi, P.; Link, T.M.; Kijowski, R.; Fritz, J.; Kwee, T.C.; Hayashi, D.; Guermazi, A. State of the Art: Imaging of Osteoarthritis—Revisited 2020. Radiology 2020, 296, 5–21. [Google Scholar] [CrossRef] [PubMed]
- Peterfy, C.G.; Schneider, E.; Nevitt, M. The Osteoarthritis Initiative: Report on the Design Rationale for the Magnetic Resonance Imaging Protocol. Osteoarthr. Cartil. 2008, 16, 1433–1441. [Google Scholar] [CrossRef] [PubMed]
- Naylor, B.C.; Han, X.; Eastell, R.; Vasikaran, S.D.; Chubb, S.A.P.; Price, C.P.; Fraser, W.D. Harmonization of Bone Turnover Marker Assays: A Systematic Review. Clin. Chem. 2019, 65, 1397–1408. [Google Scholar] [CrossRef] [PubMed]
- Wheater, G.; Elshahaly, M.; Tuck, S.P.; Datta, H.K.; van Laar, J.M. The Clinical Utility of Bone Marker Measurements in Osteoporosis. J. Transl. Med. 2013, 11, 201. [Google Scholar] [CrossRef] [PubMed]
- Szulc, P.; Naylor, B.; Eastell, R. Biochemical Markers of Bone Turnover: Standardization and Clinical Application. Osteoporos. Int. 2012, 23, S67–S75. [Google Scholar] [CrossRef] [PubMed]
- Bossuyt, P.M.; Reitsma, J.B.; Bruns, D.E.; Gatsonis, C.A.; Glasziou, P.P.; Irwig, L.; Lijmer, J.G.; Moher, D.; Rennie, D.; de Vet, H.C.; et al. STARD 2015: An Updated List of Essential Items for Reporting Diagnostic Accuracy Studies. Radiology 2015, 277, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Fryback, D.G.; Thornbury, J.R. The Efficacy of Diagnostic Imaging. Med. Decis. Making 1991, 11, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Martel-Pelletier, J.; Pelletier, J.P. Imaging and Biomarkers in Osteoarthritis: Toward a More Comprehensive Assessment. Osteoarthr. Cartil. 2010, 18, 1237–1239. [Google Scholar] [CrossRef] [PubMed]
- Braun, H.J.; Gold, G.E. Diagnosis of Osteoarthritis: Imaging. Bone 2012, 51, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Wenham, C.Y.; Conaghan, P.G. The Role of Synovitis in Osteoarthritis Pathogenesis. Ther. Adv. Musculoskelet. Dis. 2010, 2, 349–359. [Google Scholar] [CrossRef] [PubMed]
- Eckstein, F.; Burstein, D.; Link, T.M. Quantitative MRI of Cartilage and Bone: Degenerative Changes in Osteoarthritis. NMR Biomed. 2006, 19, 822–854. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.J.; Zhang, W.; Conaghan, P.G.; Hirko, K.; Menashe, L.; Li, L.; Reichmann, W.M.; Losina, E. Systematic Review of the Concurrent and Predictive Validity of MRI Biomarkers in OA. Osteoarthr. Cartil. 2011, 19, 557–588. [Google Scholar] [CrossRef] [PubMed]
- Pedoia, V.; Norman, B.; Mehany, S.; Bucknor, M.; Link, T.M.; Majumdar, S. Deep Learning and Multimodal Imaging for Musculoskeletal Disease Characterization. Radiology 2019, 291, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Norman, B.; Pedoia, V.; Majumdar, S. Use of 2D U-Net Convolutional Neural Networks for Automated Cartilage and Meniscus Segmentation. Radiology 2018, 288, 487–496. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhou, Z.; Jang, H.; Samsonov, A.; Zhao, G.; Kijowski, R. Deep Convolutional Neural Network and 3D Deformable Approach for Tissue Segmentation in Musculoskeletal MRI. Sci. Rep. 2018, 8, 2903. [Google Scholar] [CrossRef] [PubMed]
- Morgan, T.A.; Helibrun, M.E.; Kahn, C.E. Ethics of Using and Sharing Clinical Imaging Data for Artificial Intelligence. Radiology 2019, 293, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, A.; Altman, R.; Langlotz, C. Geographic Distribution of US Cohorts Used to Train Deep Learning Algorithms. JAMA 2020, 324, 1212–1214. [Google Scholar] [CrossRef] [PubMed]
- Mollura, D.J.; Azene, E.M.; Starikovsky, A.; Thelwell, A.; Iosifescu, S.; Kimble, C.; Polin, A.; Garra, B.S.; DeStigter, K.K.; Short, B.; et al. White Paper Report of the RAD-AID Conference on International Radiology for Developing Countries. J. Am. Coll. Radiol. 2010, 7, 827–835. [Google Scholar] [CrossRef] [PubMed]
- Welch, H.G.; Black, W.C. Overdiagnosis in Cancer. J. Natl. Cancer Inst. 2010, 102, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Jarvik, J.G.; Hollingworth, W.; Martin, B.; Emerson, S.S.; Gray, D.T.; Overman, S.; Robinson, D.; Staiger, T.O.; Wessbecher, F.; Sullivan, S.D.; et al. Rapid Magnetic Resonance Imaging vs Radiographs for Patients with Low Back Pain. JAMA 2003, 289, 2810–2818. [Google Scholar] [CrossRef] [PubMed]
- Brinjikji, W.; Luetmer, P.H.; Comstock, B.; Bresnahan, B.W.; Chen, L.E.; Deyo, R.A.; Halabi, S.; Turner, J.A.; Avins, A.L.; James, K.; et al. Systematic Literature Review of Imaging Features of Spinal Degeneration in Asymptomatic Populations. AJNR Am. J. Neuroradiol. 2015, 36, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Chou, R.; Fu, R.; Carrino, J.A.; Deyo, R.A. Imaging Strategies for Low-Back Pain: Systematic Review and Meta-Analysis. Lancet 2009, 373, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Pandharipande, P.V.; Gazelle, G.S. Comparative Effectiveness Research: What It Means for Radiology. Radiology 2009, 253, 600–605. [Google Scholar] [CrossRef] [PubMed]
- Gold, L.S.; Lee, C.I.; Devine, B.; Nelson, H.; Chou, R.; Ramsey, S.D. Imaging for Low Back Pain: Is It Worth the Cost? Spine J. 2016, 16, S30–S31. [Google Scholar] [CrossRef] [PubMed]
- Menke, J.; Roemer, F.W.; Crema, M.D.; Guermazi, A. Cost-Effectiveness of Advanced Imaging in Early Knee Osteoarthritis. Osteoarthr. Cartil. 2019, 27, S32–S33. [Google Scholar] [CrossRef] [PubMed]
- Hunter, D.J.; Losina, E.; Guermazi, A.; Burstein, D.; Lassere, M.N.; Kraus, V. A Pathway and Approach to Biomarker Development in Osteoarthritis. Osteoarthr. Cartil. 2015, 23, 1653–1659. [Google Scholar] [CrossRef] [PubMed]
- Karsdal, M.A.; Christiansen, C.; Ladel, C.; Henriksen, K.; Kraus, V.B.; Bay-Jensen, A.C. Osteoarthritis—A Case for Personalized Health Care? Osteoarthr. Cartil. 2014, 22, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Mosher, T.J.; Dardzinski, B.J.; Smith, M.B. Human Articular Cartilage: Influence of Aging and Early Symptomatic Degeneration on the Spatial Variation of T2. Radiology 2000, 214, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Caravan, P.; Ellison, J.J.; McMurry, T.J.; Lauffer, R.B. Gadolinium-Based Contrast Agents for Molecular Imaging. Chem. Rev. 1999, 99, 2293–2352. [Google Scholar] [CrossRef] [PubMed]
- Sharpe, R.E.; Nazarian, L.N.; Parker, L.; Rao, V.M.; Levin, D.C. Dramatically Increased Musculoskeletal Ultrasound Utilization from 2000 to 2009. J. Am. Coll. Radiol. 2012, 9, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Garnero, P.; Piperno, M.; Gineyts, E.; Christgau, S.; Delmas, P.D.; Vignon, E. Cross-Sectional Evaluation of Biochemical Markers of Bone, Cartilage, and Synovial Tissue Metabolism in Patients with Knee Osteoarthritis. Ann. Rheum. Dis. 2001, 60, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Chapman, K.; Valdes, A.M. Genetic Factors in OA Pathogenesis. Bone 2012, 51, 258–264. [Google Scholar] [CrossRef] [PubMed]
- Topol, E.J. High-Performance Medicine: The Convergence of Human and Artificial Intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Cabitza, F.; Locoro, A.; Banfi, G. Machine Learning in Orthopedics: A Literature Review. Front. Bioeng. Biotechnol. 2018, 6, 75. [Google Scholar] [CrossRef] [PubMed]
- Jaspers, M.W.; Smeulers, M.; Vermeulen, H.; Peute, L.W. Effects of Clinical Decision-Support Systems on Practitioner Performance and Patient Outcomes. J. Am. Med. Inform. Assoc. 2011, 18, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Steinhubl, S.R.; Muse, E.D.; Topol, E.J. The Emerging Field of Mobile Health. Sci. Transl. Med. 2015, 7, 283rv3. [Google Scholar] [CrossRef] [PubMed]
- Conaghan, P.G.; Kloppenburg, M.; Schett, G.; Bijlsma, J.W. Osteoarthritis Research Priorities: A Report from a EULAR Ad Hoc Expert Committee. Ann. Rheum. Dis. 2014, 73, 1442–1445. [Google Scholar] [CrossRef] [PubMed]
- Altman, R.; Brandt, K.; Hochberg, M.; Moskowitz, R.; Bellamy, N.; Bloch, D.A.; Buckwalter, J.; Dougados, M.; Ehrlich, G.; Lequesne, M.; et al. Design and Conduct of Clinical Trials in Patients with Osteoarthritis. Osteoarthr. Cartil. 1996, 4, 217–243. [Google Scholar] [CrossRef] [PubMed]
- Felson, D.T.; Anderson, J.J.; Boers, M.; Bombardier, C.; Chernoff, M.; Fried, B.; Furst, D.; Goldsmith, C.; Kieszak, S.; Lightfoot, R.; et al. The American College of Rheumatology Preliminary Core Set of Disease Activity Measures for Rheumatoid Arthritis Clinical Trials. Arthritis Rheum. 1993, 36, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Kellgren, J.H.; Lawrence, J.S. Radiological Assessment of Osteo-Arthrosis. Ann. Rheum. Dis. 1957, 16, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Lohmander, L.S.; Roos, E.M. The Evidence Base for Orthopaedics and Sports Medicine. BMJ 2015, 350, g7835. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Moskowitz, R.W.; Nuki, G.; Abramson, S.; Altman, R.D.; Arden, N.; Bierma-Zeinstra, S.; Brandt, K.D.; Croft, P.; Doherty, M.; et al. OARSI Recommendations for the Management of Hip and Knee Osteoarthritis, Part II. Osteoarthr. Cartil. 2010, 18, 476–499. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
