Submitted:
15 May 2025
Posted:
19 May 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Mathematical Foundations and Modeling of Hand Recognition
3. Datasets and Benchmarking Protocols
4. Evaluation Metrics and Performance Analysis
5. Challenges and Limitations in Hand Recognition Using Machine Learning
6. Future Directions and Emerging Trends
7. Conclusions
References
- Samai, D.; Bensid, K.; Meraoumia, A.; Taleb-Ahmed, A.; Bedda, M. 2d and 3d palmprint recognition using deep learning method. In Proceedings of the 2018 3rd international conference on pattern analysis and intelligent systems (PAIS). IEEE; 2018; pp. 1–6. [Google Scholar]
- Xin, Z.D.P.; Xin, P.; Xiaoling, L.; Xiaojing, G. Palmprint recognition based on deep learning. In Proceedings of the International Conference on Wireless, 2015., Mobile and Multi-Media (ICWMMN). IET.
- Li, B.; Dai, Y.; Cheng, X.; Chen, H.; Lin, Y.; He, M. Skeleton based action recognition using translation-scale invariant image mapping and multi-scale deep CNN. In Proceedings of the 2017 IEEE International Conference on Multimedia &, 2017, Expo Workshops (ICMEW). IEEE; pp. 601–604.
- Zhong, D.; Du, X.; Zhong, K. Decade progress of palmprint recognition: A brief survey. Neurocomputing 2019, 328, 16–28. [Google Scholar] [CrossRef]
- Zhang, W.; Lin, Z.; Cheng, J.; Ma, C.; Deng, X.; Wang, H. STA-GCN: two-stream graph convolutional network with spatial–temporal attention for hand gesture recognition. The Visual Computer 2020, 36, 2433–2444. [Google Scholar] [CrossRef]
- Yang, Z.; Huangfu, H.; Leng, L.; Zhang, B.; Teoh, A.B.J.; Zhang, Y. Comprehensive competition mechanism in palmprint recognition. IEEE Transactions on Information Forensics and Security 2023. [Google Scholar] [CrossRef]
- Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. Advances in neural information processing systems 2017, 30. [Google Scholar]
- Fei, L.; Zhao, S.; Jia, W.; et al. Toward efficient palmprint feature extraction by learning a single-layer convolution network. IEEE Transactions on Neural Networks and Learning Systems 2022, 34, 9783–9794. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Hernando, G.; Yuan, S.; Baek, S.; Kim, T.K. First-person hand action benchmark with rgb-d videos and 3d hand pose annotations. In Proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 409–419. Visited on 21/03/2022.
- Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv preprint, 2017; arXiv:1710.10903. [Google Scholar]
- Bauer, A.; Trapp, S.; Stenger, M.; Leppich, R.; Kounev, S.; Leznik, M.; Chard, K.; Foster, I. Comprehensive exploration of synthetic data generation: A survey. arXiv preprint arXiv:2401.02524, arXiv:2401.02524 2024.
- Rai, B.S.; Pakkala, P.G.R.; Neha, G.; et al. Intelligent Framework for Early Prediction of Type–II Diabetes by Accelerating Palm Print Images using Graph Data Science. In Proceedings of the IEEE International Conference on Distributed Computing, VLSI, 2023, Electrical Circuits and Robotics (DISCOVER). IEEE; pp. 207–212.
- Shi, L.; Zhang, Y.; Cheng, J.; Lu, H. Non-local graph convolutional networks for skeleton-based action recognition. arXiv preprint 2018, arXiv:1805.076941, 3. [Google Scholar]
- Caputo, F.M.; Prebianca, P.; Carcangiu, A.; Spano, L.D.; Giachetti, A. Comparing 3D trajectories for simple mid-air gesture recognition. Computers & Graphics 2018, 73, 17–25. [Google Scholar]
- Jia, W.; Huang, D.S.; Zhang, D. Palmprint verification based on robust line orientation code. Pattern Recognition 2008, 41, 1504–1513. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the IEEE conference on computer vision and pattern recognition. Ieee, Vol. 1; 2005; pp. 886–893. [Google Scholar]
- Li, G.; Kim, J. Palmprint recognition with local micro-structure tetra pattern. Pattern Recognition 2017, 61, 29–46. [Google Scholar] [CrossRef]
- Alfalahi, H.; Khandoker, A.H.; Chowdhury, N.; et al. Diagnostic accuracy of keystroke dynamics as digital biomarkers for fine motor decline in neuropsychiatric disorders: a systematic review and meta-analysis. Scientific reports 2022, 12, 7690. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. In Proceedings of the International Conference on Learning Representations; 2020. [Google Scholar]
- Kong, A.K.; Zhang, D. Competitive coding scheme for palmprint verification. In Proceedings of the Proceedings of the International Conference on Pattern Recognition.
- Gomez-Barrero, M.; Rathgeb, C.; Galbally, J.; Busch, C.; Fierrez, J. Unlinkable and irreversible biometric template protection based on bloom filters. Information Sciences 2016, 370, 18–32. [Google Scholar] [CrossRef]
- Song, Y.; Wang, T.; Cai, P.; Mondal, S.K.; Sahoo, J.P. A comprehensive survey of few-shot learning: Evolution, applications, challenges, and opportunities. ACM Computing Surveys 2023, 55, 1–40. [Google Scholar] [CrossRef]
- Kong, A.K.; Zhang, D. Competitive coding scheme for palmprint verification. In Proceedings of the Proceedings of the International Conference on Pattern Recognition. IEEE, 2004, Vol. 1, pp. 520–523.
- Zhang, D.; Guo, Z.; Lu, G.; Zhang, L.; Zuo, W. An online system of multispectral palmprint verification. IEEE transactions on instrumentation and measurement 2009, 59, 480–490. [Google Scholar] [CrossRef]
- Liang, X.; Li, Z.; Fan, D.; et al. Innovative contactless palmprint recognition system based on dual-camera alignment. IEEE Transactions on Systems, Man, and Cybernetics: Systems 2022, 52, 6464–6476. [Google Scholar] [CrossRef]
- Wu, X.; Zhao, Q.; Bu, W. A SIFT-based contactless palmprint verification approach using iterative RANSAC and local palmprint descriptors. Pattern recognition 2014, 47, 3314–3326. [Google Scholar] [CrossRef]
- Ungureanu, A.S.; Salahuddin, S.; Corcoran, P. Toward unconstrained palmprint recognition on consumer devices: A literature review. IEEE Access 2020, 8, 86130–86148. [Google Scholar] [CrossRef]
- Simonyan, K. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, arXiv:1409.1556 2014.
- Lu, W.; Tong, Z.; Chu, J. Dynamic hand gesture recognition with leap motion controller. IEEE Signal Processing Letters 2016, 23, 1188–1192. [Google Scholar] [CrossRef]
- Fei, L.; Xu, Y.; Zhang, D. Half-orientation extraction of palmprint features. Pattern Recognition Letters 2016, 69, 35–41. [Google Scholar] [CrossRef]
- Rivera, G.; Florencia, R.; García, V.; et al. News classification for identifying traffic incident points in a Spanish-speaking country: A real-world case study of class imbalance learning. Applied Sciences 2020, 10, 6253. [Google Scholar] [CrossRef]
- Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Proceedings of the thirteenth international conference on artificial intelligence and statistics. JMLRWorkshop and Conference Proceedings, 2010, pp. 249–256. Visited on 02/05/2022.
- De Smedt, Q.; Wannous, H.; Vandeborre, J.P. Heterogeneous hand gesture recognition using 3D dynamic skeletal data. Computer Vision and Image Understanding 2019, 181, 60–72. [Google Scholar] [CrossRef]
- Nguyen, K.; Proença, H.; Alonso-Fernandez, F. Deep learning for iris recognition: A survey. ACM Computing Surveys 2024, 56, 1–35. [Google Scholar] [CrossRef]
- Pham, V.T.; Tran, T.H.; Vu, H. Detection and tracking hand from FPV: benchmarks and challenges on rehabilitation exercises dataset. In Proceedings of the 2021 RIVF International Conference on Computing and Communication Technologies (RIVF). IEEE; 2021; pp. 1–6. [Google Scholar]
- Fei, L.; Zhang, B.; Xu, Y.; Guo, Z.; Wen, J.; Jia, W. Learning discriminant direction binary palmprint descriptor. IEEE Transactions on Image Processing 2019, 28, 3808–3820. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778. Visited on 17/03/2022.
- Zou, Y.; Liu, C.; Shao, H.; Zhong, D. Unsupervised palmprint image quality assessment via pseudo-label generation and ranking guidance. IEEE Transactions on Instrumentation and Measurement 2023, 72, 1–11. [Google Scholar] [CrossRef]
- Godbole, A.; Grosz, S.A.; Jain, A.K. Contactless Palmprint Recognition for Children. In Proceedings of the 2023 International Conference of the Biometrics Special Interest Group (BIOSIG). IEEE; 2023; pp. 1–7. [Google Scholar]
- Fei, L.; Zhang, B.; Jia, W.; Wen, J.; Zhang, D. Feature extraction for 3-D palmprint recognition: A survey. IEEE Transactions on Instrumentation and Measurement 2020, 69, 645–656. [Google Scholar] [CrossRef]
- Mu, M.; Ruan, Q. Mean and standard deviation as features for palmprint recognition based on Gabor filters. International Journal of Pattern Recognition and Artificial Intelligence 2011, 25, 491–512. [Google Scholar] [CrossRef]
- Chan, T.H.; Jia, K.; Gao, S.; et al. PCANet: A simple deep learning baseline for image classification? IEEE transactions on image processing 2015, 24, 5017–5032. [Google Scholar] [CrossRef]
- Boutros, F.; Struc, V.; Fierrez, J.; Damer, N. Synthetic data for face recognition: Current state and future prospects. Image and Vision Computing 2023, 135, 104688. [Google Scholar] [CrossRef]
- Yulin, F.; Kumar, A. Best: Building evidences from scattered templates for accurate contactless palmprint recognition. Pattern Recognition 2023, 138, 109422. [Google Scholar] [CrossRef]
- De Smedt, Q.; Wannous, H.; Vandeborre, J.P.; Guerry, J.; Le Saux, B.; Filliat, D. Shrec’17 track: 3d hand gesture recognition using a depth and skeletal dataset. In Proceedings of the 3DOR-10th Eurographics Workshop on 3D Object Retrieval; 2017; pp. 1–6. [Google Scholar]
- Wang, J.G.; Yau, W.Y.; Suwandy, A.; et al. Person recognition by fusing palmprint and palm vein images based on “Laplacianpalm” representation. Pattern Recognition 2008, 41, 1514–1527. [Google Scholar] [CrossRef]
- Chopra, S.; Hadsell, R.; LeCun, Y. Learning a similarity metric discriminatively, with application to face verification. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Vol. 1; 2005; pp. 539–546. [Google Scholar]
- Gomez-Barrero, M.; Galbally, J.; Rathgeb, C.; Busch, C. General framework to evaluate unlinkability in biometric template protection systems. IEEE Transactions on Information Forensics and Security 2017, 13, 1406–1420. [Google Scholar] [CrossRef]
- Kumar, A.; Shekhar, S. Personal identification using multibiometrics rank-level fusion. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 2010, 41, 743–752. [Google Scholar] [CrossRef]
- Ross, T.Y.; Dollár, G. Focal loss for dense object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR); 2017; pp. 2980–2988. [Google Scholar]
- Aishwarya, D.; Gowri, M.; Saranya, R. Palm print recognition using liveness detection technique. In Proceedings of the 2016 Second International Conference on Science Technology Engineering and Management (ICONSTEM). IEEE; 2016; pp. 109–114. [Google Scholar]
- Liu, H.; Sun, D.; Xiong, K.; Qiu, Z.; et al. A hybrid approach to protect palmprint templates. The Scientific World Journal 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Sardar, A.; Umer, S.; Rout, R.K.; Khan, M.K. A secure and efficient biometric template protection scheme for palmprint recognition system. IEEE Transactions on Artificial Intelligence 2022. [Google Scholar] [CrossRef]
- Emporio, M.; Caputo, A.; Giachetti, A. STRONGER: Simple TRajectory-based ONline GEsture Recognizer 2021. Visited on 15/08/2022.
- Wu, W.; Zhang, Y.; Li, Y.; Li, C. Fusion recognition of palmprint and palm vein based on modal correlation. Mathematical Biosciences and Engineering 2024, 21, 3129–3145. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Oh, B.S.; Toh, K.A.; et al. Extraction and cross-matching of palm-vein and palmprint from the RGB and the NIR spectrums for identity verification. IEEE Access 2019, 8, 4005–4021. [Google Scholar] [CrossRef]
- Wirth, R.; Hipp, J. CRISP-DM: Towards a standard process model for data mining. In Proceedings of the Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining. Manchester, 2000, Vol. 1, pp. 29–39.
- Zhang, D.; Guo, Z.; Lu, G.; et al. Online joint palmprint and palmvein verification. Expert Systems with Applications 2011, 38, 2621–2631. [Google Scholar] [CrossRef]
- Khan, M.S.; Li, H.; Zhao, C. Deep secure PalmNet: A novel cancelable palmprint template protection scheme with deep attention net and randomized hashing security mechanism. Computers & Security 2024, 142, 103863. [Google Scholar]
- Indian Institute of Technology Delhi. IITD Touchless Palmprint Database (Version1.0). https://www4.comp.polyu.edu.hk/∼csajaykr/IITD/Database_Palm.htm, 2006.
- Sepas-Moghaddam, A.; Etemad, A. Deep gait recognition: A survey. IEEE transactions on pattern analysis and machine intelligence 2022, 45, 264–284. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhou, Y.; Fei, L.; et al. Multi-spectral palmprints joint attack and defense with adversarial examples learning. IEEE Transactions on Information Forensics and Security 2023, 18, 1789–1799. [Google Scholar] [CrossRef]
- Xing, Y.; Zhu, J. Deep learning-based action recognition with 3D skeleton: a survey, 2021. Visited on 07/03/2022.
- Zhong, D.; Zhu, J. Centralized large margin cosine loss for open-set deep palmprint recognition. IEEE Transactions on Circuits and Systems for Video Technology 2019, 30, 1559–1568. [Google Scholar] [CrossRef]
- Hedegaard, L.; Iosifidis, A. Continual inference: a library for efficient online inference with deep neural networks in pytorch. arXiv preprint arXiv:2204.03418, arXiv:2204.03418 2022.
- Chen, X.; Guo, H.; Wang, G.; Zhang, L. Motion feature augmented recurrent neural network for skeleton-based dynamic hand gesture recognition. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP). IEEE; 2017; pp. 2881–2885. [Google Scholar]
- Ruan, S.; Li, Y.; Qin, H. LSFM: Light Style and Feature Matching for Efficient Cross-Domain Palmprint Recognition. IEEE Transactions on Information Forensics and Security 2024. [Google Scholar] [CrossRef]
- Karras, T.; Aila, T.; Laine, S.; Lehtinen, J. Progressive growing of gans for improved quality, stability, and variation. arXiv 2017. arXiv preprint arXiv:1710.10196, arXiv:1710.10196 2018, pp. 1–26.
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the Proceedings of the AAAI conference on artificial intelligence, 2017, Vol.
- Akremi, M.S.; Slama, R.; Tabia, H. SPD Siamese Neural Network for Skeleton-based Hand Gesture Recognition. In Proceedings of the VISIGRAPP (4: VISAPP); 2022; pp. 394–402. [Google Scholar]
- Ohn-Bar, E.; Trivedi, M. Joint angles similarities and HOG2 for action recognition. In Proceedings of the Proceedings of the IEEE conference on computer vision and pattern recognition workshops, 2013, pp. 465–470. Visited on 07/03/2022.
- Wu, X.; Zhao, Q.; Bu, W. A SIFT-based contactless palmprint verification approach using iterative RANSAC and local palmprint descriptors. Pattern Recognition 2014, 47, 3314–3326. [Google Scholar] [CrossRef]
- Liu, B.; Feng, J. Palmprint orientation field recovery via attention-based generative adversarial network. Neurocomputing 2021, 438, 1–13. [Google Scholar] [CrossRef]
- Hawkins, D.M. The problem of overfitting. Journal of chemical information and computer sciences 2004, 44, 1–12. [Google Scholar] [CrossRef]
- Niepert, M.; Ahmed, M.; Kutzkov, K. Learning convolutional neural networks for graphs. In Proceedings of the International conference on machine learning. PMLR; 2016; pp. 2014–2023. [Google Scholar]
- Yang, Z.; Xia, W.; Lu, Z.; et al. Hypernetwork-based physics-driven personalized federated learning for CT imaging. IEEE Transactions on Neural Networks and Learning Systems 2023. [Google Scholar] [CrossRef] [PubMed]
- Matkowski, W.M.; Chai, T.; Kong, A.W.K. Palmprint recognition in uncontrolled and uncooperative environment. IEEE Transactions on Information Forensics and Security 2019, 15, 1601–1615. [Google Scholar] [CrossRef]
- Li, Z.; Liang, X.; Fan, D.; et al. BPFNet: A unified framework for bimodal palmprint alignment and fusion. In Proceedings of the Neural Information Processing: 28th International Conference, ICONIP 2021, Sanur, Bali, Indonesia, 2021, Proceedings, Part VI 28. Springer, 2021, December 8–12; pp. 28–36.
- Chen, Y.; Zhao, L.; Peng, X.; Yuan, J.; Metaxas, D.N. Construct dynamic graphs for hand gesture recognition via spatial-temporal attention. arXiv preprint arXiv:1907.08871, arXiv:1907.08871 2019. Visited on 16/03/2022.
- De Smedt, Q.; Wannous, H.; Vandeborre, J.P. Skeleton-based dynamic hand gesture recognition. In Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2016, pp. 1–9. Visited on 08/03/2022.
- Siddhad, G.; Khanna, P.; Ojha, A. Cancelable biometric template generation using convolutional autoencoder. In Proceedings of the International Conference on Computer Vision and Image Processing. Springer; 2020; pp. 303–314. [Google Scholar]
- Wang, F.; Leng, L.; Teoh, A.B.J.; Chu, J. Palmprint false acceptance attack with a generative adversarial network (GAN). Applied Sciences 2020, 10, 8547. [Google Scholar] [CrossRef]
- Lin, C.; Chen, Y.; Zou, X.; Deng, X.; Dai, F.; You, J.; Xiao, J. An unconstrained palmprint region of interest extraction method based on lightweight networks. Plos one 2024, 19, e0307822. [Google Scholar] [CrossRef]
- De Smedt, Q.; Wannous, H.; Vandeborre, J.P. Skeleton-based dynamic hand gesture recognition. In Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 2016, pp. 1–9. Visited on 07/03/2022.
- Gu, J.; Wang, Z.; Kuen, J.; et al. Recent advances in convolutional neural networks. Pattern Recognition 2018, 77, 354–377. [Google Scholar]
- Yang, Z.; Kang, M.; Teoh, A.B.J.; Gao, C.; Chen, W.; Zhang, B.; Zhang, Y. A Dual-Level Cancelable Framework for Palmprint Verification and Hack-Proof Data Storage. IEEE Transactions on Information Forensics and Security 2024, 19, 8587–8599. [Google Scholar] [CrossRef]
- Yang, W.; Wang, S.; Hu, J.; Tao, X.; Li, Y. Feature extraction and learning approaches for cancellable biometrics: A survey. CAAI Transactions on Intelligence Technology 2024, 9, 4–25. [Google Scholar] [CrossRef]
- Jalali, A.; Mallipeddi, R.; Lee, M. Deformation invariant and contactless palmprint recognition using convolutional neural network. In Proceedings of the International Conference on Human-agent Interaction; 2015; pp. 209–212. [Google Scholar]
- Wang, Y.; Fei, L.; Zhao, S.; Zhu, Q.; Wen, J.; Jia, W.; Rida, I. Dense Hybrid Attention Network for Palmprint Image Super-Resolution. IEEE Transactions on Systems, Man, and Cybernetics: Systems 2024. [Google Scholar] [CrossRef]
- Xie, Z.; Guo, Z.; Qian, C. Palmprint gender classification by convolutional neural network. IET Computer Vision 2018, 12, 476–483. [Google Scholar] [CrossRef]
- Kipf, T.; Fetaya, E.; Wang, K.C.; Welling, M.; Zemel, R. Neural relational inference for interacting systems. In Proceedings of the International Conference on Machine Learning. PMLR; 2018; pp. 2688–2697. [Google Scholar]
- Shi, L.; Zhang, Y.; Cheng, J.; Lu, H. Skeleton-based action recognition with multi-stream adaptive graph convolutional networks. IEEE Transactions on Image Processing 2020, 29, 9532–9545. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Xu, N.; Zhang, Z.; et al. Cross-spectral palmprint recognition with low-rank canonical correlation analysis. Multimedia Tools and Applications 2020, 79, 33771–33792. [Google Scholar] [CrossRef]
- Svoboda, J.; Masci, J.; Bronstein, M.M. Palmprint recognition via discriminative index learning. In Proceedings of the International Conference on Pattern Recognition (ICPR). IEEE; 2016; pp. 4232–4237. [Google Scholar]
- Caffagni, D.; Cocchi, F.; Barsellotti, L.; Moratelli, N.; Sarto, S.; Baraldi, L.; Cornia, M.; Cucchiara, R. The (r) evolution of multimodal large language models: A survey. arXiv preprint 2024, arXiv:2402.12451. [Google Scholar]
- Chatfield, K. Return of the devil in the details: Delving deep into convolutional nets. arXiv preprint arXiv:1405.3531, arXiv:1405.3531 2014.
- Huang, Z.; Van Gool, L. A riemannian network for spd matrix learning. In Proceedings of the Thirty-first AAAI conference on artificial intelligence, 2017. Visited on 03/06/2022. [Google Scholar]
- Kumar, A.; Wong, D.C.; Shen, H.C.; et al. Personal verification using palmprint and hand geometry biometric. In Proceedings of the Audio-and Video-Based Biometric Person Authentication: 4th International Conference, AVBPA 2003 Guildford, UK, 2003 Proceedings 4. Springer, 2003, 9–11 June 2003; pp. 668–678. [Google Scholar]
- Li, S.; Fei, L.; Zhang, B.; Ning, X.; Wu, L. Hand-based multimodal biometric fusion: A review. Information Fusion 2024, 102418. [Google Scholar] [CrossRef]

| Model Type | Spatial Modeling | Temporal Modeling | Computational Cost |
|---|---|---|---|
| CNN (e.g., ResNet, VGG) | Strong | Weak | Moderate |
| RNN/LSTM | Weak | Strong | High |
| 3D CNN | Strong | Moderate | Very High |
| Transformer | Strong | Strong | Very High |
| Hybrid CNN+RNN | Strong | Strong | High |
| Dataset | Modality | # Classes | # Samples | Applications |
|---|---|---|---|---|
| ASLLVD | RGB + Skeleton | ∼3000 signs | ∼10K videos | Sign language recognition |
| SHREC’17 | Depth | 14 | ∼2800 sequences | Dynamic hand gesture recognition |
| EgoHands | RGB (egocentric) | 4 | 48 video sequences | Hand segmentation, detection |
| Dexter 1 | RGB + Depth | N/A | ∼3000 frames | Hand pose estimation |
| GTEA | RGB | N/A | 28 videos | Activity recognition with hands |
| HandNet | RGB-D + 3D joints | Continuous | ∼200K frames | 3D hand pose tracking |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
