Submitted:
13 May 2025
Posted:
15 May 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Sequential Method for Quantifying Higher-Order Interactions
2.1. Sequential Procedure Outline
- Given the set , first identify the triplet that exhibits the highest level of redundancy or synergy according to a predefined metric.
- Expand the selected triplet iteratively by adding one process at a time, ensuring that its inclusion results in the maximal statistically significant increase in the overall redundancy or synergy of the joint multiplet according to the chosen metric. Repeat this until no additional inclusion produces a statistically significant increase in redundancy or synergy.
2.2. Linear Parametric Estimation of Higher-Order Interaction Information Measures
3. Simulation Studies
3.1. Five-Dimensional VAR Model
3.2. Randomly Connected Networks
4. Application to a Climate Network
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bashan, A.; Bartsch, R.P.; Kantelhardt, J.W.; Havlin, S.; Ivanov, P.C. Network physiology reveals relations between network topology and physiological function. Nature communications 2012, 3, 702. [Google Scholar] [CrossRef] [PubMed]
- Bassett, D.S.; Sporns, O. Network neuroscience. Nature neuroscience 2017, 20, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Battiston, F.; Cencetti, G.; Iacopini, I.; Latora, V.; Lucas, M.; Patania, A.; Young, J.G.; Petri, G. Networks beyond pairwise interactions: Structure and dynamics. Physics Reports 2020, 874, 1–92. [Google Scholar] [CrossRef]
- Battiston, F.; Amico, E.; Barrat, A.; Bianconi, G.; de Arruda, G.F.; Franceschiello, B.; Iacopini, I.; Kéfi, S.; Latora, V.; Moreno, Y.; et al. The physics of higher-order interactions in complex systems. Nature Physics 2021 17:10 2021, 17, 1093–1098. [Google Scholar] [CrossRef]
- Bianconi, G. Higher-order networks : an introduction to simplicial complexes; Cambridge University Press, 2021; p. 140. [CrossRef]
- Antonacci, Y.; Barà, C.; Sparacino, L.; Pirovano, I.; Mastropietro, A.; Rizzo, G.; Faes, L. Antonacci, Y.; Barà, C.; Sparacino, L.; Pirovano, I.; Mastropietro, A.; Rizzo, G.; Faes, L. Spectral Information Dynamics of Cortical Signals Uncover the Hierarchical Organization of the Human Brain’s Motor Network. IEEE Transactions on Biomedical Engineering 2024, pp. 1–10. [CrossRef]
- Antonacci, Y.; Minati, L.; Nuzzi, D.; Mijatovic, G.; Pernice, R.; Marinazzo, D.; Stramaglia, S.; Faes, L. Measuring high-order interactions in rhythmic processes through multivariate spectral information decomposition. IEEE Access 2021, 9, 149486–149505. [Google Scholar] [CrossRef]
- Scagliarini, T.; Faes, L.; Marinazzo, D.; Stramaglia, S.; Mantegna, R.N. Synergistic information transfer in the global system of financial markets. Entropy 2020, 22, 1–13. [Google Scholar] [CrossRef]
- Bardoscia, M.; Barucca, P.; Battiston, S.; Caccioli, F.; Cimini, G.; Garlaschelli, D.; Saracco, F.; Squartini, T.; Caldarelli, G. The physics of financial networks. Nature Reviews Physics 2021, 3, 490–507. [Google Scholar] [CrossRef]
- Faes, L.; Marinazzo, D.; Nollo, G.; Porta, A. An information-theoretic framework to map the spatiotemporal dynamics of the scalp electroencephalogram. IEEE Transactions on Biomedical Engineering 2016, 63, 2488–2496. [Google Scholar] [CrossRef]
- Mijatovic, G.; Sparacino, L.; Antonacci, Y.; Javorka, M.; Marinazzo, D.; Stramaglia, S.; Faes, L. Assessing High-Order Links in Cardiovascular and Respiratory Networks via Static and Dynamic Information Measures. IEEE Open Journal of Engineering in Medicine and Biology 2024. [Google Scholar] [CrossRef]
- Faes, L.; Mijatovic, G.; Antonacci, Y.; Pernice, R.; Bara, C.; Sparacino, L.; Sammartino, M.; Porta, A.; Marinazzo, D.; Stramaglia, S. A New Framework for the Time-and Frequency-Domain Assessment of High-Order Interactions in Networks of Random Processes. IEEE Transactions on Signal Processing 2022, 70, 5766–5777. [Google Scholar] [CrossRef]
- Leung, L.Y.; North, G.R. Information theory and climate prediction. Journal of Climate 1990, 3, 5–14. [Google Scholar] [CrossRef]
- Williams, P.L.; Beer, R.D. Nonnegative Decomposition of Multivariate Information, 2010. arXiv:cs.IT/1004.2515].
- James, R.G.; Ellison, C.J.; Crutchfield, J.P. Anatomy of a bit: Information in a time series observation. Chaos: An Interdisciplinary Journal of Nonlinear Science 2011, 21. [Google Scholar] [CrossRef]
- Stramaglia, S.; Cortes, J.M.; Marinazzo, D. Synergy and redundancy in the Granger causal analysis of dynamical networks. New Journal of Physics 2014, 16, 105003. [Google Scholar] [CrossRef]
- Barrett, A.B. Exploration of synergistic and redundant information sharing in static and dynamical Gaussian systems. Phys. Rev. E 2015, 91, 052802. [Google Scholar] [CrossRef]
- Finn, C.; Lizier, J.T. Pointwise partial information decomposition using the specificity and ambiguity lattices. Entropy 2018, 20. [Google Scholar] [CrossRef]
- Wibral, M.; Priesemann, V.; Kay, J.W.; Lizier, J.T.; Phillips, W.A. Partial information decomposition as a unified approach to the specification of neural goal functions. Brain and Cognition 2017, 112, 25–38. [Google Scholar] [CrossRef]
- Rosas, F.; Ntranos, V.; Ellison, C.J.; Pollin, S.; Verhelst, M. Understanding interdependency through complex information sharing. Entropy 2016, 18. [Google Scholar] [CrossRef]
- Ince, R.A.A. The Partial Entropy Decomposition: Decomposing multivariate entropy and mutual information via pointwise common surprisal, 2017. arXiv:cs.IT/1702.01591].
- Rosas, F.E.; Mediano, P.A.; Gastpar, M.; Jensen, H.J. Quantifying high-order interdependencies via multivariate extensions of the mutual information. Physical Review E 2019, 100, 032305. [Google Scholar] [CrossRef]
- Rosas, F.E.; Mediano, P.A.M.; Jensen, H.J.; Seth, A.K.; Barrett, A.B.; Carhart-Harris, R.L.; Bor, D. Reconciling emergences: An information-theoretic approach to identify causal emergence in multivariate data. PLOS Computational Biology 2020, 16, 1–22. [Google Scholar] [CrossRef]
- Mediano, P.A.; Rosas, F.E.; Bor, D.; Seth, A.K.; Barrett, A.B. The strength of weak integrated information theory. Trends in cognitive sciences 2022, 26, 646–655. [Google Scholar] [CrossRef]
- Stramaglia, S.; Faes, L.; Cortes, J.M.; Marinazzo, D. Disentangling high-order effects in the transfer entropy. Physical Review Research 2024, 6, L032007. [Google Scholar] [CrossRef]
- Marinazzo, D.; Pellicoro, M.; Stramaglia, S. Causal Information Approach to Partial Conditioning in Multivariate Data Sets. Computational and Mathematical Methods in Medicine 2012, 2012, 303601. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, T. Measuring information transfer. Physical Review Letters 2000, 85, 461–464. [Google Scholar] [CrossRef]
- Ontivero-Ortega, M.; Faes, L.; Cortes, J.M.; Marinazzo, D.; Stramaglia, S. Assessing high-order effects in feature importance via predictability decomposition. Phys. Rev. E 2025, 111, L033301. [Google Scholar] [CrossRef]
- Stramaglia, S.; Scagliarini, T.; Daniels, B.C.; Marinazzo, D. Quantifying dynamical high-order interdependencies from the o-information: an application to neural spiking dynamics. Frontiers in Physiology 2021, 11, 595736. [Google Scholar] [CrossRef]
- McGill, W. Multivariate information transmission. Transactions of the IRE Professional Group on Information Theory 1954, 4, 93–111. [Google Scholar] [CrossRef]
- Timme, N.; Alford, W.; Flecker, B.; Beggs, J.M. Synergy, redundancy, and multivariate information measures: An experimentalist’s perspective, 2014. [CrossRef]
- Timmermann, A.; An, S.I.; Kug, J.S.; Jin, F.F.; Cai, W.; Capotondi, A.; Cobb, K.; Lengaigne, M.; McPhaden, M.J.; Stuecker, M.F.; et al. El Niño–Southern Oscillation complexity, 2018. [CrossRef]
- McPhaden, M.J.; Zebiak, S.E.; Glantz, M.H. ENSO as an Integrating Concept in Earth Science. Science 2006, 314, 1740–1745. [Google Scholar] [CrossRef]
- Silini, R.; Tirabassi, G.; Barreiro, M.; Ferranti, L.; Masoller, C. Assessing causal dependencies in climatic indices. Climate Dynamics 2023, 61, 79–89. [Google Scholar] [CrossRef]
- Chechik, G.; Globerson, A.; Anderson, M.; Young, E.; Nelken, I.; Tishby, N. Group redundancy measures reveal redundancy reduction in the auditory pathway. Advances in neural information processing systems 2001, 14. [Google Scholar] [CrossRef]
- Duncan, T.E. On the calculation of mutual information. SIAM Journal on Applied Mathematics 1970, 19, 215–220. [Google Scholar] [CrossRef]
- Rosas, F.E.; Mediano, P.A.; Gastpar, M. Characterising Directed and Undirected Metrics of High-Order Interdependence. In Proceedings of the 2024 IEEE International Symposium on Information Theory Workshops (ISIT-W), 2024, pp. 1–6. [CrossRef]
- Scagliarini, T.; Nuzzi, D.; Antonacci, Y.; Faes, L.; Rosas, F.E.; Marinazzo, D.; Stramaglia, S. Gradients of O-information: Low-order descriptors of high-order dependencies. Physical Review Research 2023, 5, 013025. [Google Scholar] [CrossRef]
- Lütkepohl, H. New introduction to multiple time series analysis; Springer Science & Business Media, 2005. [CrossRef]
- Faes, L.; Porta, A.; Nollo, G.; Javorka, M. Information decomposition in multivariate systems: definitions, implementation and application to cardiovascular networks. Entropy 2017, 19, 5. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Transactions on Automatic Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Theiler, J.; Eubank, S.; Longtin, A.; Galdrikian, B.; Farmer, J.D. Testing for nonlinearity in time series: the method of surrogate data. Physica D: Nonlinear Phenomena 1992, 58, 77–94. [Google Scholar] [CrossRef]
- Schreiber, T.; Schmitz, A. Improved surrogate data for nonlinearity tests. Physical review letters 1996, 77, 635. [Google Scholar] [CrossRef]
- Pinto, H.; Lazic, I.; Antonacci, Y.; Pernice, R.; Gu, D.; Barà, C.; Faes, L.; Rocha, A.P. Testing dynamic correlations and nonlinearity in bivariate time series through information measures and surrogate data analysis. Frontiers in Network Physiology 2024, 4, 1385421. [Google Scholar] [CrossRef]
- Anzolin, A.; Toppi, J.; Petti, M.; Cincotti, F.; Astolfi, L. Seed-g: Simulated eeg data generator for testing connectivity algorithms. Sensors 2021, 21. [Google Scholar] [CrossRef]
- Antonacci, Y.; Toppi, J.; Pietrabissa, A.; Anzolin, A.; Astolfi, L. Measuring Connectivity in Linear Multivariate Processes With Penalized Regression Techniques. IEEE Access 2024, 12, 30638–30652. [Google Scholar] [CrossRef]
- Tsonis, A.A.; Swanson, K.L.; Roebber, P.J. What Do Networks Have to Do with Climate? Bulletin of the American Meteorological Society 2006, 87, 585–596. [Google Scholar] [CrossRef]
- Faes, L.; Sparacino, L.; Mijatovic, G.; Antonacci, Y.; Ricci, L.; Marinazzo, D.; Stramaglia, S. Partial Information Rate Decomposition, 2025. arXiv:stat.ME/2502.04550].
- Smith, S.R.; Brolley, J.; O’Brien, J.J.; Tartaglione, C.A. ENSO’s impact on regional U.S. hurricane activity. Journal of Climate 2007, 20, 1404–1414. [Google Scholar] [CrossRef]
- Rodríguez-Fonseca, B.; Suárez-Moreno, R.; Ayarzagüena, B.; López-Parages, J.; Gómara, I.; Villamayor, J.; Mohino, E.; Losada, T.; Castaño-Tierno, A. A review of ENSO influence on the North Atlantic. A non-stationary signal, 2016. [CrossRef]
- Mijatovic, G.; Antonacci, Y.; Javorka, M.; Marinazzo, D.; Stramaglia, S.; Faes, L. Network Representation of Higher-Order Interactions Based on Information Dynamics. IEEE Transactions on Network Science and Engineering 2025. [Google Scholar] [CrossRef]
- Sparacino, L.; Antonacci, Y.; Mijatovic, G.; Faes, L. Measuring hierarchically-organized interactions in dynamic networks through spectral entropy rates: Theory, estimation, and illustrative application to physiological networks. Neurocomputing 2025, 630, 129675. [Google Scholar] [CrossRef]
- Varley, T.F.; Pope, M.; Faskowitz, J.; Sporns, O. Multivariate information theory uncovers synergistic subsystems of the human cerebral cortex. Communications Biology 2023, 6. [Google Scholar] [CrossRef]
- Catrambone, V.; Valenza, G. Functional brain-heart interplay: From physiology to advanced methodology of signal processing and modeling; Springer International Publishing, 2021; pp. 1–236. [CrossRef]
- Candia-Rivera, D. Brain-heart interactions in the neurobiology of consciousness. Current Research in Neurobiology 2022, 3, 100050. [Google Scholar] [CrossRef]
- Candia-Rivera, D.; Faes, L.; Fallani, F.d.V.; Chavez, M. Measures and Models of Brain-Heart Interactions. IEEE Reviews in Biomedical Engineering 2025, pp. 1–17. [CrossRef]



| Measure/Target | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Density 0.1 | Redundancy | 0.0391 | 0.0710 | 0.0783 | 0.0783 | 0.0690 | 0.0783 | 0.2430 | 0 | 0.2430 | 0.0835 | 0.0975 | 0.2430 | 0 | ||
| 0.0932 | 0.2589 | 0.0783 | 0.0783 | 0.2574 | 0.0783 | 0.2126 | 0.1174 | 0.2126 | 0.2482 | 0.3154 | 0.2126 | 0.1174 | ||||
| 0.0783 | 0.2209 | 0.0783 | 0.0783 | 0.2206 | 0.0783 | 0.2126 | 0.1025 | 0.2126 | 0.2118 | 0.2252 | 0.2126 | 0.1025 | ||||
| Synergy | -0.0026 | -0.0968 | -0.0457 | -0.0169 | -0.0419 | -0.0150 | -0.0296 | -0.0968 | -0.0457 | -0.0440 | -0.0968 | -0.0457 | 0 | |||
| -0.0377 | -0.0968 | -0.0457 | -0.0169 | -0.0419 | -0.0150 | -0.0296 | -0.0968 | -0.0457 | -0.0440 | -0.0968 | -0.0457 | -0.0227 | ||||
| -0.0348 | -0.0968 | -0.0457 | -0.0169 | -0.0419 | -0.0150 | -0.0296 | -0.0968 | -0.0457 | -0.0440 | -0.0968 | -0.0457 | -0.0208 | ||||
| Density 0.3 | Redundancy | 0.2544 | 0.2624 | 0.1728 | 0.3388 | 0.3388 | 0.2514 | 0.1921 | 0.2781 | 0.2091 | 0.3102 | 0.3388 | 0.2564 | 0.2395 | ||
| 1.7048 | 1.7048 | 1.6904 | 1.7048 | 1.7048 | 1.7048 | 1.7843 | 1.7048 | 1.6856 | 1.7048 | 1.7048 | 1.7048 | 1.7048 | ||||
| 0.3912 | 0.4293 | 0.4472 | 0.3609 | 0.3609 | 0.3819 | 0.3739 | 0.3982 | 0.3787 | 0.3895 | 0.3609 | 0.3848 | 0.4211 | ||||
| Synergy | 0 | 0 | 0 | 0 | -0.1368 | 0 | -0.1368 | 0 | 0 | 0 | 0 | -0.1368 | 0 | |||
| 0 | 0 | 0 | 0 | -0.0533 | 0 | -0.0533 | 0 | 0 | 0 | 0 | -0.0533 | 0 | ||||
| 0 | 0 | 0 | 0 | -0.0533 | 0 | -0.0533 | 0 | 0 | 0 | 0 | -0.0533 | 0 |
| Measure\Target | Sahel | NAO | NP | GMT | HURR | AMO | SOI | TSA | QBO | PDO | NINO34 | NTA | AIR | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Redundancy | 0.0090 | 0.0194 | 0.0162 | 0.0188 | 0.0069 | 0.0194 | 0.0188 | 0.0083 | 0.0034 | 0.0185 | 0.0188 | 0.0204 | 0.0165 | |
| 0.0514 | 0.0194 | 0.0492 | 0.0485 | 0.0213 | 0.0194 | 0.0485 | 0.0499 | 0.0591 | 0.0581 | 0.0485 | 0.0194 | 0.0636 | ||
| 0.0178 | 0.0194 | 0.0237 | 0.0237 | 0.0188 | 0.0194 | 0.0237 | 0.0205 | 0.0277 | 0.0288 | 0.0237 | 0.0194 | 0.0198 | ||
| Synergy | -0.0029 | -0.0023 | -0.0029 | -0.0021 | -0.0007 | -0.0012 | -0.0033 | -0.0037 | -0.0021 | -0.0022 | -0.0037 | -0.0023 | -0.0037 | |
| -0.0022 | -0.0021 | -0.0022 | -0.0021 | -0.0007 | -0.0012 | -0.0024 | -0.0025 | -0.0021 | -0.0022 | -0.0025 | -0.0021 | -0.0025 | ||
| -0.0022 | -0.0021 | -0.0022 | -0.0021 | -0.0007 | -0.0012 | -0.0024 | -0.0025 | -0.0021 | -0.0022 | -0.0025 | -0.0021 | -0.0025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
