Submitted:
19 March 2025
Posted:
20 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Classification of Psychoactive Drugs
2.1. Stimulants
2.2. Depressants
3. Male Reproductive Toxicity
3.1. Amphetamine-Type Stimulants (ATS) and Male Reproductive Health
3.2. Opioids and Male Reproductive Health
4. Evidence of ATS on Male Reproductive Toxicity
4.1. Sperm Quality
4.2. Hormonal Imbalance
4.3. Testicular Function
4.4. Oxidative Stress and DNA Damage
5. Evidence of Opioid on Male Reproductive Toxicity
5.1. Sperm Quality
5.2. Hormonal Imbalances
5.3. Testicular Function
5.4. Oxidative Stress and DNA Damage
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ADHD | Attention deficit hyperactivity disorder |
| AMP | Adenosine monophosphate |
| ATS | Amphetamine-type stimulants |
| CBD | Cannabidiol |
| CNS | Central nervous system |
| DFI | DNA fragmentation index |
| DMT | Dimethyltryptamine |
| DNA | Deoxyribonucleic acid |
| DOR | Delta receptor |
| FSH | Follicle-stimulating hormone |
| GABA | Gamma-aminobutyric acid |
| GnRH | Gonadotropin-releasing hormone |
| GPx | Glutathione peroxidase |
| HPG | Hypothalamic-pituitary-gonadal |
| KOR | Kappa receptor |
| LH | Luteinizing hormone |
| LSD | Lysergic dimethylamine |
| MDMA | 3,4-methylenedioxymethamphetamine |
| MOR | mu receptor |
| MSTD | Mean Seminiferous Tubule Diameter |
| NOR | Nociception receptor |
| NPS | New psychoactive substance |
| OTC | Over-the-counter drug |
| RNA | Ribonucleic acid |
| RI | Repopulation Index |
| ROS | Reactive oxygen species |
| SI | Spermiogenesis Index |
| SOD | Superoxide dismutase |
| TDI | Tubular Differentiation Index |
| THC | Tetrahydrocannabinol |
| UNODC | United Nations Office on Drugs and Crime |
| ZOR | Zeta receptor |
References
- United Nations Office on Drugs and Crime. Online World Drug Report 2024- Drug market patterns and trends.
- National Anti-Drug Agency; Ministry of Home Affairs Of Malaysia. Information on drugs 2023.
- Office for Health Improvement & Disparities Government of UK. Adult substance misuse treatment statistics 2023 to 2024 : report. 2024.
- ASEAN NARCO. Asean drug monitoring report 2022.
- Nath, A.; Choudhari, S.G.; Dakhode, S.U.; Rannaware, A.; Gaidhane, A.M. Substance Abuse Amongst Adolescents: An Issue of Public Health Significance. Cureus 2022, 14, e31193. [Google Scholar] [CrossRef] [PubMed]
- Drazdowski, T.K.; Kelly, L.M.; Kliewer, W.L. Motivations for the nonmedical use of prescription drugs in a longitudinal national sample of young adults. Journal of Substance Abuse Treatment 2020, 114. [Google Scholar] [CrossRef] [PubMed]
- Chie, Q.T.; Tam, C.L.; Bonn, G.; Wong, C.P.; Dang, H.M.; Khairuddin, R. Drug abuse, relapse, and prevention education in Malaysia: perspective of university students through a mixed methods approach. Frontiers in psychiatry 2015, 6, 65. [Google Scholar] [CrossRef]
- Thomaidis, N.S.; Gago-Ferrero, P.; Ort, C.; Maragou, N.C.; Alygizakis, N.A.; Borova, V.L.; Dasenaki, M.E. Reflection of Socioeconomic Changes in Wastewater: Licit and Illicit Drug Use Patterns. Environmental Science & Technology 2016, 50, 10065–10072. [Google Scholar] [CrossRef]
- Alhammad, M.; Aljedani, R.; Alsaleh, M.; Atyia, N.; Alsmakh, M.; Alfaraj, A.; Alkhunaizi, A.; Alwabari, J.; Alzaidi, M. Family, Individual, and Other Risk Factors Contributing to Risk of Substance Abuse in Young Adults: A Narrative Review. Cureus 2022, 14, e32316. [Google Scholar] [CrossRef]
- Al Meslamani, A.Z.; Abdel-Qader, D.H. The Abuse and Misuse of Over-the-Counter Medicines During COVID-19. Hosp Pharm 2023, 58, 437–440. [Google Scholar] [CrossRef]
- Mamat, C.F.b.; Jamshed, S.Q.; El Syed, T.; Khan, T.M.; Othman, N.; Al-Shami, A.K.; Zaini, S.B.; Siddiqui, M.J. The use of psychotropic substances among students: The prevalence, factor association, and abuse. Journal of Pharmacy and Bioallied Sciences 2015, 7, 181–187. [Google Scholar] [CrossRef]
- Fergusson, D.M.; McLeod, G.F.H.; Horwood, L.J.; Swain, N.R.; Chapple, S.; Poulton, R. Life satisfaction and mental health problems (18 to 35 years). Psychological Medicine 2015, 45, 2427–2436. [Google Scholar] [CrossRef]
- Mizoguchi, H.; Yamada, K. Methamphetamine use causes cognitive impairment and altered decision-making. Neurochemistry International 2019, 124, 106–113. [Google Scholar] [CrossRef]
- Zhong, N.; Jiang, H.; Du, J.; Zhao, Y.; Sun, H.; Xu, D.; Li, C.; Zhuang, W.; Li, X.; Hashimoto, K.; et al. The cognitive impairments and psychological wellbeing of methamphetamine dependent patients compared with health controls. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2016, 69, 31–37. [Google Scholar] [CrossRef]
- Agha-Mohammadhasani, P.; Mokhtaree, M.; Nazari, A.; Rahnama, A. Comparison of Sexual Function and Serum Testosterone Levels in Men Opiate Addicts, under Methadone Maintenance Therapy, and Healthy Men. Addict Health 2018, 10, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Chou, N.H.; Huang, Y.J.; Jiann, B.P. The Impact of Illicit Use of Amphetamine on Male Sexual Functions. J Sex Med 2015, 12, 1694–1702. [Google Scholar] [CrossRef] [PubMed]
- Farag, A.G.A.; Basha, M.A.; Amin, S.A.; Elnaidany, N.F.; Elhelbawy, N.G.; Mostafa, M.M.T.; Khodier, S.A.; Ibrahem, R.A.; Mahfouz, R.Z. Tramadol (opioid) abuse is associated with a dose- and time-dependent poor sperm quality and hyperprolactinaemia in young men. Andrologia 2018, 50, e13026. [Google Scholar] [CrossRef]
- Ghasemi-Esmailabad, S.; Talebi, A.H.; Talebi, A.R.; Amiri, S.; Moshrefi, M.; Pourentezari, M. The effects of morphine abuse on sperm parameters, chromatin integrity and apoptosis in men. JBRA Assist Reprod 2022, 26, 444–449. [Google Scholar] [CrossRef]
- Shafi, A.; Berry, A.J.; Sumnall, H.; Wood, D.M.; Tracy, D.K. New psychoactive substances: a review and updates. Ther Adv Psychopharmacol 2020, 10, 2045125320967197. [Google Scholar] [CrossRef]
- United Nations Office on Drugs and Crime. UNODC Early Warning Advisory on New Psychoactive Substances. Availabe online: https://www.unodc.
- Batisse, A.; Eiden, C.; Peyriere, H.; Djezzar, S. Use of new psychoactive substances to mimic prescription drugs: The trend in France. NeuroToxicology 2020, 79, 20–24. [Google Scholar] [CrossRef]
- Luethi, D.; Liechti, M.E. Designer drugs: mechanism of action and adverse effects. Archives of Toxicology 2020, 94, 1085–1133. [Google Scholar] [CrossRef]
- United Nations. Convention on Psychotropic Substances. Nations, U. (Ed.) United Nations. Convention on Psychotropic Substances. Nations, U., Ed. 1971.
- Department of Economics and Social Affairs; United Nations. World Fertlity Report 2024; United Nations: New York, 2025. [Google Scholar]
- Ince Yenilmez, M. Economic and social consequences of population aging the dilemmas and opportunities in the twenty-first century. Applied Research in Quality of Life 2015, 10, 735–752. [Google Scholar] [CrossRef]
- Ahmadnia, H.; Akhavan Rezayat, A.; Hoseyni, M.; Sharifi, N.; Khajedalooee, M.; Akhavan Rezayat, A. Short-Period Influence of Chronic Morphine Exposure on Serum Levels of Sexual Hormones and Spermatogenesis in Rats. Nephrourol Mon 2016, 8, e38052. [Google Scholar] [CrossRef]
- ORGANIZATION, W.H. Drugs (psychoactive). Availabe online: https://www.who.
- United Nation Office on Drugs and Crime. Depressant.
- Australian Government; Department of Health and Aged Care. Types of drugs. Availabe online: https://www.health.gov.au/topics/drugs/about-drugs/types-of-drugs. (accessed on 19 October 2024).
- Presti, D.E. Drugs, the Brain, and Behavior. In Encyclopedia of Human Behavior (Second Edition), Ramachandran, V.S., Ed. S: Academic Press, 2012. [Google Scholar] [CrossRef]
- European Union Drugs Agency. Heroin and other opioids-the current situation in europe ( europe drug report 2024).
- Drug Enforcement Administration; USA. Stimulants. 2020.
- Docherty, J.R.; Alsufyani, H.A. Pharmacology of drugs used as stimulants. The Journal of Clinical Pharmacology 2021, 61, S53–S69. [Google Scholar] [CrossRef] [PubMed]
- Banister, S.D.; Connor, M. The Chemistry and Pharmacology of Synthetic Cannabinoid Receptor Agonists as New Psychoactive Substances: Origins. In New Psychoactive Substances : Pharmacology, Clinical, Forensic and Analytical Toxicology, Maurer, H.H., Brandt, S.D., Eds. Springer International Publishing: Cham, 2018; 10.1007/164_2018_143pp. 165-190.
- Dela Peña, I.; Gevorkiana, R.; Shi, W.X. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms. Eur J Pharmacol 2015, 764, 562–570. [Google Scholar] [CrossRef]
- Di Miceli, M.; Derf, A.; Gronier, B. Consequences of Acute or Chronic Methylphenidate Exposure Using Ex Vivo Neurochemistry and In Vivo Electrophysiology in the Prefrontal Cortex and Striatum of Rats. Int J Mol Sci 2022, 23. [Google Scholar] [CrossRef]
- Martin, D.; Le, J.K. Amphetamine. StatPearls Publishing, Treasure Island (FL): 2023.
- Docherty, J.R.; Alsufyani, H.A. Pharmacology of Drugs Used as Stimulants. J Clin Pharmacol 2021, 61 Suppl 2, S53–s69. [Google Scholar] [CrossRef]
- Volkow, N.D.; Michaelides, M.; Baler, R. The Neuroscience of Drug Reward and Addiction. Physiol Rev 2019, 99, 2115–2140. [Google Scholar] [CrossRef]
- Roque Bravo, R.; Carmo, H.; Silva, J.P.; Valente, M.J.; Carvalho, F.; Bastos, M.L.; Dias da Silva, D. Emerging club drugs: 5-(2-aminopropyl)benzofuran (5-APB) is more toxic than its isomer 6-(2-aminopropyl)benzofuran (6-APB) in hepatocyte cellular models. Arch Toxicol 2020, 94, 609–629. [Google Scholar] [CrossRef]
- Justin, Evans; John, R.; S.Battisti., A. Justin Evans; John R.; S.Battisti., A. Caffeine. StatPearls.
- Sansone, L.; Milani, F.; Fabrizi, R.; Belli, M.; Cristina, M.; Zagà, V.; de Iure, A.; Cicconi, L.; Bonassi, S.; Russo, P. Nicotine: From Discovery to Biological Effects. Int J Mol Sci 2023, 24. [Google Scholar] [CrossRef]
- Trychta, K.A.; Harvey, B.K. Caffeine and MDMA (Ecstasy) Exacerbate ER Stress Triggered by Hyperthermia. In International Journal of Molecular Sciences, 2022; Vol. 23.
- Mishra, A.; Chaturvedi, P.; Datta, S.; Sinukumar, S.; Joshi, P.; Garg, A. Harmful effects of nicotine. Indian J Med Paediatr Oncol 2015, 36, 24–31. [Google Scholar] [CrossRef]
- Varì, M.R.; Pichini, S.; Giorgetti, R.; Busardò, F.P. New psychoactive substances—synthetic stimulants. Wiley Interdisciplinary Reviews: Forensic Science 2019, 1, e1197. [Google Scholar] [CrossRef]
- Paz-Ramos, M.I.; Cruz, S.L.; Violante-Soria, V. Amphetamine-type stimulants: novel insights into their actions and use patterns. Revista de investigación clínica 2023, 75, 143–157. [Google Scholar] [CrossRef]
- Ciucă Anghel, D.M.; Nițescu, G.V.; Tiron, A.T.; Guțu, C.M.; Baconi, D.L. Understanding the Mechanisms of Action and Effects of Drugs of Abuse. Molecules 2023, 28. [Google Scholar] [CrossRef] [PubMed]
- Australian Government; Department of Health and Aged Care. Deppresants. Availabe online: https://www.dea.gov/sites/default/files/2020-06/Depressants-2020.
- European Union Drugs Agency. EU Drug Market: Heroin and other opioids — Introduction. Availabe online: https://www.euda.europa.eu/publications/eu-drug-markets/heroin-and-other-opioids/references_en. (accessed on 24 November 2024).
- World Health Organization. Opiods overdose. Availabe online: https://www.who.
- National Anti-Drug Agency, M.H.A. Information on Drugs 2022; 2022.
- Shenoy, S.S.; Lui, F. Biochemistry, endogenous opioids. In StatPearls [Internet], StatPearls Publishing: 2023.
- TOUBIA, T.; KHALIFE, T. The Endogenous Opioid System: Role and Dysfunction Caused by Opioid Therapy. Clinical Obstetrics and Gynecology 2019, 62, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Higginbotham, J.A.; Markovic, T.; Massaly, N.; Morón, J.A. Endogenous opioid systems alterations in pain and opioid use disorder. Frontiers in systems neuroscience 2022, 16, 1014768. [Google Scholar] [CrossRef] [PubMed]
- Rullo, L.; Morosini, C.; Lacorte, A.; Cristani, M.; Coluzzi, F.; Candeletti, S.; Romualdi, P. Opioid system and related ligands: from the past to future perspectives. Journal of Anesthesia, Analgesia and Critical Care 2024, 4, 70. [Google Scholar] [CrossRef]
- Nazmara, Z.; Shirinbayan, P.; Reza Asgari, H.; Ahadi, R.; Asgari, F.; Maki, C.B.; Fattahi, F.; Hosseini, B.; Janzamin, E.; Koruji, M. The epigenetic alterations of human sperm cells caused by heroin use disorder. Andrologia 2021, 53, e13799. [Google Scholar] [CrossRef]
- Duca, Y.; Aversa, A.; Condorelli, R.A.; Calogero, A.E.; La Vignera, S. Substance Abuse and Male Hypogonadism. J Clin Med 2019, 8. [Google Scholar] [CrossRef]
- Knapp, C.M. Opiates☆. Reference Module in Neuroscience and Biobehavioral Psychology, 2017. [Google Scholar] [CrossRef]
- Dhaliwal, A.; Gupta, M. Physiology, Opioid Receptor. In StatPearls, StatPearls Publishing LLC.: Treasure Island (FL), 2024.
- Dhaliwal, A.; Gupta, M. Physiology, opioid receptor. 2019.
- Paul, A.K.; Smith, C.M.; Rahmatullah, M.; Nissapatorn, V.; Wilairatana, P.; Spetea, M.; Gueven, N.; Dietis, N. Opioid Analgesia and Opioid-Induced Adverse Effects: A Review. In Pharmaceuticals, 2021; Vol. 14.
- Pena, D.A.; Duarte, M.L.; Pramio, D.T.; Devi, L.A.; Schechtman, D. Exploring Morphine-Triggered PKC-Targets and Their Interaction with Signaling Pathways Leading to Pain via TrkA. In Proteomes, 2018; Vol. 6.
- Lambert, D.G. Opioids and opioid receptors; understanding pharmacological mechanisms as a key to therapeutic advances and mitigation of the misuse crisis. BJA Open 2023, 6, 100141. [Google Scholar] [CrossRef]
- Humes, C.; Sic, A.; Knezevic, N.N. Substance P’s Impact on Chronic Pain and Psychiatric Conditions—A Narrative Review. In International Journal of Molecular Sciences, 2024; Vol. 25.
- Moore, A.M.; Abbott, G.; Mair, J.; Prescott, M.; Campbell, R.E. Mapping GABA and glutamate inputs to gonadotrophin-releasing hormone neurones in male and female mice. J Neuroendocrinol 2018, 30, e12657. [Google Scholar] [CrossRef]
- Harris, J.A.; Faust, B.; Gondin, A.B.; Dämgen, M.A.; Suomivuori, C.-M.; Veldhuis, N.A.; Cheng, Y.; Dror, R.O.; Thal, D.M.; Manglik, A. Selective G protein signaling driven by substance P–neurokinin receptor dynamics. Nature Chemical Biology 2022, 18, 109–115. [Google Scholar] [CrossRef]
- Reeves, K.C.; Shah, N.; Muñoz, B.; Atwood, B.K. Opioid Receptor-Mediated Regulation of Neurotransmission in the Brain. Front Mol Neurosci 2022, 15, 919773. [Google Scholar] [CrossRef]
- Zhou, J.; Ma, R.; Jin, Y.; Fang, J.; Du, J.; Shao, X.; Liang, Y.; Fang, J. Molecular mechanisms of opioid tolerance: From opioid receptors to inflammatory mediators (Review). Exp Ther Med 2021, 22, 1004. [Google Scholar] [CrossRef] [PubMed]
- Stein, C. Opioid receptors. Annual review of medicine 2016, 67, 433–451. [Google Scholar] [CrossRef] [PubMed]
- Schiller, E.Y.; Goyal, A.; Mechanic, O.J. Opioid Overdose. In StatPearls, StatPearls Publishing LLC.: Treasure Island (FL), 2024.
- Food and Drug Administration. FDA warns about serious risks and death when combining opioid pain or cough medicines with benzodiazepines; requires its strongest warning. 2016.
- WORLD HEALTH ORGANIZATION. Opioid overdose. Availabe online: https://www.who.int/news-room/fact-sheets/detail/opioid-overdose (accessed on 2025, ). 06 January.
- Center for Drug Evaluation and Research. Trends and Geographic Patterns in Drug and Synthetic Opioid Overdose Deaths — United States, 2013–2019. Availabe online: https://www.cdc.gov/mmwr/volumes/70/wr/mm7006a4.htm?s_cid=mm7006a4_w (accessed on 2025, ). 06 January.
- Hamed, M.A.; Ekundina, V.O.; Akhigbe, R.E. Psychoactive drugs and male fertility: impacts and mechanisms. Reproductive Biology and Endocrinology 2023, 21, 69. [Google Scholar] [CrossRef]
- Drobnis, E.Z.; Nangia, A.K. Pain Medications and Male Reproduction. Adv Exp Med Biol 2017, 1034, 39–57. [Google Scholar] [CrossRef]
- SCHC-OSHA Alliance. Reproductive Toxicity. 2017.
- Teleanu, R.I.; Niculescu, A.G.; Roza, E.; Vladâcenco, O.; Grumezescu, A.M.; Teleanu, D.M. Neurotransmitters-Key Factors in Neurological and Neurodegenerative Disorders of the Central Nervous System. Int J Mol Sci 2022, 23. [Google Scholar] [CrossRef]
- Leslie, S.W.; Soon-Sutton, T.L.; Khan, M.A.B. Male Infertility. In StatPearls, StatPearls Publishing LLC.: Treasure Island (FL), 2025.
- Bear, M.H.; Reddy, V.; Bollu, P.C. Neuroanatomy, Hypothalamus. In StatPearls, StatPearls Publishing LLC.: Treasure Island (FL), 2024.
- Casati, L.; Ciceri, S.; Maggi, R.; Bottai, D. Physiological and pharmacological overview of the gonadotropin releasing hormone. Biochem Pharmacol 2023, 212, 115553. [Google Scholar] [CrossRef]
- Oduwole, O.O.; Peltoketo, H.; Huhtaniemi, I.T. Role of Follicle-Stimulating Hormone in Spermatogenesis. Front Endocrinol (Lausanne) 2018, 9, 763. [Google Scholar] [CrossRef]
- Dawson, P.; Opacka-Juffry, J.; Moffatt, J.D.; Daniju, Y.; Dutta, N.; Ramsey, J.; Davidson, C. The effects of benzofury (5-APB) on the dopamine transporter and 5-HT2-dependent vasoconstriction in the rat. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2014, 48, 57–63. [Google Scholar] [CrossRef]
- Zuloaga, D.G.; Jacobskind, J.S.; Raber, J. Methamphetamine and the hypothalamic-pituitary-adrenal axis. Front Neurosci 2015, 9, 178. [Google Scholar] [CrossRef]
- Limanaqi, F.; Gambardella, S.; Biagioni, F.; Busceti, C.L.; Fornai, F. Epigenetic Effects Induced by Methamphetamine and Methamphetamine-Dependent Oxidative Stress. Oxid Med Cell Longev 2018, 2018, 4982453. [Google Scholar] [CrossRef] [PubMed]
- Kirsch, P.; Kunadia, J.; Shah, S.; Agrawal, N. Metabolic effects of prolactin and the role of dopamine agonists: A review. Front Endocrinol (Lausanne) 2022, 13, 1002320. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, A.; Mangal, N.S. Hyperprolactinemia. In Principles and Practice of Controlled Ovarian Stimulation in ART, Ghumman, S., Ed. Springer India: New Delhi, 2015; 10.1007/978-81-322-1686-5_29pp. 319-328.
- Al-Chalabi, M.; Bass, A.N.; Alsalman, I. Physiology, Prolactin. In StatPearls, StatPearls Publishing LLC.: Treasure Island (FL), 2023.
- Gangwar, P.K.; Sankhwar, S.N.; Pant, S.; Krishna, A.; Singh, B.P.; Mahdi, A.A.; Singh, R. Increased Gonadotropins and prolactin are linked to infertility in males. Bioinformation 2020, 16, 176–182. [Google Scholar] [CrossRef]
- Lapoint, J.; Welker, K.L. Chapter10 - Synthetic amphetamine derivatives, benzofurans, and benzodifurans. In Novel Psychoactive Substances (Second Edition), Dargan, P., Wood, D., Eds. B: Academic Press, 2022. [Google Scholar] [CrossRef]
- Nedresky, D.; Singh, G. Physiology, Luteinizing Hormone. In StatPearls, StatPearls Publishing LLC.: Treasure Island (FL), 2025.
- Bhasin, S.; Brito, J.P.; Cunningham, G.R.; Hayes, F.J.; Hodis, H.N.; Matsumoto, A.M.; Snyder, P.J.; Swerdloff, R.S.; Wu, F.C.; Yialamas, M.A. Testosterone therapy in men with hypogonadism: an endocrine society clinical practice guideline. The Journal of Clinical Endocrinology & Metabolism 2018, 103, 1715–1744. [Google Scholar]
- Terranova, P. Hyperprolactinemia☆. Reference Module in Biomedical Sciences, 2017. [Google Scholar] [CrossRef]
- Indirli, R.; Lanzi, V.; Arosio, M.; Mantovani, G.; Ferrante, E. The association of hypogonadism with depression and its treatments. Front Endocrinol (Lausanne) 2023, 14, 1198437. [Google Scholar] [CrossRef]
- Wehbeh, L.; Dobs, A.S. Opioids and the Hypothalamic-Pituitary-Gonadal (HPG) Axis. The Journal of Clinical Endocrinology & Metabolism 2020, 105, e3105–e3113. [Google Scholar] [CrossRef]
- Qian, X.; Zhao, X.; Yu, L.; Yin, Y.; Zhang, X.-D.; Wang, L.; Li, J.-X.; Zhu, Q.; Luo, J.-L. Current status of GABA receptor subtypes in analgesia. Biomedicine & Pharmacotherapy 2023, 168, 115800. [Google Scholar] [CrossRef]
- Allen, M.J.; Sabir, S.; Sharma, S. GABA Receptor. In StatPearls, StatPearls Publishing LLC.: Treasure Island (FL), 2025.
- Ortman, H.A.; Siegel, J.A. The effect of methadone on the hypothalamic pituitary gonadal axis and sexual function: A systematic review. Drug and Alcohol Dependence 2020, 207, 107823. [Google Scholar] [CrossRef]
- Casteel, C.O.; Singh, G. Physiology, Gonadotropin-Releasing Hormone. In StatPearls, StatPearls Publishing LLC.: Treasure Island (FL), 2025.
- Listos, J.; Łupina, M.; Talarek, S.; Mazur, A.; Orzelska-Górka, J.; Kotlińska, J. The Mechanisms Involved in Morphine Addiction: An Overview. International Journal of Molecular Sciences 2019, 20, 4302. [Google Scholar] [CrossRef]
- Chan Patrick; Lutfy Kabirullah. Molecular Changes in Opioid Addiction : The Role of Adenylyl Cyclase and cAMP/PKA System. 2016.
- Brimblecombe, K.R.; Gracie, C.J.; Platt, N.J.; Cragg, S.J. Gating of dopamine transmission by calcium and axonal N-, Q-, T- and L-type voltage-gated calcium channels differs between striatal domains. J Physiol 2015, 593, 929–946. [Google Scholar] [CrossRef]
- Glovaci, I.; Chapman, C.A. Dopamine induces release of calcium from internal stores in layer II lateral entorhinal cortex fan cells. Cell Calcium 2019, 80, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Haroutounian, S. Postoperative opioids, endocrine changes, and immunosuppression. PAIN Reports 2018, 3, e640. [Google Scholar] [CrossRef] [PubMed]
- Abdelaleem, S.A.; Hassan, O.A.; Ahmed, R.F.; Zenhom, N.M.; Rifaai, R.A.; El-Tahawy, N.F. Tramadol Induced Adrenal Insufficiency: Histological, Immunohistochemical, Ultrastructural, and Biochemical Genetic Experimental Study. J Toxicol 2017, 2017, 9815853. [Google Scholar] [CrossRef]
- Patel, E.; Ben-Shlomo, A. Opioid-induced adrenal insufficiency: diagnostic and management considerations. Frontiers in Endocrinology 2024, 14. [Google Scholar] [CrossRef]
- Mohamed Khair, A. Long-Term Opiate Therapy-Induced Secondary Adrenal Insufficiency: A Distinct Differential Diagnosis That Should Be Considered. Cureus 2023, 15, e49955. [Google Scholar] [CrossRef]
- de Vries, F.; Bruin, M.; Lobatto, D.J.; Dekkers, O.M.; Schoones, J.W.; van Furth, W.R.; Pereira, A.M.; Karavitaki, N.; Biermasz, N.R.; Zamanipoor Najafabadi, A.H. Opioids and Their Endocrine Effects: A Systematic Review and Meta-analysis. The Journal of Clinical Endocrinology & Metabolism 2019, 105, 1020–1029. [Google Scholar] [CrossRef]
- Hamad, M.F. The potential adverse effects of khat chewing and cigarette smoking on human sperm parameters. 2014.
- Nudmamud-Thanoi, S.; Sueudom, W.; Tangsrisakda, N.; Thanoi, S. Changes of sperm quality and hormone receptors in the rat testis after exposure to methamphetamine. Drug Chem Toxicol 2016, 39, 432–438. [Google Scholar] [CrossRef]
- Abdollahifar, M.-A.; Zangiabadian, M.; Moradi, A.; Rezaei, F.; Fadai, S.; Khatmi, A.; Ezi, S.; Norozian, M.; Moghoddam, M.H.; Razminia, Y.; et al. Chronic Administration of Methylphenidate Induced Degeneration of Spermatogenesis in Adult Male Rats. Pharmaceutical Chemistry Journal 2020, 54, 689–693. [Google Scholar] [CrossRef]
- Allaeian Jahromi, Z.; Vahdaty, A.; Meshkibaf, M.H.; Makoolati, Z.; Naghdi, M. The Effect of Methamphetamine on Pituitary-Gonad Hormone Axis and Testicular Tissue in Adult Rats. Journal of Advanced Biomedical Sciences 2020, 10, 3044–3053. [Google Scholar]
- Aryan, A.; Abdollahifar, M.A.; Karbalay-Doust, S.; Forozesh, M.; Mahmoudiasl, G.R.; Akaberi-Nasrabadi, S.; Bahmanpour, S. Methamphetamine can induce alteration of histopathology and sex determination gene expression through the oxidative stress pathway in the testes of human post-mortem. Andrologia 2022, 54, e14441. [Google Scholar] [CrossRef]
- Kumsar, N.A.; Kumsar, Ş.; Dilbaz, N. Sexual dysfunction in men diagnosed as substance use disorder. Andrologia 2016, 48, 1229–1235. [Google Scholar] [CrossRef] [PubMed]
- Abdollahifar, M.-A.; Zangiabadian, M.; Moradi, A.; Rezaei, F.; Fadai, S.; Khatmi, A.; Ezi, S.; Norozian, M.; Moghoddam, M.H.; Razminia, Y. Chronic Administration of Methylphenidate Induced Degeneration of spermatogenesis in adult male rats. Pharmaceutical Chemistry Journal 2020, 54, 689–693. [Google Scholar] [CrossRef]
- Saraii, Z.K.S.; Dianaty, S.; Rouhollah, F.; Zare, N.; Yekta, B.G. Reproductive status of male rat offspring following exposure to methamphetamine during intrauterine life: An experimental study. International Journal of Reproductive BioMedicine 2023, 21, 175. [Google Scholar] [CrossRef]
- Sabour, M.; Khoradmehr, A.; Kalantar, S.M.; Danafar, A.H.; Omidi, M.; Halvaei, I.; Nabi, A.; Ghasemi-Esmailabad, S.; Talebi, A.R. Administration of high dose of methamphetamine has detrimental effects on sperm parameters and DNA integrity in mice. International Journal of Reproductive BioMedicine 2017, 15, 161–168. [Google Scholar] [CrossRef]
- Mobaraki, F.; Seghatoleslam, M.; Fazel, A.; Ebrahimzadeh-Bideskan, A. Effects of MDMA (ecstasy) on apoptosis and heat shock protein (HSP70) expression in adult rat testis. Toxicol Mech Methods 2018, 28, 219–229. [Google Scholar] [CrossRef]
- Azadbakht, S.; Souri, F.; Hasani Rad, T.; Souri, H. Relationship between the consumption of chronic methamphetamine on testosterone, LH and FSH among men’s. Yafteh 2018, 19, 18–26. [Google Scholar]
- Sizar, O.; Leslie, S.W.; Schwartz, J. Male hypogonadism. In StatPearls [Internet], StatPearls Publishing: 2024.
- Rastrelli, G.; Corona, G.; Maggi, M. Testosterone and sexual function in men. Maturitas 2018, 112, 46–52. [Google Scholar] [CrossRef]
- Rad, I.; Saberi, A.; Koochakzadeh-Nematollahi, N.S.; Habibzadeh, V.; Salarkia, E.; Amanollahi, S.; Nikpour, S. The effects of folic acid on testicular histology, sperm quality, and spermatogenesis indices following 3, 4-methylenedioxymethamphetamine exposure in adult male rats. Addiction & Health 2021, 13, 36. [Google Scholar]
- Lin, J.-F.; Lin, Y.-H.; Liao, P.-C.; Lin, Y.-C.; Tsai, T.-F.; Chou, K.-Y.; Chen, H.-E.; Tsai, S.-C.; Hwang, T.I. Induction of testicular damage by daily methamphetamine administration in rats. Chin J Physiol 2014, 57, 19–30. [Google Scholar] [CrossRef]
- Hatami, H. The effect of intraperitoneally injection of crystal meth on pituitary-gonad axis in adult male rats. yafte 2015, 17. [Google Scholar]
- Heidari-Rarani, M.; Noori, A.; Ghodousi, A. Effects of methamphetamine on pituitary gonadal axis and spermatogenesis in mature male rats. Zahedan Journal of Research in Medical Sciences 2014, 16, 37–42. [Google Scholar]
- Saberi, A.; Sepehri, G.; Safi, Z.; Razavi, B.; Jahandari, F.; Divsalar, K.; Salarkia, E. Effects of methamphetamine on testes histopathology and spermatogenesis indices of adult male rats. Addiction & health 2017, 9, 199. [Google Scholar]
- Peirouvi, T.; Razi, M. Molecular mechanism behind methamphetamine-induced damages in testicular tissue: Evidences for oxidative stress, autophagy, and apoptosis. Andrologia 2022, 54, e14534. [Google Scholar] [CrossRef] [PubMed]
- Zabida, O.S. The effect of methamphetamine on the blood-testis barrier. 2018.
- Azizi, S.; Kheirandish, R.; Dabiri, S.; Lakzaee, M. Adverse effects of methamphetamine on vital organs of male rats: Histopathological and immunohistochemical investigations. Iran J Basic Med Sci 2023, 26, 549–557. [Google Scholar] [CrossRef]
- Montagnini, B.G.; Silva, L.S.; dos Santos, A.H.; Anselmo-Franci, J.A.; Fernandes, G.S.; Mesquita Sde, F.; Gerardin, D.C. Effects of repeated administration of methylphenidate on reproductive parameters in male rats. Physiol Behav 2014, 133, 122–129. [Google Scholar] [CrossRef]
- da Costa Nunes Gomes, A.C.; Bellin, C.S.; da Silva Dias, S.; de Queiroz de Rosa, T.; de Araújo, M.P.; Miraglia, S.M.; Mendes, T.B.; Vendramini, V. Increased sperm deoxyribonucleic acid damage leads to poor embryo quality and subfertility of male rats treated with methylphenidate hydrochloride in adolescence. Andrology 2022, 10, 1632–1643. [Google Scholar] [CrossRef]
- Roustaee, S.; Sani, M.; Mehranpour, M.; Raee, P.; Moghaddam, M.H.; Bahar, R.; Nourirad, S.N.; Golzarian, M.-J.; Beirami, A.; Jafary, H. Chronic Administration of Lisdexamfetamine Induces Apoptosis and Inflammation and Reduces Sperm Quality in Adult Male Rats. Reproductive Sciences 2024, 31, 1278–1289. [Google Scholar] [CrossRef]
- Sabour, M.; Khoradmehr, A.; Kalantar, S.M.; Danafar, A.H.; Omidi, M.; Halvaei, I.; Nabi, A.; Ghasemi-Esmailabad, S.; Talebi, A.R. Administration of high dose of methamphetamine has detrimental effects on sperm parameters and DNA integrity in mice. Int J Reprod Biomed 2017, 15, 161–168. [Google Scholar] [CrossRef]
- Ghafori, S.S.; Javanmard, M.Z.; Ahmadi, A.; Peirouvi, T.; Karimipour, M.; Modirkhamene, S. The effects of Vitamin E on prevention of damages due to MDMA (Ecstasy) exposure on sperm parameters in mice. International Journal of High Risk Behaviors and Addiction 2018, 7. [Google Scholar] [CrossRef]
- Ajayi, A.F.; Akhigbe, R.E. Codeine-induced sperm DNA damage is mediated predominantly by oxidative stress rather than apoptosis. Redox Report 2020, 25, 33–40. [Google Scholar] [CrossRef]
- Akhigbe, R.E.; Hamed, M.A.; Ajayi, L.O.; Anyogu, D.C.; Ajayi, A.F. In vitro effect of codeine on human sperm motility and DNA integrity. 2021.
- Agha-Mohammadhasani, P.; Mokhtaree, M.; Nazari, A.; Rahnama, A. Comparison of sexual function and serum testosterone levels in men opiate addicts, under methadone maintenance therapy, and healthy men. Addiction & health 2018, 10, 76. [Google Scholar]
- Soliman, T.; Shaher, H.; Mohey, A.; El-Shaer, W.; Sebaey, A. Gonadotoxic effect of tramadol administration: a prospective controlled study. Arab Journal of Urology 2022, 20, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Bassiony, M.M.; Youssef, U.M.; El-Gohari, H. Free Testosterone and Prolactin Levels and Sperm Morphology and Function Among Male Patients With Tramadol Abuse: A Case-Control Study. J Clin Psychopharmacol 2020, 40, 405–408. [Google Scholar] [CrossRef]
- Ibrahim, M.A.-L.; Salah-Eldin, A.-E. Chronic addiction to tramadol and withdrawal effect on the spermatogenesis and testicular tissues in adult male albino rats. Pharmacology 2019, 103, 202–211. [Google Scholar] [CrossRef]
- Akhigbe, R.; Ajayi, A. Testicular toxicity following chronic codeine administration is via oxidative DNA damage and up-regulation of NO/TNF-α and caspase 3 activities. PLoS One 2020, 15, e0224052. [Google Scholar] [CrossRef]
- Rubinstein, A.L.; Carpenter, D.M. Association between commonly prescribed opioids and androgen deficiency in men: a retrospective cohort analysis. Pain Medicine 2017, 18, 637–644. [Google Scholar] [CrossRef]
- Farag, A.G.A.; Basha, M.A.; Amin, S.A.; Elnaidany, N.F.; Elhelbawy, N.G.; Mostafa, M.M.T.; Khodier, S.A.; Ibrahem, R.A.; Mahfouz, R.Z. Tramadol (opioid) abuse is associated with a dose-and time-dependent poor sperm quality and hyperprolactinaemia in young men. Andrologia 2018, 50, e13026. [Google Scholar] [CrossRef]
- Norioun, H.; Jamal Moshtaghian, S.; Alavian, F.; Khombi Shooshtari, M.; Alipour, G.; Ghiasvand, S. Impact of chronic opioid on cognitive function and spermatogenesis in rat: An experimental study. Int J Reprod Biomed 2024, 22, 579–592. [Google Scholar] [CrossRef]
- Ige, A.O.; Oluwole, D.T.; Olaoye, M.O.; Adewoye, E.O. Testicular function following oral exposure to Tramadol and Cannabis sativa ethanol extracts in male Wistar rats. Research Journal of Health Sciences 2020, 8, 63–72. [Google Scholar] [CrossRef]
- Azari, O.; Emadi, L.; Kheirandish, R.; Shafiei Bafti, H.; Esmaili Nejad, M.R.; Faroghi, F. The effects of long-term administration of tramadol on epididymal sperm quality and testicular tissue in mice. Iranian Journal of Veterinary Surgery 2014, 9, 23–30. [Google Scholar]
- Koohsari, M.; Ahangar, N.; Mohammadi, E.; Talebpour Amiri, F.; Shaki, F. Effects of tramadol administration on male reproductive toxicity in Wistar rats The role of oxidative stress, mitochondrial dysfunction, apoptosis-related gene expression, and nuclear factor kappa B signalling. Bratisl Lek Listy 2020, 121, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Abdellatief, R.B.; Elgamal, D.A.; Mohamed, E.E. Effects of chronic tramadol administration on testicular tissue in rats: an experimental study. Andrologia 2015, 47, 674–679. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.A.; Kurkar, A. Effects of opioid (tramadol) treatment on testicular functions in adult male rats: The role of nitric oxide and oxidative stress. Clin Exp Pharmacol Physiol 2014, 41, 317–323. [Google Scholar] [CrossRef]
- Takzare, N.; Samizadeh, E.; Shoar, S.; Majidi Zolbin, M.; Naderan, M.; Lashkari, A.; Bakhtiarian, A. Impacts of morphine addiction on spermatogenesis in rats. Int J Reprod Biomed 2016, 14, 303–308. [Google Scholar] [CrossRef]
- Norioun, H.; Moshtaghian, S.J.; Alavian, F.; Shooshtari, M.K.; Alipour, G.; Ghiasvand, S. Impact of chronic opioid on cognitive function and spermatogenesis in rat: An experimental study. International Journal of Reproductive Biomedicine 2024, 22, 579. [Google Scholar] [CrossRef]
- Suede, S.H.; Malik, A.; Sapra, A. Histology, Spermatogenesis; StatPearls Publishing, Treasure Island (FL): 2023.
- Chojnacka, K.; Mruk, D.D. The Src non-receptor tyrosine kinase paradigm: New insights into mammalian Sertoli cell biology. Molecular and Cellular Endocrinology 2015, 415, 133–142. [Google Scholar] [CrossRef]
- Nazmara, Z.; Ebrahimi, B.; Makhdoumi, P.; Noori, L.; Mahdavi, S.A.; Hassanzadeh, G. Effects of illicit drugs on structural and functional impairment of testis, endocrinal disorders, and molecular alterations of the semen. Iran J Basic Med Sci 2021, 24, 856–867. [Google Scholar] [CrossRef]
- Salah, S.; Wagih, M.; Zaki, A.; Fathy, W.; Eid, A. Long-term effects of tramadol on the reproductive function of male albino rats: an experimental biochemical and histopathological study. Middle East Fertility Society Journal 2019, 24, 3. [Google Scholar] [CrossRef]
- Haddadi, M.; Ai, J.; Shirian, S.; Kadivar, A.; Farahmandfar, M. The effect of methadone, buprenorphine, and shift of methadone to buprenorphine on sperm parameters and antioxidant activity in a male rat model. Comparative Clinical Pathology 2020, 29, 469–476. [Google Scholar] [CrossRef]
- Sabeti, P.; Pourmasumi, S.; Rahiminia, T.; Akyash, F.; Talebi, A.R. Etiologies of sperm oxidative stress. Int J Reprod Biomed 2016, 14, 231–240. [Google Scholar] [CrossRef]
- El-sherif, G.E.M.; Tawfik, H.M.; Abdelzhaher, H.K. Tramadol Abuse Induced Testicular Toxicity in Adult Male Albino Rats: An Experimental Histopathological Ultrastructural Study. Egyptian Journal of Histology 2023, 46, 1039–1051. [Google Scholar] [CrossRef]
- Gad Allaha, A.M.; Hemeda, M.S. Chronic ethanol and tramadol interaction on the testicular tissues in adult male Albino rats: an experimental biochemical and histopathological study. Al-Azhar Assiut Medical Journal 2021, 19. [Google Scholar] [CrossRef]
- Walke, G.; Gaurkar, S.S.; Prasad, R.; Lohakare, T.; Wanjari, M. The Impact of Oxidative Stress on Male Reproductive Function: Exploring the Role of Antioxidant Supplementation. Cureus 2023, 15, e42583. [Google Scholar] [CrossRef] [PubMed]
| Stimulants | Depressants | Hallucinogens | Cannabis |
| Amphetamines-Types Stimulants (ATS) | Opioids | Ketamine | Cannabidiol (CBD) |
| Cocaine | Alcohols | Lysergic dimethylamine (LSD) | Hashish |
| Caffeine | Benzodiazepines | Dimethyltryptamine (DMT) | Tetrahydrocannabinol (THC) |
| Nicotine | Kratom | Mescaline | Cannabis sativa |
| Effect on the male reproductive system | Drugs | Author (year) |
|---|---|---|
| Reduced sperm quality | Methamphetamine | Sabour et.al (2017) |
| Heroine | Farag et.al (2018) | |
| Imbalance of hormone | Methamphetamine | Allaeian Jahromi et.al (2020) |
| Tramadol | Salah et.al (2019) | |
| Testicular function | Methylphenidate hydrochloride | Abdollahifar et.al (2020) |
| Codeine | Akhigbe et.al (2020) | |
| Sperm DNA damage | Methamphetamine | Aryan et.al (2022) |
| Morphine | Chasemi-Esmailabad et.al (2022) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
