Submitted:
18 March 2025
Posted:
19 March 2025
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Gut Microbiome and Usual Probiotics Strains
| Genera | Species | Mechanisms of action/Benefits | References |
|---|---|---|---|
| Lactobacillus | acidophilus | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 16, 17 | [25,36,42,43,44,45,46,47,48] |
| amylovorus | 1, 2, 4, 6, 10 | [49] | |
| brevis | 1, 3, 4, 6, 7, 9, 11, 13, 14 | [48,50,51,52,53,54,55] | |
| casei | 1, 3, 4, 6, 7, 10, 11, 12, 16, 17 | [36,48,56,57,58,59] | |
| crispatus | 1, 4, 13, 14 | [60,61,62] | |
| delbrueckii ssp. bulgarius | 1, 3, 4, 6, 7, 10, 16 | [44,48,63] | |
| fermentum | 1, 4, 5, 6, 7, 8, 10, 13 | [48,54,64] | |
| gasseri | 1, 8 , 11, 13, 14 | [36,65] | |
| helveticus | 1, 4, 5, 6, 7, 12, 13, 17 | [36,47,57] | |
| iners* | 1, 13 | [62,66] | |
| jensenii | 1, 4, 6, 7, 13 | [62,67] | |
| johnsonii | 1, 4, 6, 7, 10 | [44,68,69] | |
| kefiranofaciens | 1, 4, 6, 7, 11 | [70] | |
| paracasei | 1, 6, 14, 15, 16 | [45,71,72,73,74] | |
| plantarum | 1, 4, 6, 7, 10, 13, 14, 16 | [25,54,74] | |
| reuteri | 1, 6, 9, 10, 13, 14, 17 | [25,47,48,75,76] | |
| rhamnosus | 1, 3, 4, 7, 8, 10, 11, 12, 13, 14, 15, 17 | [25,36,45,48,57,72,77] | |
| salicinius | 1, 13 | [48] | |
| salivarius | 1, 9, 14 | [36] | |
| Bifidobacterium | adolescentis | 1, 4, 11, 17 | [36,47,78,79] |
| animalis | 1, 3, 4, 6, 11, 14, 16 | [36,41,80] | |
| breve | 1, 4, 6, 10, 11, 17 | [36,47,48,81,82] | |
| bifidum | 1, 2, 3, 4, 7, 10, 11, 14, 15, 17 | [36,46,47,48,72,83] | |
| dentium | 1, 4, 7, 14 | [72,84] | |
| infantis | 1, 3, 6, 10, 11, 17 | [36,47,48,71,85] | |
| lactis | 1, 3, 4, 7, 10, 11, 15, 16, 17 | [36,45,47,48,86,87] | |
| longum | 1, 3, 4, 6, 7, 10, 11, 17 | [36,47,48,58,63,78] | |
| pseudocatenulatum | 1, 2, 4, 5, 11 | [36,88,89,90,91,92] | |
| thermophilum | 1, 11, 14 | [36,93] | |
| Enterococcus | durans** | 1, 8 | [94] |
| faecalis | 1, 3, 4, 10 | [48,95,96] | |
| faecium | 1, 9, 10 | [25,97] | |
| Lactococcus | lactis ssp. cremoris** | 1, 2, 4, 8, 16 | [98,99,100] |
| lactis ssp. lactis** | 1, 4, 8 | [100,101,102] | |
| lactis ssp. lactis bv. diacetylactis** | 1, 2, 8, 9 | [100,101,102] | |
| Streptococcus | salibarius | 14 | [103,104] |
| thermophilus** | 1, 4, 6, 7, 9, 10 | [48,71,105] | |
| Propionibacterium | acidipropionici** | 1, 2 | [34] |
| freudenreichii | 1, 2, 3, 4, 6 | [34,48,105,106] | |
| jensenii** | 1, 2 | [34,107] | |
| thoenii** | 1, 2 | [34,107] | |
| Leuconostoc | mesenteroides ssp. cremoris* | 1, 4, 14 | [105,108,109] |
| Pediococcus | acidilactici | 1, 4, 13, 17 | [48,110] |
| pentosaceus | 1, 3, 4, 8, 9 | [111] |
3. Gut Dysbiosis and How It Is Affected by Diet
4. Intestinal Diseases and Relation with Probiotics
5. Dysbiosis and Probiotics in Metabolic Disorders
6. Probiotics in the Modulation of the Gut-Brain Axis
7. Probiotics in the Immune System
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sender, R.; Fuchs, S.; Milo, R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol 2016, 14. [Google Scholar] [CrossRef] [PubMed]
- Ley, R.E.; Hamady, M.; Lozupone, C.; Turnbaugh, P.J.; Ramey, R.R.; Bircher, J.S.; Schlegel, M.L.; Tucker, T.A.; Schrenzel, M.D.; Knight, R.; et al. Evolution of Mammals and Their Gut Microbes. Science 2008, 320, 1647–1651. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. The Human Microbiome Project. Nature 2007, 449, 804–810. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Blaser, M.J.; Caporaso, J.G.; Jansson, J.K.; Lynch, S. V.; Knight, R. Current Understanding of the Human Microbiome. Nat Med 2018, 24, 392–400. [Google Scholar] [CrossRef]
- Maki, K.A.; Kazmi, N.; Barb, J.J.; Ames, N. The Oral and Gut Bacterial Microbiomes: Similarities, Differences, and Connections. Biol Res Nurs 2021, 23, 7–20. [Google Scholar] [CrossRef] [PubMed]
- Mallott, E.K.; Sitarik, A.R.; Leve, L.D.; Cioffi, C.; Camargo, C.A.; Hasegawa, K.; Bordenstein, S.R. Human Microbiome Variation Associated with Race and Ethnicity Emerges as Early as 3 Months of Age. PLoS Biol 2023, 21. [Google Scholar] [CrossRef]
- Le Chatelier, E.; Nielsen, T.; Qin, J.; Prifti, E.; Hildebrand, F.; Falony, G.; Almeida, M.; Arumugam, M.; Batto, J.M.; Kennedy, S.; et al. Richness of Human Gut Microbiome Correlates with Metabolic Markers. Nature 2013, 500, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Tilg, H.; Moschen, A.R. Gut Microbiome, Obesity, and Metabolic Syndrome. Metabolic Syndrome 2023, 373–384. [Google Scholar] [CrossRef]
- Bock, P.M.; Martins, A.F.; Schaan, B.D. Understanding How Pre- and Probiotics Affect the Gut Microbiome and Metabolic Health. Am J Physiol Endocrinol Metab 2024, 327, E89–E102. [Google Scholar] [CrossRef]
- Lloyd-Price, J.; Abu-Ali, G.; Huttenhower, C. The Healthy Human Microbiome. Genome Med 2016, 8. [Google Scholar] [CrossRef]
- Cugini, C.; Ramasubbu, N.; Tsiagbe, V.K.; Fine, D.H. Dysbiosis From a Microbial and Host Perspective Relative to Oral Health and Disease. Front Microbiol 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Koga-Ito, C.Y.; Martins, C.A.P. de; Balducci, I.; Jorge, A.O.C. Correlation among Mutans Streptococci Counts, Dental Caries, and IgA to Streptococcus Mutans in Saliva. Braz Oral Res 2004, 18, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Moutsopoulos, N.M.; Konkel, J.E. Healthy Mouth, Healthy Gut: A Dysbiotic Oral Microbiome Exacerbates Colitis. Mucosal Immunol 2020, 13, 852–854. [Google Scholar] [CrossRef]
- Tonelli, A.; Lumngwena, E.N.; Ntusi, N.A.B. The Oral Microbiome in the Pathophysiology of Cardiovascular Disease. Nat Rev Cardiol 2023, 20, 386–403. [Google Scholar] [CrossRef] [PubMed]
- Kalyanaraman, B.; Cheng, G.; Hardy, M. Gut Microbiome, Short-Chain Fatty Acids, Alpha-Synuclein, Neuroinflammation, and ROS/RNS: Relevance to Parkinson’s Disease and Therapeutic Implications. Redox Biol 2024, 71. [Google Scholar] [CrossRef]
- Tomasello, G.; Mazzola, M.; Leone, A.; Sinagra, E.; Zummo, G.; Farina, F.; Damiani, P.; Cappello, F.; Geagea, A.G.; Jurjus, A.; et al. Nutrition, Oxidative Stress and Intestinal Dysbiosis: Influence of Diet on Gut Microbiota in Inflammatory Bowel Diseases. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016, 160, 461–466. [Google Scholar] [CrossRef]
- Chae, Y.R.; Lee, Y.R.; Kim, Y.S.; Park, H.Y. Diet-Induced Gut Dysbiosis and Leaky Gut Syndrome. J Microbiol Biotechnol 2024, 34, 747. [Google Scholar] [CrossRef]
- Santana, P.T.; Rosas, S.L.B.; Ribeiro, B.E.; Marinho, Y.; de Souza, H.S.P. Dysbiosis in Inflammatory Bowel Disease: Pathogenic Role and Potential Therapeutic Targets. Int J Mol Sci 2022, 23, 3464. [Google Scholar] [CrossRef]
- Moszak, M.; Szulińska, M.; Bogdański, P. You Are What You Eat—The Relationship between Diet, Microbiota, and Metabolic Disorders—A Review. Nutrients 2020, 12, 1096. [Google Scholar] [CrossRef]
- Ashraf, R.; Shah, N.P. Immune System Stimulation by Probiotic Microorganisms. Crit Rev Food Sci Nutr 2014, 54, 938–956. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Riordan, K.J.; Sandhu, K.; Peterson, V.; Dinan, T.G. The Gut Microbiome in Neurological Disorders. Lancet Neurol 2020, 19, 179–194. [Google Scholar] [CrossRef] [PubMed]
- Lau, K.; Srivatsav, V.; Rizwan, A.; Nashed, A.; Liu, R.; Shen, R.; Akhtar, M. Bridging the Gap between Gut Microbial Dysbiosis and Cardiovascular Diseases. Nutrients 2017, 9. [Google Scholar] [CrossRef] [PubMed]
- Bäckhed, F.; Fraser, C.M.; Ringel, Y.; Sanders, M.E.; Sartor, R.B.; Sherman, P.M.; Versalovic, J.; Young, V.; Finlay, B.B. Defining a Healthy Human Gut Microbiome: Current Concepts, Future Directions, and Clinical Applications. Cell Host Microbe 2012, 12, 611–622. [Google Scholar] [CrossRef]
- Metchnikoff, É. The Prolongation of Life; New York: Putnam, 1908. [Google Scholar]
- Parvez, S.; Malik, K.A.; Ah Kang, S.; Kim, H.Y. Probiotics and Their Fermented Food Products Are Beneficial for Health. J Appl Microbiol 2006, 100, 1171–1185. [Google Scholar] [CrossRef]
- Chugh, B.; Kamal-Eldin, A. Bioactive Compounds Produced by Probiotics in Food Products. Curr Opin Food Sci 2020, 32, 76–82. [Google Scholar] [CrossRef]
- Anwar, H.; Irfan, S.; Hussain, G.; Faisal, M.N.; Muzaffar, H.; Mustafa, I.; Mukhtar, I.; Malik, S.; Ullah, M.I. Gut Microbiome: A New Organ System in Body. Parasitol Microbiol Res 2019, 1, 17–21. [Google Scholar]
- Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Reddy, D.N. Role of the Normal Gut Microbiota. World J Gastroenterol 2015, 21, 8836–8847. [Google Scholar] [CrossRef]
- Huttenhower, C.; Gevers, D.; Knight, R.; Abubucker, S.; Badger, J.H.; Chinwalla, A.T.; Creasy, H.H.; Earl, A.M.; Fitzgerald, M.G.; Fulton, R.S.; et al. Structure, Function and Diversity of the Healthy Human Microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef]
- Fujisaka, S.; Watanabe, Y.; Tobe, K. The Gut Microbiome: A Core Regulator of Metabolism. Journal of Endocrinology 2023, 256. [Google Scholar] [CrossRef]
- Hajela, N.; Ramakrishna, B.S.; Nair, G.B.; Abraham, P.; Gopalan, S.; Ganguly, N.K. Gut Microbiome, Gut Function, and Probiotics: Implications for Health. Indian J Gastroenterol 2015, 34, 93–107. [Google Scholar] [CrossRef]
- Neffe-Skocińska, K.; Rzepkowska, A.; Szydłowska, A.; Kołozyn-Krajewska, D. Trends and Possibilities of the Use of Probiotics in Food Production. Alternative and Replacement Foods 2018, 17, 65–94. [Google Scholar] [CrossRef]
- Azad, M.A.K.; Sarker, M.; Li, T.; Yin, J. Probiotic Species in the Modulation of Gut Microbiota: An Overview. Biomed Res Int 2018, 2018. [Google Scholar] [CrossRef] [PubMed]
- Campaniello, D.; Bevilacqua, A.; Sinigaglia, M.; Altieri, C. Screening of Propionibacterium Spp. for Potential Probiotic Properties. Anaerobe 2015, 34, 169–173. [Google Scholar] [CrossRef]
- Lee, N.K.; Kim, W.S.; Paik, H.D. Bacillus Strains as Human Probiotics: Characterization, Safety, Microbiome, and Probiotic Carrier. Food Sci Biotechnol 2019, 28, 1297–1305. [Google Scholar] [CrossRef]
- Aggarwal, J.; Swami, G.; Kumar, M. Probiotics and Their Effects on Metabolic Diseases: An Update. J Clin Diagn Res 2013, 7, 173–177. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.C.; Bueno, A.A.; De Souza, R.G.M.H.; Mota, J.F. Gut Microbiota, Probiotics and Diabetes. Nutr J 2014, 13. [Google Scholar] [CrossRef]
- Bennett, A.; Eley, K.G. Intestinal PH and Propulsion: An Explanation of Diarrhoea in Lactase Deficiency and Laxation by Lactulose. J Pharm Pharmacol 1976, 28, 192–195. [Google Scholar] [CrossRef]
- Chang, J.H.; Shim, Y.Y.; Cha, S.K.; Reaney, M.J.T.; Chee, K.M. Effect of Lactobacillus Acidophilus KFRI342 on the Development of Chemically Induced Precancerous Growths in the Rat Colon. J Med Microbiol 2012, 61, 361–368. [Google Scholar] [CrossRef]
- Ranadheera, R.D.C.S.; Baines, S.K.; Adams, M.C. Importance of Food in Probiotic Efficacy. Food Research International 2010, 43, 1–7. [Google Scholar] [CrossRef]
- Jungersen, M.; Wind, A.; Johansen, E.; Christensen, J.E.; Stuer-Lauridsen, B.; Eskesen, D. The Science behind the Probiotic Strain Bifidobacterium Animalis Subsp. Lactis BB-12(®). Microorganisms 2014, 2, 92–110. [Google Scholar] [CrossRef]
- Gao, H.; Li, X.; Chen, X.; Hai, D.; Wei, C.; Zhang, L.; Li, P. The Functional Roles of Lactobacillus Acidophilus in Different Physiological and Pathological Processes. J Microbiol Biotechnol 2022, 32, 1226–1233. [Google Scholar] [CrossRef] [PubMed]
- Isazadeh, A.; Hajazimian, S.; Shadman, B.; Safaei, S.; Bedoustani, A.B.; Chavoshi, R.; Shanehbandi, D.; Mashayekhi, M.; Nahaei, M.; Baradaran, B. Anti-Cancer Effects of Probiotic Lactobacillus Acidophilus for Colorectal Cancer Cell Line Caco-2 through Apoptosis Induction. Pharmaceutical Sciences 2021, 27, 262–267. [Google Scholar] [CrossRef]
- Neish, A.S. Probiotics of the Acidophilus Group: Lactobacillus Acidophilus, Delbrueckii Subsp. Bulgaricus and Johnsonii. The Microbiota in Gastrointestinal Pathophysiology: Implications for Human Health, Prebiotics, Probiotics, and Dysbiosis 2017, 71–78. [Google Scholar] [CrossRef]
- Andrade, P.D.S.M.A. de; Maria e Silva, J.; Carregaro, V.; Sacramento, L.A.; Roberti, L.R.; Aragon, D.C.; Carmona, F.; Roxo-Junior, P. Efficacy of Probiotics in Children and Adolescents With Atopic Dermatitis: A Randomized, Double-Blind, Placebo-Controlled Study. Front Nutr 2022, 8. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Kwon, J.H.; Ahn, S.H.; Lee, S. Il; Han, Y.S.; Choi, Y.O.; Lee, S.Y.; Ahn, K.M.; Ji, G.E. Effect of Probiotic Mix (Bifidobacterium Bifidum, Bifidobacterium Lactis, Lactobacillus Acidophilus) in the Primary Prevention of Eczema: A Double-Blind, Randomized, Placebo-Controlled Trial. Pediatr Allergy Immunol 2010, 21. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Wang, M.; Zheng, L.; Cen, Q.; Wang, F.; Zhu, L.; Pang, R.; Zhang, A. Bifidobacterium: A Probiotic for the Prevention and Treatment of Depression. Front Microbiol 2023, 14. [Google Scholar] [CrossRef]
- Uriot, O.; Denis, S.; Junjua, M.; Roussel, Y.; Dary-Mourot, A.; Blanquet-Diot, S. Streptococcus Thermophilus: From Yogurt Starter to a New Promising Probiotic Candidate? J Funct Foods 2017, 37, 74–89. [Google Scholar] [CrossRef]
- Shen, J.; Zhang, J.; Zhao, Y.; Lin, Z.; Ji, L.; Ma, X. Tibetan Pig-Derived Probiotic Lactobacillus Amylovorus SLZX20-1 Improved Intestinal Function via Producing Enzymes and Regulating Intestinal Microflora. Front Nutr 2022, 9. [Google Scholar] [CrossRef]
- Yakabe, T.; Moore, E.L.; Yokota, S.; Sui, H.; Nobuta, Y.; Fukao, M.; Palmer, H.; Yajima, N. Safety Assessment of Lactobacillus Brevis KB290 as a Probiotic Strain. Food Chem Toxicol 2009, 47, 2450–2453. [Google Scholar] [CrossRef]
- Rushdy, A.A.; Gomaa, E.Z. Antimicrobial Compounds Produced by Probiotic Lactobacillus Brevis Isolated from Dairy Products. Ann Microbiol 2013, 63, 81–90. [Google Scholar] [CrossRef]
- Abdelazez, A.; Abdelmotaal, H.; Evivie, S.E.; Melak, S.; Jia, F.F.; Khoso, M.H.; Zhu, Z.T.; Zhang, L.J.; Sami, R.; Meng, X.C. Screening Potential Probiotic Characteristics of Lactobacillus Brevis Strains In Vitro and Intervention Effect on Type I Diabetes In Vivo. Biomed Res Int 2018, 2018. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Kim, N.; Werlinger, P.; Suh, D.A.; Lee, H.; Cho, J.H.; Cheng, J. Probiotic Characterization of Lactobacillus Brevis MJM60390 and In Vivo Assessment of Its Antihyperuricemic Activity. J Med Food 2022, 25, 367–380. [Google Scholar] [CrossRef] [PubMed]
- Ramos, C.L.; Thorsen, L.; Schwan, R.F.; Jespersen, L. Strain-Specific Probiotics Properties of Lactobacillus Fermentum, Lactobacillus Plantarum and Lactobacillus Brevis Isolates from Brazilian Food Products. Food Microbiol 2013, 36, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Pourbaferani, M.; Modiri, S.; Norouzy, A.; Maleki, H.; Heidari, M.; Alidoust, L.; Derakhshan, V.; Zahiri, H.S.; Noghabi, K.A. A Newly Characterized Potentially Probiotic Strain, Lactobacillus Brevis MK05, and the Toxicity Effects of Its Secretory Proteins Against MCF-7 Breast Cancer Cells. Probiotics Antimicrob Proteins 2021, 13, 982–992. [Google Scholar] [CrossRef]
- Zhu, H.; Cao, C.; Wu, Z.; Zhang, H.; Sun, Z.; Wang, M.; Xu, H.; Zhao, Z.; Wang, Y.; Pei, G.; et al. The Probiotic L. Casei Zhang Slows the Progression of Acute and Chronic Kidney Disease. Cell Metab 2021, 33, 1926–1942.e8. [Google Scholar] [CrossRef]
- Dashtbanei, S.; Keshtmand, Z. A Mixture of Multi-Strain Probiotics (Lactobacillus Rhamnosus, Lactobacillus Helveticus, and Lactobacillus Casei) Had Anti-Inflammatory, Anti-Apoptotic, and Anti-Oxidative Effects in Oxidative Injuries Induced By Cadmium in Small Intestine and Lung. Probiotics Antimicrob Proteins 2023, 15. [Google Scholar] [CrossRef]
- Lee, J.-W.; Shin, J.-G.; Kim, E.H.; Kang, H.E.; Yim, I.B.; Kim, J.Y.; Joo, H.-G.; Woo, H.J. Immunomodulatory and Antitumor Effects in Vivo by the Cytoplasmic Fraction of Lactobacillus Casei and Bifidobacterium Longum. J. Vet. Sci 2004, 41–48. [Google Scholar] [CrossRef]
- Rao, A.V.; Bested, A.C.; Beaulne, T.M.; Katzman, M.A.; Iorio, C.; Berardi, J.M.; Logan, A.C. A Randomized, Double-Blind, Placebo-Controlled Pilot Study of a Probiotic in Emotional Symptoms of Chronic Fatigue Syndrome. Gut Pathog 2009, 1. [Google Scholar] [CrossRef]
- Decout, A.; Krasias, I.; Roberts, L.; Gimeno Molina, B.; Charenton, C.; Brown Romero, D.; Tee, Q.Y.; Marchesi, J.R.; Ng, S.; Sykes, L.; et al. Lactobacillus Crispatus S-Layer Proteins Modulate Innate Immune Response and Inflammation in the Lower Female Reproductive Tract. bioRxiv 2024. [Google Scholar] [CrossRef]
- Ahire, J.J.; Sahoo, S.; Kashikar, M.S.; Heerekar, A.; Lakshmi, S.G.; Madempudi, R.S. In Vitro Assessment of Lactobacillus Crispatus UBLCp01, Lactobacillus Gasseri UBLG36, and Lactobacillus Johnsonii UBLJ01 as a Potential Vaginal Probiotic Candidate. Probiotics Antimicrob Proteins 2023, 15. [Google Scholar] [CrossRef]
- Argentini, C.; Fontana, F.; Alessandri, G.; Lugli, G.A.; Mancabelli, L.; Ossiprandi, M.C.; van Sinderen, D.; Ventura, M.; Milani, C.; Turroni, F. Evaluation of Modulatory Activities of Lactobacillus Crispatus Strains in the Context of the Vaginal Microbiota. Microbiol Spectr 2022, 10. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Dong, L.; Jiang, Z.; Tan, L.; Luo, X.; Pei, G.; Qin, A.; Zhong, Z.; Liu, X.; Tang, Y.; et al. Probiotics Ameliorate IgA Nephropathy by Improving Gut Dysbiosis and Blunting NLRP3 Signaling. J Transl Med 2022, 20. [Google Scholar] [CrossRef] [PubMed]
- Mikelsaar, M.; Zilmer, M. Lactobacillus Fermentum ME-3—an Antimicrobial and Antioxidative Probiotic. Microb Ecol Health Dis 2009, 21, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Mann, S.; Park, M.S.; Johnston, T. V.; Ji, G.E.; Hwang, K.T.; Ku, S. Oral Probiotic Activities and Biosafety of Lactobacillus Gasseri HHuMIN D. Microb Cell Fact 2021, 20. [Google Scholar] [CrossRef]
- Zheng, N.; Guo, R.; Wang, J.; Zhou, W.; Ling, Z. Contribution of Lactobacillus Iners to Vaginal Health and Diseases: A Systematic Review. Front Cell Infect Microbiol 2021, 11. [Google Scholar] [CrossRef]
- Villena, J.; Kitazawa, H. Modulation of Intestinal TLR4-Inflammatory Signaling Pathways by Probiotic Microorganisms: Lessons Learned from Lactobacillus Jensenii TL2937. Front Immunol 2014, 4. [Google Scholar] [CrossRef]
- Davoren, M.J.; Liu, J.; Castellanos, J.; Rodríguez-Malavé, N.I.; Schiestl, R.H. A Novel Probiotic, Lactobacillus Johnsonii 456, Resists Acid and Can Persist in the Human Gut beyond the Initial Ingestion Period. Gut Microbes 2019, 10, 458–480. [Google Scholar] [CrossRef]
- Van Gossum, A.; Dewit, O.; Louis, E.; De Hertogh, G.; Baert, F.; Fontaine, F.; Devos, M.; Enslen, M.; Paintin, M.; Franchimont, D. Multicenter Randomized-Controlled Clinical Trial of Probiotics (Lactobacillus Johnsonii, LA1) on Early Endoscopic Recurrence of Crohn’s Disease after Lleo-Caecal Resection. Inflamm Bowel Dis 2007, 13, 135–142. [Google Scholar] [CrossRef]
- Georgalaki, M.; Zoumpopoulou, G.; Anastasiou, R.; Kazou, M.; Tsakalidou, E. Lactobacillus Kefiranofaciens: From Isolation and Taxonomy to Probiotic Properties and Applications. Microorganisms 2021, Vol. 9, Page 2158 2021, 9, 2158. [Google Scholar] [CrossRef]
- Toumi, R.; Abdelouhab, K.; Rafa, H.; Soufli, I.; Raissi-Kerboua, D.; Djeraba, Z.; Touil-Boukoffa, C. Beneficial Role of the Probiotic Mixture Ultrabiotique on Maintaining the Integrity of Intestinal Mucosal Barrier in DSS-Induced Experimental Colitis. Immunopharmacol Immunotoxicol 2013, 35, 403–409. [Google Scholar] [CrossRef]
- Inchingolo, F.; Inchingolo, A.M.; Malcangi, G.; De Leonardis, N.; Sardano, R.; Pezzolla, C.; de Ruvo, E.; Di Venere, D.; Palermo, A.; Inchingolo, A.D.; et al. The Benefits of Probiotics on Oral Health: Systematic Review of the Literature. Pharmaceuticals (Basel) 2023, 16. [Google Scholar] [CrossRef] [PubMed]
- Chuang, L.C.; Huang, C.S.; Ou-Yang, L.W.; Lin, S.Y. Probiotic Lactobacillus Paracasei Effect on Cariogenic Bacterial Flora. Clin Oral Investig 2011, 15, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Dong, B.R.; Hao, Q. Probiotics for Preventing Acute Upper Respiratory Tract Infections. Cochrane Database Syst Rev 2022, 8. [Google Scholar] [CrossRef]
- Kabuki, T.; Saito, T.; Kawai, Y.; Uemura, J.; Itoh, T. Production, Purification and Characterization of Reutericin 6, a Bacteriocin with Lytic Activity Produced by Lactobacillus Reuteri LA6. Int J Food Microbiol 1997, 34, 145–156. [Google Scholar] [CrossRef]
- Schaefer, L.; Auchtung, T.A.; Hermans, K.E.; Whitehead, D.; Borhan, B.; Britton, R.A. The Antimicrobial Compound Reuterin (3-Hydroxypropionaldehyde) Induces Oxidative Stress via Interaction with Thiol Groups. Microbiology (Reading) 2010, 156, 1589–1599. [Google Scholar] [CrossRef]
- Bravo, J.A.; Forsythe, P.; Chew, M. V.; Escaravage, E.; Savignac, H.M.; Dinan, T.G.; Bienenstock, J.; Cryan, J.F. Ingestion of Lactobacillus Strain Regulates Emotional Behavior and Central GABA Receptor Expression in a Mouse via the Vagus Nerve. Proc Natl Acad Sci U S A 2011, 108, 16050–16055. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Morita, H.; Ouwehand, A.C.; Hosoda, M.; Hiramatsu, M.; Kurisaki, J. ichi; Isolauri, E.; Benno, Y.; Salminen, S. Stimulation of the Secretion of Pro-Inflammatory Cytokines by Bifidobacterium Strains. Microbiol Immunol 2002, 46, 781–785. [Google Scholar] [CrossRef]
- Guo, Y.; Xie, J.P.; Deng, K.; Li, X.; Yuan, Y.; Xuan, Q.; Xie, J.; He, X.M.; Wang, Q.; Li, J.J.; et al. Prophylactic Effects of Bifidobacterium Adolescentis on Anxiety and Depression-Like Phenotypes After Chronic Stress: A Role of the Gut Microbiota-Inflammation Axis. Front Behav Neurosci 2019, 13. [Google Scholar] [CrossRef]
- Santana, S.I.; Silva, P.H.F.; Salvador, S.L.; Casarin, R.C.V.; Furlaneto, F.A.C.; Messora, M.R. Adjuvant Use of Multispecies Probiotic in the Treatment of Peri-Implant Mucositis: A Randomized Controlled Trial. J Clin Periodontol 2022, 49, 828–839. [Google Scholar] [CrossRef]
- Jeon, S.G.; Kayama, H.; Ueda, Y.; Takahashi, T.; Asahara, T.; Tsuji, H.; Tsuji, N.M.; Kiyono, H.; Ma, J.S.; Kusu, T.; et al. Probiotic Bifidobacterium Breve Induces IL-10-Producing Tr1 Cells in the Colon. PLoS Pathog 2012, 8, e1002714. [Google Scholar] [CrossRef]
- Xiao, J.; Katsumata, N.; Bernier, F.; Ohno, K.; Yamauchi, Y.; Odamaki, T.; Yoshikawa, K.; Ito, K.; Kaneko, T. Probiotic Bifidobacterium Breve in Improving Cognitive Functions of Older Adults with Suspected Mild Cognitive Impairment: A Randomized, Double-Blind, Placebo-Controlled Trial. J Alzheimers Dis 2020, 77, 139–147. [Google Scholar] [CrossRef] [PubMed]
- Turroni, F.; Duranti, S.; Milani, C.; Lugli, G.A.; van Sinderen, D.; Ventura, M. Bifidobacterium Bifidum: A Key Member of the Early Human Gut Microbiota. Microorganisms 2019, 7. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Xie, Q.; Etareri Evivie, S.; Liu, D.; Dong, J.; Ping, L.; Liu, F.; Li, B.; Huo, G. Bifidobacterium Dentium N8 with Potential Probiotic Characteristics Prevents LPS-Induced Intestinal Barrier Injury by Alleviating the Inflammatory Response and Regulating the Tight Junction in Caco-2 Cell Monolayers. Food Funct 2021, 12, 7171–7184. [Google Scholar] [CrossRef] [PubMed]
- Desbonnet, L.; Garrett, L.; Clarke, G.; Kiely, B.; Cryan, J.F.; Dinan, T.G. Effects of the Probiotic Bifidobacterium Infantis in the Maternal Separation Model of Depression. Neuroscience 2010, 170, 1179–1188. [Google Scholar] [CrossRef]
- Arunachalam, K.; Gill, H.S.; Chandra, R.K. Enhancement of Natural Immune Function by Dietary Consumption of Bifidobacterium Lactis (HN019). Eur J Clin Nutr 2000, 54, 263–267. [Google Scholar] [CrossRef]
- Sanders, M.E. Summary of Probiotic Activities of Bifidobacterium Lactis HN019. J Clin Gastroenterol 2006, 40, 776–783. [Google Scholar] [CrossRef]
- Haros, M.; Carlsson, N.G.; Almgren, A.; Larsson-Alminger, M.; Sandberg, A.S.; Andlid, T. Phytate Degradation by Human Gut Isolated Bifidobacterium Pseudocatenulatum ATCC27919 and Its Probiotic Potential. Int J Food Microbiol 2009, 135, 7–14. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, J.; Du, H.; Zhou, Z.; Han, Y.; Luo, M.; Guo, X.; Gu, M.; Yang, H.; Xiao, H. The Anti-Inflammatory Potential of a Strain of Probiotic Bifidobacterium Pseudocatenulatum G7: In Vitro and In Vivo Evidence. J Agric Food Chem 2024, 72, 10355–10365. [Google Scholar] [CrossRef]
- Sanchis-Chordà, J.; del Pulgar, E.M.G.; Carrasco-Luna, J.; Benítez-Páez, A.; Sanz, Y.; Codoñer-Franch, P. Bifidobacterium Pseudocatenulatum CECT 7765 Supplementation Improves Inflammatory Status in Insulin-Resistant Obese Children. Eur J Nutr 2019, 58, 2789–2800. [Google Scholar] [CrossRef]
- Zhao, Q.; Ren, H.; Yang, N.; Xia, X.; Chen, Q.; Zhou, D.; Liu, Z.; Chen, X.; Chen, Y.; Huang, W.; et al. Bifidobacterium Pseudocatenulatum-Mediated Bile Acid Metabolism to Prevent Rheumatoid Arthritis via the Gut-Joint Axis. Nutrients 2023, 15. [Google Scholar] [CrossRef]
- Mauricio, M.D.; Serna, E.; Fernández-Murga, M.L.; Portero, J.; Aldasoro, M.; Valles, S.L.; Sanz, Y.; Vila, J.M. Bifidobacterium Pseudocatenulatum CECT 7765 Supplementation Restores Altered Vascular Function in an Experimental Model of Obese Mice. Int J Med Sci 2017, 14, 444–451. [Google Scholar] [CrossRef]
- Tanner, S.A.; Chassard, C.; Rigozzi, E.; Lacroix, C.; Stevens, M.J.A. Bifidobacterium Thermophilum RBL67 Impacts on Growth and Virulence Gene Expression of Salmonella Enterica Subsp. Enterica Serovar Typhimurium. BMC Microbiol 2016, 16. [Google Scholar] [CrossRef] [PubMed]
- Nami, Y.; Bakhshayesh, R.V.; Jalaly, H.M.; Lotfi, H.; Eslami, S.; Hejazi, M.A. Probiotic Properties of Enterococcus Isolated from Artisanal Dairy Products. Front Microbiol 2019, 10, 426946. [Google Scholar] [CrossRef]
- Rivulgo, V.M.; Ceci, M.; Haeublein, G.E.; Sparo, M.D.; Sanchez Bruni, S.F. Efficacy of the Probiotic Strain Enterococcus Faecalis CECT7121 in Diarrhoea Prevention in Newborn Foals. 2018.
- Castro, M.S.; Molina, M.A.; Azpiroz, M.B.; Díaz, A.M.; Ponzio, R.; Sparo, M.D.; Manghi, M.A.; Canellada, A.M. Probiotic Activity of Enterococcus Faecalis CECT7121: Effects on Mucosal Immunity and Intestinal Epithelial Cells. J Appl Microbiol 2016, 121, 1117–1129. [Google Scholar] [CrossRef] [PubMed]
- Banwo, K.; Sanni, A.; Tan, H. Technological Properties and Probiotic Potential of Enterococcus Faecium Strains Isolated from Cow Milk. J Appl Microbiol 2013, 114, 229–241. [Google Scholar] [CrossRef]
- Watanabe, M.; Maruo, T.; Suzuki, T. Effects of Intake of Lactococcus Cremoris Subsp. Cremoris FC on Constipation Symptoms and Immune System in Healthy Participants with Mild Constipation: A Double-Blind, Placebo-Controlled Study. Int J Food Sci Nutr 2023, 74, 695–706. [Google Scholar] [CrossRef]
- Park, B.H.; Kim, I.S.; Park, J.K.; Zhi, Z.; Lee, H.M.; Kwon, O.W.; Lee, B.C. Probiotic Effect of Lactococcus Lactis Subsp. Cremoris RPG-HL-0136 on Intestinal Mucosal Immunity in Mice. Appl Biol Chem 2021, 64, 1–9. [Google Scholar] [CrossRef]
- Kimoto-Nira, H.; Mizumachi, K.; Nomura, M.; Kobayashi, M.; Fujita, Y.; Okamoto, T.; Suzuki, I.; Tsuji, N.M.; Kurisaki, J.I.; Ohmomo, S. Lactococcus Sp. as Potential Probiotic Lactic Acid Bacteria. Jpn Agric Res Q 2007, 41, 181–189. [Google Scholar] [CrossRef]
- Fusieger, A.; Martins, M.C.F.; de Freitas, R.; Nero, L.A.; de Carvalho, A.F. Technological Properties of Lactococcus Lactis Subsp. Lactis Bv. Diacetylactis Obtained from Dairy and Non-Dairy Niches. Braz J Microbiol 2020, 51, 313–321. [Google Scholar] [CrossRef]
- Fusieger, A.; Perin, L.M.; Teixeira, C.G.; de Carvalho, A.F.; Nero, L.A. The Ability of Lactococcus Lactis Subsp. Lactis Bv. Diacetylactis Strains in Producing Nisin. Antonie Van Leeuwenhoek 2020, 113, 651–662. [Google Scholar] [CrossRef]
- Vacca, C.; Contu, M.P.; Rossi, C.; Ferrando, M.L.; Blus, C.; Szmukler-Moncler, S.; Scano, A.; Orrù, G. In Vitro Interactions between Streptococcus Intermedius and Streptococcus Salivarius K12 on a Titanium Cylindrical Surface. Pathogens 2020, 9, 1–15. [Google Scholar] [CrossRef]
- Wescombe, P.A.; Hale, J.D.; Heng, N.C.; Tagg, J.R. Developing Oral Probiotics from Streptococcus Salivarius. Future Microbiol 2012, 7, 1355–1371. [Google Scholar] [CrossRef] [PubMed]
- Kekkonen, R.A.; Kajasto, E.; Miettinen, M.; Veckman, V.; Korpela, R.; Julkunen, I.; Kekkonen, R.A.; Kajasto, E.; Miettinen, M.; Veckman, V.; et al. Probiotic Leuconostoc Mesenteroides Ssp. Cremoris and Streptococcus Thermophilus Induce IL-12 and IFN-γ Production. World Journal of Gastroenterology 2008, Vol. 14, Pages: 1192--1203 2008, 14, 1192–1203. [Google Scholar] [CrossRef]
- Cousin, F.J.; Jouan-Lanhouet, S.; Théret, N.; Brenner, C.; Jouan, E.; Moigne-Muller, G. Le; Dimanche-Boitrel, M.T.; Jan, G. The Probiotic Propionibacterium Freudenreichii as a New Adjuvant for TRAIL-Based Therapy in Colorectal Cancer. Oncotarget 2016, 7, 7161. [Google Scholar] [CrossRef] [PubMed]
- Dyshlyuk, L.S.; Milentyeva, I.S.; Asyakina, L.K.; Ostroumov, L.A.; Osintsev, A.M.; Pozdnyakova, A. V. Using Bifidobacterium and Propionibacterium Strains in Probiotic Consortia to Normalize the Gastrointestinal Tract. Braz J Biol 2022, 84. [Google Scholar] [CrossRef]
- Shao, X.; Fang, K.; Medina, D.; Wan, J.; Lee, J.L.; Hong, S.H. The Probiotic, Leuconostoc Mesenteroides, Inhibits Listeria Monocytogenes Biofilm Formation. J Food Saf 2020, 40, e12750. [Google Scholar] [CrossRef]
- de Paula, A.T.; Jeronymo-Ceneviva, A.B.; Todorov, S.D.; Penna, A.L.B. The Two Faces of Leuconostoc Mesenteroides in Food Systems. Food Reviews International 2015, 31, 147–171. [Google Scholar] [CrossRef]
- Takata, K.; Kinoshita, M.; Okuno, T.; Moriya, M.; Kohda, T.; Honorat, J.A.; Sugimoto, T.; Kumanogoh, A.; Kayama, H.; Takeda, K.; et al. The Lactic Acid Bacterium Pediococcus Acidilactici Suppresses Autoimmune Encephalomyelitis by Inducing IL-10-Producing Regulatory T Cells. PLoS One 2011, 6. [Google Scholar] [CrossRef]
- Jiang, S.; Cai, L.; Lv, L.; Li, L. Pediococcus Pentosaceus, a Future Additive or Probiotic Candidate. Microb Cell Fact 2021, 20. [Google Scholar] [CrossRef]
- Song, D.; Ibrahim, S.; Hayek, S. Recent Application of Probiotics in Food and Agricultural Science. Probiotics 2012, 10, 1–34. [Google Scholar]
- Ross, R.P.; Fitzgerald, G.; Collins, K.; Stanton, C. Cheese Delivering Biocultures--Probiotic Cheese. Australian Journal of Dairy Technology, suppl. Proceedings Cheese Science 2002 2002, 57, 71. [Google Scholar]
- Lourens-Hattingh, A.; Viljoen, B.C. Yogurt as Probiotic Carrier Food. Int Dairy J 2001, 11, 1–17. [Google Scholar] [CrossRef]
- Yoon, K.Y.; Woodams, E.E.; Hang, Y.D. Production of Probiotic Cabbage Juice by Lactic Acid Bacteria. Bioresour Technol 2006, 97, 1427–1430. [Google Scholar] [CrossRef] [PubMed]
- Peres, C.M.; Peres, C.; Hernández-Mendoza, A.; Malcata, F.X. Review on Fermented Plant Materials as Carriers and Sources of Potentially Probiotic Lactic Acid Bacteria—With an Emphasis on Table Olives. Trends Food Sci Technol 2012, 26, 31–42. [Google Scholar] [CrossRef]
- Olatunde, O.O.; Obadina, A.O.; Omemu, A.M.; Oyewole, O.B.; Olugbile, A.; Olukomaiya, O.O. Screening and Molecular Identification of Potential Probiotic Lactic Acid Bacteria in Effluents Generated during Ogi Production. Ann Microbiol 2018, 68, 433–443. [Google Scholar] [CrossRef]
- Park, K.Y.; Jeong, J.K.; Lee, Y.E.; Daily, J.W. Health Benefits of Kimchi (Korean Fermented Vegetables) as a Probiotic Food. J Med Food 2014, 17, 6–20. [Google Scholar] [CrossRef]
- Udayakumar, S.; Rasika, D.M.D.; Priyashantha, H.; Vidanarachchi, J.K.; Ranadheera, C.S. Probiotics and Beneficial Microorganisms in Biopreservation of Plant-Based Foods and Beverages. Applied Sciences 2022, Vol. 12, Page 11737 2022, 12, 11737. [Google Scholar] [CrossRef]
- Vilela, A.; Cosme, F.; Inês, A. Wine and Non-Dairy Fermented Beverages: A Novel Source of Pro- and Prebiotics. Fermentation 2020, Vol. 6, Page 113 2020, 6, 113. [Google Scholar] [CrossRef]
- Esposito, E.; Iacono, A.; Bianco, G.; Autore, G.; Cuzzocrea, S.; Vajro, P.; Canani, R.B.; Calignano, A.; Raso, G.M.; Meli, R. Probiotics Reduce the Inflammatory Response Induced by a High-Fat Diet in the Liver of Young Rats. J Nutr 2009, 139, 905–911. [Google Scholar] [CrossRef]
- Zeng, M.Y.; Inohara, N.; Nuñez, G. Mechanisms of Inflammation-Driven Bacterial Dysbiosis in the Gut. Mucosal Immunol 2017, 10, 18–26. [Google Scholar] [CrossRef]
- Sepich-Poore, G.D.; Zitvogel, L.; Straussman, R.; Hasty, J.; Wargo, J.A.; Knight, R. The Microbiome and Human Cancer. Science 2021, 371. [Google Scholar] [CrossRef] [PubMed]
- Hill, D.A.; Siracusa, M.C.; Abt, M.C.; Kim, B.S.; Kobuley, D.; Kubo, M.; Kambayashi, T.; Larosa, D.F.; Renner, E.D.; Orange, J.S.; et al. Commensal Bacteria-Derived Signals Regulate Basophil Hematopoiesis and Allergic Inflammation. Nat Med 2012, 18, 538–546. [Google Scholar] [CrossRef]
- Caricilli, A.M.; Picardi, P.K.; de Abreu, L.L.; Ueno, M.; Prada, P.O.; Ropelle, E.R.; Hirabara, S.M.; Castoldi, Â.; Vieira, P.; Camara, N.O.S.; et al. Gut Microbiota Is a Key Modulator of Insulin Resistance in TLR 2 Knockout Mice. PLoS Biol 2011, 9. [Google Scholar] [CrossRef]
- Guo, S.; Al-Sadi, R.; Said, H.M.; Ma, T.Y. Lipopolysaccharide Causes an Increase in Intestinal Tight Junction Permeability in Vitro and in Vivo by Inducing Enterocyte Membrane Expression and Localization of TLR-4 and CD14. Am J Pathol 2013, 182, 375–387. [Google Scholar] [CrossRef] [PubMed]
- Kamada, N.; Seo, S.U.; Chen, G.Y.; Núñez, G. Role of the Gut Microbiota in Immunity and Inflammatory Disease. Nat Rev Immunol 2013, 13, 321–335. [Google Scholar] [CrossRef] [PubMed]
- Fallani, M.; Young, D.; Scott, J.; Norin, E.; Amarri, S.; Adam, R.; Aguilera, M.; Khanna, S.; Gil, A.; Edwards, C.A.; et al. Intestinal Microbiota of 6-Week-Old Infants across Europe: Geographic Influence beyond Delivery Mode, Breast-Feeding, and Antibiotics. J Pediatr Gastroenterol Nutr 2010, 51, 77–84. [Google Scholar] [CrossRef]
- Marcobal, A.; Barboza, M.; Froehlich, J.W.; Block, D.E.; German, J.B.; Lebrilla, C.B.; Mills, D.A. Consumption of Human Milk Oligosaccharides by Gut-Related Microbes. J Agric Food Chem 2010, 58, 5334–5340. [Google Scholar] [CrossRef]
- Malesza, I.J.; Malesza, M.; Walkowiak, J.; Mussin, N.; Walkowiak, D.; Aringazina, R.; Bartkowiak-Wieczorek, J.; Mądry, E. High-Fat, Western-Style Diet, Systemic Inflammation, and Gut Microbiota: A Narrative Review. Cells 2021, 10. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, M.; Pang, X.; Zhao, Y.; Wang, L.; Zhao, L. Structural Resilience of the Gut Microbiota in Adult Mice under High-Fat Dietary Perturbations. ISME J 2012, 6, 1848–1857. [Google Scholar] [CrossRef]
- Velázquez, K.T.; Enos, R.T.; Bader, J.E.; Sougiannis, A.T.; Carson, M.S.; Chatzistamou, I.; Carson, J.A.; Nagarkatti, P.S.; Nagarkatti, M.; Murphy, E.A. Prolonged High-Fat-Diet Feeding Promotes Non-Alcoholic Fatty Liver Disease and Alters Gut Microbiota in Mice. World J Hepatol 2019, 11, 619–637. [Google Scholar] [CrossRef]
- Bahar-Tokman, H.; Demirci, M.; Keskin, F.E.; Cagatay, P.; Taner, Z.; Ozturk-Bakar, Y.; Ozyazar, M.; Kiraz, N.; Kocazeybek, B.S. Firmicutes/Bacteroidetes Ratio in the Gut Microbiota and IL-1β, IL-6, IL-8, TLR2, TLR4, TLR5 Gene Expressions in Type 2 Diabetes. Clin Lab 2022, 68, 1903–1910. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, J.; Lange, B.; Frick, J.S.; Sauer, H.; Zimmermann, K.; Schwiertz, A.; Rusch, K.; Klosterhalfen, S.; Enck, P. A Vegan or Vegetarian Diet Substantially Alters the Human Colonic Faecal Microbiota. European Journal of Clinical Nutrition 2012 66:1 2011, 66, 53–60. [Google Scholar] [CrossRef]
- Simões, C.D.; Maukonen, J.; Kaprio, J.; Rissanen, A.; Pietiläinen, K.H.; Saarela, M. Habitual Dietary Intake Is Associated with Stool Microbiota Composition in Monozygotic Twins. J Nutr 2013, 143, 417–423. [Google Scholar] [CrossRef] [PubMed]
- Ananthakrishnan, A.N. Epidemiology and Risk Factors for IBD. Nat Rev Gastroenterol Hepatol 2015, 12, 205–217. [Google Scholar] [CrossRef]
- Xia, B.; Crusius, J.B.A.; Meuwissen, S.G.M.; Peña, A.S. Inflammatory Bowel Disease: Definition, Epidemiology, Etiologic Aspects, and Immunogenetic Studies. World J Gastroenterol 1998, 4, 446–458. [Google Scholar] [CrossRef]
- Witthöft, T.; Eckmann, L.; Kim, J.M.; Kagnoff, M.F. Enteroinvasive Bacteria Directly Activate Expression of INOS and NO Production in Human Colon Epithelial Cells. Am J Physiol 1998, 275. [Google Scholar] [CrossRef] [PubMed]
- Kolios, G.; Valatas, V.; Ward, S.G. Nitric Oxide in Inflammatory Bowel Disease: A Universal Messenger in an Unsolved Puzzle. Immunology 2004, 113, 427–437. [Google Scholar] [CrossRef]
- Haneishi, Y.; Furuya, Y.; Hasegawa, M.; Picarelli, A.; Rossi, M.; Miyamoto, J. Inflammatory Bowel Diseases and Gut Microbiota. Int J Mol Sci 2023, 24. [Google Scholar] [CrossRef]
- Kabeerdoss, J.; Sankaran, V.; Pugazhendhi, S.; Ramakrishna, B.S. Clostridium Leptum Group Bacteria Abundance and Diversity in the Fecal Microbiota of Patients with Inflammatory Bowel Disease: A Case-Control Study in India. BMC Gastroenterol 2013, 13. [Google Scholar] [CrossRef]
- Plaza-Díaz, J.; Ruiz-Ojeda, F.J.; Vilchez-Padial, L.M.; Gil, A. Evidence of the Anti-Inflammatory Effects of Probiotics and Synbiotics in Intestinal Chronic Diseases. Nutrients 2017, 9. [Google Scholar] [CrossRef]
- Sood, A.; Midha, V.; Makharia, G.K.; Ahuja, V.; Singal, D.; Goswami, P.; Tandon, R.K. The Probiotic Preparation, VSL#3 Induces Remission in Patients with Mild-to-Moderately Active Ulcerative Colitis. Clin Gastroenterol Hepatol 2009, 7. [Google Scholar] [CrossRef]
- Wildt, S.; Nordgaard, I.; Hansen, U.; Brockmann, E.; Rumessen, J.J. A Randomised Double-Blind Placebo-Controlled Trial with Lactobacillus Acidophilus La-5 and Bifidobacterium Animalis Subsp. Lactis BB-12 for Maintenance of Remission in Ulcerative Colitis. J Crohns Colitis 2011, 5, 115–121. [Google Scholar] [CrossRef]
- Matsuoka, K.; Uemura, Y.; Kanai, T.; Kunisaki, R.; Suzuki, Y.; Yokoyama, K.; Yoshimura, N.; Hibi, T. Efficacy of Bifidobacterium Breve Fermented Milk in Maintaining Remission of Ulcerative Colitis. Dig Dis Sci 2018, 63, 1910–1919. [Google Scholar] [CrossRef]
- Pesce, M.; Seguella, L.; Del Re, A.; Lu, J.; Palenca, I.; Corpetti, C.; Rurgo, S.; Sanseverino, W.; Sarnelli, G.; Esposito, G. Next-Generation Probiotics for Inflammatory Bowel Disease. Int J Mol Sci 2022, 23. [Google Scholar] [CrossRef] [PubMed]
- Mimee, M.; Nadeau, P.; Hayward, A.; Carim, S.; Flanagan, S.; Jerger, L.; Collins, J.; McDonnell, S.; Swartwout, R.; Citorik, R.J.; et al. An Ingestible Bacterial-Electronic System to Monitor Gastrointestinal Health. Science 2018, 360, 915–918. [Google Scholar] [CrossRef]
- Ponziani, F.R.; Gerardi, V.; Gasbarrini, A. Diagnosis and Treatment of Small Intestinal Bacterial Overgrowth. Expert Rev Gastroenterol Hepatol 2016, 10, 215–227. [Google Scholar] [CrossRef]
- Zhong, C.; Qu, C.; Wang, B.; Liang, S.; Zeng, B. Probiotics for Preventing and Treating Small Intestinal Bacterial Overgrowth. J Clin Gastroenterol 2017, 51, 300–311. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An Obesity-Associated Gut Microbiome with Increased Capacity for Energy Harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Ridaura, V.K.; Faith, J.J.; Rey, F.E.; Knight, R.; Gordon, J.I. The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice. Sci Transl Med 2009, 1. [Google Scholar] [CrossRef]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial Ecology: Human Gut Microbes Associated with Obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef]
- Szulińska, M.; Łoniewski, I.; van Hemert, S.; Sobieska, M.; Bogdański, P. Dose-Dependent Effects of Multispecies Probiotic Supplementation on the Lipopolysaccharide (LPS) Level and Cardiometabolic Profile in Obese Postmenopausal Women: A 12-Week Randomized Clinical Trial. Nutrients 2018, 10. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D.; Amar, J.; Iglesias, M.A.; Poggi, M.; Knauf, C.; Bastelica, D.; Neyrinck, A.M.; Fava, F.; Tuohy, K.M.; Chabo, C.; et al. Metabolic Endotoxemia Initiates Obesity and Insulin Resistance. Diabetes 2007, 56, 1761–1772. [Google Scholar] [CrossRef] [PubMed]
- Creely, S.J.; McTernan, P.G.; Kusminski, C.M.; Fisher, F.M.; Da Silva, N.F.; Khanolkar, M.; Evans, M.; Harte, A.L.; Kumar, S. Lipopolysaccharide Activates an Innate Immune System Response in Human Adipose Tissue in Obesity and Type 2 Diabetes. Am J Physiol Endocrinol Metab 2007, 292. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D.; Delzenne, N.M. The Gut Microbiome as Therapeutic Target. Pharmacol Ther 2011, 130, 202–212. [Google Scholar] [CrossRef]
- Osterberg, K.L.; Boutagy, N.E.; McMillan, R.P.; Stevens, J.R.; Frisard, M.I.; Kavanaugh, J.W.; Davy, B.M.; Davy, K.P.; Hulver, M.W. Probiotic Supplementation Attenuates Increases in Body Mass and Fat Mass during High-Fat Diet in Healthy Young Adults. Obesity 2015, 23, 2364–2370. [Google Scholar] [CrossRef]
- Naito, E.; Yoshida, Y.; Makino, K.; Kounoshi, Y.; Kunihiro, S.; Takahashi, R.; Matsuzaki, T.; Miyazaki, K.; Ishikawa, F. Beneficial Effect of Oral Administration of Lactobacillus Casei Strain Shirota on Insulin Resistance in Diet-induced Obesity Mice. J Appl Microbiol 2011, 110, 650–657. [Google Scholar] [CrossRef]
- Shirvani-Rad, S.; Tabatabaei-Malazy, O.; Mohseni, S.; Hasani-Ranjbar, S.; Soroush, A.R.; Hoseini-Tavassol, Z.; Ejtahed, H.S.; Larijani, B. Probiotics as a Complementary Therapy for Management of Obesity: A Systematic Review. Evid Based Complement Alternat Med 2021, 2021, 6688450. [Google Scholar] [CrossRef]
- Ejtahed, H.S.; Mohtadi-Nia, J.; Homayouni-Rad, A.; Niafar, M.; Asghari-Jafarabadi, M.; Mofid, V.; Akbarian-Moghari, A. Effect of Probiotic Yogurt Containing Lactobacillus Acidophilus and Bifidobacterium Lactis on Lipid Profile in Individuals with Type 2 Diabetes Mellitus. J Dairy Sci 2011, 94, 3288–3294. [Google Scholar] [CrossRef]
- Hume, M.P.; Nicolucci, A.C.; Reimer, R.A. Prebiotic Supplementation Improves Appetite Control in Children with Overweight and Obesity: A Randomized Controlled Trial,, Am J Clin Nutr 2017, 105, 790–799. [Google Scholar] [CrossRef]
- Chambers, E.S.; Morrison, D.J.; Frost, G. Control of Appetite and Energy Intake by SCFA: What Are the Potential Underlying Mechanisms? Proc Nutr Soc 2015, 74, 328–336. [Google Scholar] [CrossRef]
- Dehghan, P.; Farhangi, M.A.; Tavakoli, F.; Aliasgarzadeh, A.; Akbari, A.M. Impact of Prebiotic Supplementation on T-Cell Subsets and Their Related Cytokines, Anthropometric Features and Blood Pressure in Patients with Type 2 Diabetes Mellitus: A Randomized Placebo-Controlled Trial. Complement Ther Med 2016, 24, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Cryan, J.F.; O’riordan, K.J.; Cowan, C.S.M.; Sandhu, K. V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A. V.; et al. The Microbiota-Gut-Brain Axis. Physiol Rev 2019, 99, 1877–2013. [Google Scholar] [CrossRef]
- Sharma, H.; Bajwa, J. Approach of Probiotics in Mental Health as a Psychobiotics. Arch Microbiol 2021, 204. [Google Scholar] [CrossRef] [PubMed]
- Misra, S.; Mohanty, D. Psychobiotics: A New Approach for Treating Mental Illness? Crit Rev Food Sci Nutr 2019, 59, 1230–1236. [Google Scholar] [CrossRef]
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front Endocrinol (Lausanne) 2020, 11. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, J.; Chen, Y. Regulation of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients 2021, 13. [Google Scholar] [CrossRef] [PubMed]
- Cani, P.D.; Osto, M.; Geurts, L.; Everard, A. Involvement of Gut Microbiota in the Development of Low-Grade Inflammation and Type 2 Diabetes Associated with Obesity. Gut Microbes 2012, 3. [Google Scholar] [CrossRef]
- Bercik, P.; Collins, S.M.; Verdu, E.F. Microbes and the Gut-Brain Axis. Neurogastroenterology & Motility 2012, 24, 405–413. [Google Scholar] [CrossRef]
- Luna, R.A.; Foster, J.A. Gut Brain Axis: Diet Microbiota Interactions and Implications for Modulation of Anxiety and Depression. Curr Opin Biotechnol 2015, 32, 35–41. [Google Scholar] [CrossRef]
- Wang, W.Y.; Tan, M.S.; Yu, J.T.; Tan, L. Role of Pro-Inflammatory Cytokines Released from Microglia in Alzheimer’s Disease. Ann Transl Med 2015, 3. [Google Scholar] [CrossRef]
- Kandpal, M.; Indari, O.; Baral, B.; Jakhmola, S.; Tiwari, D.; Bhandari, V.; Pandey, R.K.; Bala, K.; Sonawane, A.; Jha, H.C. Dysbiosis of Gut Microbiota from the Perspective of the Gut-Brain Axis: Role in the Provocation of Neurological Disorders. Metabolites 2022, 12. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wang, F.; Liu, S.; Du, J.; Hu, X.; Xiong, J.; Fang, R.; Chen, W.; Sun, J. Sodium Butyrate Exerts Protective Effect against Parkinson’s Disease in Mice via Stimulation of Glucagon like Peptide-1. J Neurol Sci 2017, 381, 176–181. [Google Scholar] [CrossRef]
- Wu, G.; Jiang, Z.; Pu, Y.; Chen, S.; Wang, T.; Wang, Y.; Xu, X.; Wang, S.; Jin, M.; Yao, Y.; et al. Serum Short-Chain Fatty Acids and Its Correlation with Motor and Non-Motor Symptoms in Parkinson’s Disease Patients. BMC Neurol 2022, 22. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, A.; Siva Venkatesh, I.P.; Basu, A. Short-Chain Fatty Acids in the Microbiota-Gut-Brain Axis: Role in Neurodegenerative Disorders and Viral Infections. ACS Chem Neurosci 2023, 14, 1045–1062. [Google Scholar] [CrossRef]
- Cattaneo, A.; Cattane, N.; Galluzzi, S.; Provasi, S.; Lopizzo, N.; Festari, C.; Ferrari, C.; Guerra, U.P.; Paghera, B.; Muscio, C.; et al. Association of Brain Amyloidosis with Pro-Inflammatory Gut Bacterial Taxa and Peripheral Inflammation Markers in Cognitively Impaired Elderly. Neurobiol Aging 2017, 49, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Liu, X.; Ye, Y.; Yan, X.; Cheng, Y.; Zhao, L.; Chen, F.; Ling, Z. Gut Microbiota: A Novel Therapeutic Target for Parkinson’s Disease. Front Immunol 2022, 13. [Google Scholar] [CrossRef]
- Nishiwaki, H.; Hamaguchi, T.; Ito, M.; Ishida, T.; Maeda, T.; Kashihara, K.; Tsuboi, Y.; Ueyama, J.; Shimamura, T.; Mori, H.; et al. Short-Chain Fatty Acid-Producing Gut Microbiota Is Decreased in Parkinson’s Disease but Not in Rapid-Eye-Movement Sleep Behavior Disorder. mSystems 2020, 5. [Google Scholar] [CrossRef]
- Dinan, T.G.; Stanton, C.; Cryan, J.F. Psychobiotics: A Novel Class of Psychotropic. Biol Psychiatry 2013, 74, 720–726. [Google Scholar] [CrossRef]
- Roy Sarkar, S.; Mitra Mazumder, P.; Banerjee, S. Probiotics Protect against Gut Dysbiosis Associated Decline in Learning and Memory. J Neuroimmunol 2020, 348. [Google Scholar] [CrossRef]
- Stolfi, C.; Maresca, C.; Monteleone, G.; Laudisi, F. Implication of Intestinal Barrier Dysfunction in Gut Dysbiosis and Diseases. Biomedicines 2022, 10, 289. [Google Scholar] [CrossRef]
- Tang, J.; Xu, L.; Zeng, Y.; Gong, F. Effect of Gut Microbiota on LPS-Induced Acute Lung Injury by Regulating the TLR4/NF-KB Signaling Pathway. Int Immunopharmacol 2021, 91. [Google Scholar] [CrossRef]
- Moon, C.; Baldridge, M.T.; Wallace, M.A.; Burnham, C.A.D.; Virgin, H.W.; Stappenbeck, T.S. Vertically Transmitted Faecal IgA Levels Determine Extra-Chromosomal Phenotypic Variation. Nature 2015, 521, 90–93. [Google Scholar] [CrossRef]
- Brandtzaeg, P. Secretory IgA: Designed for Anti-Microbial Defense. Front Immunol 2013, 4, 222. [Google Scholar] [CrossRef] [PubMed]
- Maldonado Galdeano, C.; Perdigón, G. The Probiotic Bacterium Lactobacillus Casei Induces Activation of the Gut Mucosal Immune System through Innate Immunity. Clin Vaccine Immunol 2006, 13, 219–226. [Google Scholar] [CrossRef]
- Link-Amster, H.; Rochat, F.; Saudan, K.Y.; Mignot, O.; Aeschlimann, J.M. Modulation of a Specific Humoral Immune Response and Changes in Intestinal Flora Mediated through Fermented Milk Intake. FEMS Immunol Med Microbiol 1994, 10, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Marteau, P.; Vaerman, J.P.; Dehennin, J.P.; Bord, S.; Brassart, D.; Pochart, P.; Desjeux, J.F.; Rambaud, J.C. Effects of Intrajejunal Perfusion and Chronic Ingestion of Lactobacillus Johnsonii Strain La1 on Serum Concentrations and Jejunal Secretions of Immunoglobulins and Serum Proteins in Healthy Humans. Gastroenterol Clin Biol 1997, 21, 293–298. [Google Scholar] [PubMed]
- Paineau, D.; Carcano, D.; Leyer, G.; Darquy, S.; Alyanakian, M.A.; Simoneau, G.; Bergmann, J.F.; Brassart, D.; Bornet, F.; Ouwehand, A.C. Effects of Seven Potential Probiotic Strains on Specific Immune Responses in Healthy Adults: A Double-Blind, Randomized, Controlled Trial. FEMS Immunol Med Microbiol 2008, 53, 107–113. [Google Scholar] [CrossRef]
- Oliva, S.; Di Nardo, G.; Ferrari, F.; Mallardo, S.; Rossi, P.; Patrizi, G.; Cucchiara, S.; Stronati, L. Randomised Clinical Trial: The Effectiveness of Lactobacillus Reuteri ATCC 55730 Rectal Enema in Children with Active Distal Ulcerative Colitis. Aliment Pharmacol Ther 2012, 35, 327–334. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
