Submitted:
12 November 2024
Posted:
14 November 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
3. Results
3.1. Phytase Interventions
3.2. Dietary Phytic acid Interventions
3.3. Dephytinisation Interventions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta RK, Gangoliya SS, Singh NK: Reduction of phytic acid and enhancement of bioavailable micronutrients in food grains. J Food Sci Technol 2015, 52(2):676-684.
- Hadi Alkarawi H, Zotz G: Phytic acid in green leaves. Plant Biol (Stuttg) 2014, 16(4):697-701.
- Brouns F: Phytic Acid and Whole Grains for Health Controversy. Nutrients 2021, 14(1).
- Wang R, Guo S: Phytic acid and its interactions: Contributions to protein functionality, food processing, and safety. Compr Rev Food Sci Food Saf 2021, 20(2):2081-2105.
- Rimbach G, Pallauf J, Moehring J, Kraemer K, Minihane AM: Effect of dietary phytate and microbial phytase on mineral and trace element bioavailability-a literature review. Current Topics in Nutraceutical Research 2008, 6(3).
- Kumar V, Sinha AK, Makkar HP, Becker K: Dietary roles of phytate and phytase in human nutrition: A review. Food chemistry 2010, 120(4):945-959.
- Ma G, Li Y, Jin Y, Zhai F, Kok FJ, Yang X: Phytate intake and molar ratios of phytate to zinc, iron and calcium in the diets of people in China. Eur J Clin Nutr 2007, 61(3):368-374.
- Dewey KG: Increasing iron intake of children through complementary foods. Food Nutr Bull 2007, 28(4 Suppl):S595-609.
- Gibson RS, Ferguson EL, Lehrfeld J: Complementary foods for infant feeding in developing countries: their nutrient adequacy and improvement. Eur J Clin Nutr 1998, 52(10):764-770.
- Burgos, R.; Bretón, I.; Cereda, E.; Desport, J.C.; Dziewas, R.; Genton, L.; Gomes, F.; Jésus, P.; Leischker, A.; Muscaritoli, M.; et al. ESPEN guideline clinical nutrition in neurology. Clin. Nutr. 2018, 37, 354–396. [Google Scholar] [CrossRef] [PubMed]
- MacMaster MJ, Damianopoulou S, Thomson C, Talwar D, Stefanowicz F, Catchpole A, Gerasimidis K, Gaya DR: A prospective analysis of micronutrient status in quiescent inflammatory bowel disease. Clin Nutr 2021, 40(1):327-331.
- Maulana H, Widyastuti Y, Herlina N, Hasbuna A, Al-Islahi ASH, Triratna L, Mayasari N: Bioinformatics study of phytase from Aspergillus niger for use as feed additive in livestock feed. J Genet Eng Biotechnol 2023, 21(1):142.
- Herter-Aeberli I, Fischer MM, Egli IM, Zeder C, Zimmermann MB, Hurrell RF: Addition of Whole Wheat Flour During Injera Fermentation Degrades Phytic Acid and Triples Iron Absorption from Fortified Tef in Young Women. J Nutr 2020, 150(10):2666-2672.
- Zyba SJ, Wegmüller R, Woodhouse LR, Ceesay K, Prentice AM, Brown KH, Wessells KR: Effect of exogenous phytase added to small-quantity lipid-based nutrient supplements (SQ-LNS) on the fractional and total absorption of zinc from a millet-based porridge consumed with SQ-LNS in young Gambian children: a randomized controlled trial. Am J Clin Nutr 2019, 110(6):1465-1475.
- Monnard, A.; Moretti, D.; Zeder, C.; Steingötter, A.; Zimmermann, M.B. The effect of lipids, a lipid-rich ready-to-use therapeutic food, or a phytase on iron absorption from maize-based meals fortified with micronutrient powders, Am. J. Clin. Nutr. 2017, 105, 1521–1527. [Google Scholar] [CrossRef] [PubMed]
- Brnić M, Wegmüller R, Melse-Boonstra A, Stomph T, Zeder C, Tay FM, Hurrell RF: Zinc Absorption by Adults Is Similar from Intrinsically Labeled Zinc-Biofortified Rice and from Rice Fortified with Labeled Zinc Sulfate. J Nutr 2016, 146(1):76-80.
- Brnić, M.; Wegmüller, R.; Zeder, C.; Senti, G.; Hurrell, R.F. Influence of Phytase, EDTA, and Polyphenols on Zinc Absorption in Adults from Porridges Fortified with Zinc Sulfate or Zinc Oxide. J. Nutr. 2014, 144, 1467–1473. [Google Scholar] [CrossRef] [PubMed]
- Cercamondi CI, Egli IM, Mitchikpe E, Tossou F, Hessou J, Zeder C, Hounhouigan JD, Hurrell RF: Iron bioavailability from a lipid-based complementary food fortificant mixed with millet porridge can be optimized by adding phytase and ascorbic acid but not by using a mixture of ferrous sulfate and sodium iron EDTA. J Nutr 2013, 143(8):1233-1239.
- Troesch B, van Stuijvenberg ME, Smuts CM, Kruger HS, Biebinger R, Hurrell RF, Baumgartner J, Zimmermann MB: A micronutrient powder with low doses of highly absorbable iron and zinc reduces iron and zinc deficiency and improves weight-for-age Z-scores in South African children. J Nutr 2011, 141(2):237-242.
- Troesch B, Egli I, Zeder C, Hurrell RF, de Pee S, Zimmermann MB: Optimization of a phytase-containing micronutrient powder with low amounts of highly bioavailable iron for in-home fortification of complementary foods. Am J Clin Nutr 2009, 89(2):539-544.
- Bach Kristensen M, Tetens I, Alstrup Jørgensen AB, Dal Thomsen A, Milman N, Hels O, Sandström B, Hansen M: A decrease in iron status in young healthy women after long-term daily consumption of the recommended intake of fibre-rich wheat bread. Eur J Nutr 2005, 44(6):334-340.
- Layrisse M, García-Casal MN, Solano L, Barón MA, Arguello F, Llovera D, Ramírez J, Leets I, Tropper E: Iron bioavailability in humans from breakfasts enriched with iron bis-glycine chelate, phytates and polyphenols. J Nutr 2000, 130(9):2195-2199.
- Sandberg AS, Hulthén LR, Türk M: Dietary Aspergillus niger phytase increases iron absorption in humans. J Nutr 1996, 126(2):476-480.
- Adams CL, Hambidge M, Raboy V, Dorsch JA, Sian L, Westcott JL, Krebs NF: Zinc absorption from a low-phytic acid maize. Am J Clin Nutr 2002, 76(3):556-559.
- Armah SM, Boy E, Chen D, Candal P, Reddy MB: Regular Consumption of a High-Phytate Diet Reduces the Inhibitory Effect of Phytate on Nonheme-Iron Absorption in Women with Suboptimal Iron Stores. J Nutr 2015, 145(8):1735-1739.
- Bohn T, Davidsson L, Walczyk T, Hurrell RF: Phytic acid added to white-wheat bread inhibits fractional apparent magnesium absorption in humans. Am J Clin Nutr 2004, 79(3):418-423.
- Brune M, Rossander-Hultén L, Hallberg L, Gleerup A, Sandberg AS: Iron absorption from bread in humans: inhibiting effects of cereal fiber, phytate and inositol phosphates with different numbers of phosphate groups. J Nutr 1992, 122(3):442-449.
- Brune M, Rossander L, Hallberg L: Iron absorption: no intestinal adaptation to a high-phytate diet. Am J Clin Nutr 1989, 49(3):542-545.
- Delimont NM, Nickel S: Salivary cystatin SN is a factor predicting iron bioavailability after phytic acid rich meals in female participants. Int J Food Sci Nutr 2021, 72(4):559-568.
- Egli I, Davidsson L, Zeder C, Walczyk T, Hurrell R: Dephytinization of a complementary food based on wheat and soy increases zinc, but not copper, apparent absorption in adults. J Nutr 2004, 134(5):1077-1080.
- Fredlund K, Isaksson M, Rossander-Hulthén L, Almgren A, Sandberg AS: Absorption of zinc and retention of calcium: dose-dependent inhibition by phytate. J Trace Elem Med Biol 2006, 20(1):49-57.
- Hambidge, K.M.; Miller, L.V.; Mazariegos, M.; Westcott, J.; Solomons, N.W.; Raboy, V.; Kemp, J.F.; Das, A.; Goco, N.; Hartwell, T.; et al. Upregulation of Zinc Absorption Matches Increases in Physiologic Requirements for Zinc in Women Consuming High- or Moderate-Phytate Diets during Late Pregnancy and Early Lactation. J. Nutr. 2017, 147, 1079–1085. [Google Scholar] [CrossRef]
- Hambidge KM, Krebs NF, Westcott JL, Sian L, Miller LV, Peterson KL, Raboy V: Absorption of calcium from tortilla meals prepared from low-phytate maize. Am J Clin Nutr 2005, 82(1):84-87.
- Heaney RP, Weaver CM, Fitzsimmons ML: Soybean phytate content: effect on calcium absorption. Am J Clin Nutr 1991, 53(3):745-747.
- Hoppe M, Ross AB, Svelander C, Sandberg AS, Hulthén L: Low-phytate wholegrain bread instead of high-phytate wholegrain bread in a total diet context did not improve iron status of healthy Swedish females: a 12-week, randomized, parallel-design intervention study. Eur J Nutr 2019, 58(2):853-864.
- Hunt JR, Beiseigel JM: Dietary calcium does not exacerbate phytate inhibition of zinc absorption by women from conventional diets. Am J Clin Nutr 2009, 89(3):839-843.
- Lind T, Lönnerdal B, Persson LA, Stenlund H, Tennefors C, Hernell O: Effects of weaning cereals with different phytate contents on hemoglobin, iron stores, and serum zinc: a randomized intervention in infants from 6 to 12 mo of age. Am J Clin Nutr 2003, 78(1):168-175.
- Mazariegos M, Hambidge KM, Krebs NF, Westcott JE, Lei S, Grunwald GK, Campos R, Barahona B, Raboy V, Solomons NW: Zinc absorption in Guatemalan schoolchildren fed normal or low-phytate maize. Am J Clin Nutr 2006, 83(1):59-64.
- Petry, N.; Rohner, F.; Gahutu, J.B.; Campion, B.; Boy, E.; Tugirimana, P.L.; Zimmerman, M.B.; Zwahlen, C.; Wirth, J.P.; Moretti, D. In Rwandese Women with Low Iron Status, Iron Absorption from Low-Phytic Acid Beans and Biofortified Beans Is Comparable, but Low-Phytic Acid Beans Cause Adverse Gastrointestinal Symptoms. J. Nutr. 2016, 146, 970–975. [Google Scholar] [CrossRef] [PubMed]
- Petry N, Egli I, Campion B, Nielsen E, Hurrell R: Genetic reduction of phytate in common bean (Phaseolus vulgaris L.) seeds increases iron absorption in young women. J Nutr 2013, 143(8):1219-1224.
- Bokhari F, Derbyshire E, Li W, Brennan CS, Stojceska V: A study to establish whether food-based approaches can improve serum iron levels in child-bearing aged women. J Hum Nutr Diet 2012, 25(1):95-100.
- Davidsson L, Ziegler EE, Kastenmayer P, van Dael P, Barclay D: Dephytinisation of soyabean protein isolate with low native phytic acid content has limited impact on mineral and trace element absorption in healthy infants. Br J Nutr 2004, 91(2):287-294.
- Davidsson L, Galan P, Cherouvrier F, Kastenmayer P, Juillerat MA, Hercberg S, Hurrell RF: Bioavailability in infants of iron from infant cereals: effect of dephytinization. Am J Clin Nutr 1997, 65(4):916-920.
- Davidsson L, Almgren A, Juillerat MA, Hurrell RF: Manganese absorption in humans: the effect of phytic acid and ascorbic acid in soy formula. Am J Clin Nutr 1995, 62(5):984-987.
- Hurrell RF, Reddy MB, Juillerat MA, Cook JD: Degradation of phytic acid in cereal porridges improves iron absorption by human subjects. Am J Clin Nutr 2003, 77(5):1213-1219.
- Koréissi-Dembélé Y, Fanou-Fogny N, Moretti D, Schuth S, Dossa RA, Egli I, Zimmermann MB, Brouwer ID: Dephytinisation with intrinsic wheat phytase and iron fortification significantly increase iron absorption from fonio (Digitaria exilis) meals in West African women. PLoS One 2013, 8(10):e70613.
- Zhang H, Onning G, Oste R, Gramatkovski E, Hulthén L: Improved iron bioavailability in an oat-based beverage: the combined effect of citric acid addition, dephytinization and iron supplementation. Eur J Nutr 2007, 46(2):95-102.
- Manary MJ, Krebs NF, Gibson RS, Broadhead RL, Hambidge KM: Community-based dietary phytate reduction and its effect on iron status in Malawian children. Ann Trop Paediatr 2002, 22(2):133-136.
- Petry N, Egli I, Zeder C, Walczyk T, Hurrell R: Polyphenols and phytic acid contribute to the low iron bioavailability from common beans in young women. J Nutr 2010, 140(11):1977-1982.
- Couzy F, Mansourian R, Labate A, Guinchard S, Montagne DH, Dirren H: Effect of dietary phytic acid on zinc absorption in the healthy elderly, as assessed by serum concentration curve tests. Br J Nutr 1998, 80(2):177-182.
- Davidsson L, Galan P, Kastenmayer P, Cherouvrier F, Juillerat MA, Hercberg S, Hurrell RF: Iron bioavailability studied in infants: the influence of phytic acid and ascorbic acid in infant formulas based on soy isolate. Pediatr Res 1994, 36(6):816-822.
- Kim J, Paik HY, Joung H, Woodhouse LR, Li S, King JC: Effect of dietary phytate on zinc homeostasis in young and elderly Korean women. J Am Coll Nutr 2007, 26(1):1-9.
- Manary MJ, Hotz C, Krebs NF, Gibson RS, Westcott JE, Arnold T, Broadhead RL, Hambidge KM: Dietary phytate reduction improves zinc absorption in Malawian children recovering from tuberculosis but not in well children. J Nutr 2000, 130(12):2959-2964.
- Petry N, Egli I, Gahutu JB, Tugirimana PL, Boy E, Hurrell R: Phytic acid concentration influences iron bioavailability from biofortified beans in Rwandese women with low iron status. J Nutr 2014, 144(11):1681-1687.
- Davies NT, Warrington S: The phytic acid mineral, trace element, protein and moisture content of UK Asian immigrant foods. Hum Nutr Appl Nutr 1986, 40(1):49-59.
- Heath AL, Roe MA, Oyston SL, Fairweather-Tait SJ: Meal-based intake assessment tool: relative validity when determining dietary intake of Fe and Zn and selected absorption modifiers in UK men. Br J Nutr 2005, 93(3):403-416.
- Carnovale E, Lombardi-Boccia G, Lugaro E: Phytate and zinc content of Italian diets. Hum Nutr Appl Nutr 1987, 41(3):180-186.
- Khokhar S, Pushpanjali, Fenwick GR: Phytate content of Indian foods and intakes by vegetarian Indians of Hisar Region, Haryana State. Journal of Agricultural and Food Chemistry 1994, 42(11):2440-2444.
- Pallauf J, Pippig S, Most E, Rimbach G: Supplemental sodium phytate and microbial phytase influence iron availability in growing rats. J Trace Elem Med Biol 1999, 13(3):134-140.
- Stahl CH, Han YM, Roneker KR, House WA, Lei XG: Phytase improves iron bioavailability for hemoglobin synthesis in young pigs. J Anim Sci 1999, 77(8):2135-2142.
- Rimbach G, Walter A, Most E, Pallauf J: Effect of supplementary microbial phytase to a maize-soya diet on the availability of calcium, phosphorus, magnesium and zinc: in vitro dialysability in comparison with apparent absorption in growing rats. Journal of Animal Physiology and Animal Nutrition 1997, 77(1-5):198-206.
- Rimbach G, Walter A, Most E, Pallauf J: Effect of microbial phytase on zinc bioavailability and cadmium and lead accumulation in growing rats. Food and chemical toxicology 1998, 36(1):7-12.
- Lei X, Ku P, Miller E, Yokoyama M: Supplementing corn-soybean meal diets with microbial phytase linearly improves phytate phosphorus utilization by weanling pigs. Journal of animal Science 1993, 71(12):3359-3367.
- Kies AK, Gerrits WJ, Schrama JW, Heetkamp MJ, van der Linden KL, Zandstra T, Verstegen MW: Mineral absorption and excretion as affected by microbial phytase, and their effect on energy metabolism in young piglets. The Journal of nutrition 2005, 135(5):1131-1138.
- Rimbach G, Pallauf J, Brandt K, Most E: Effect of phytic acid and microbial phytase on Cd accumulation, Zn status, and apparent absorption of Ca, P, Mg, Fe, Zn, Cu, and Mn in growing rats. Annals of Nutrition and Metabolism 1995, 39(6):361-370.
- Shelton J, LeMieux F, Southern L, Bidner T: Effect of microbial phytase addition with or without the trace mineral premix in nursery, growing, and finishing pig diets. Journal of animal science 2005, 83(2):376-385.
- Sharma J, Devanathan S, Sengupta A, Rajeshwari P: Assessing the prevalence of iron deficiency anemia and risk factors among children and women: A case study of rural Uttar Pradesh. Clinical Epidemiology and Global Health 2024, 26:101545.
- Troesch B, Jing H, Laillou A, Fowler A: Absorption studies show that phytase from Aspergillus niger significantly increases iron and zinc bioavailability from phytate-rich foods. Food and nutrition bulletin 2013, 34(2_suppl1):S90-S101.
- Fontaine O: Conclusions and recommendations of the WHO Consultation on prevention and control of iron deficiency in infants and young children in malaria-endemic areas. Food & Nutrition Bulletin 2007, 28(4).
- Hanif N, Anwer F: Chronic iron deficiency. 2020.
- Prasad AS: Discovery of human zinc deficiency: its impact on human health and disease. Advances in nutrition 2013, 4(2):176-190.
- Lambré, C.; Baviera, J.M.B.; Bolognesi, C.; Cocconcelli, P.S.; Crebelli, R.; Gott, D.M.; Grob, K.; Lampi, E.; Mengelers, M.; et al. Safety evaluation of the food enzyme 3-phytase from the genetically modified Aspergillus niger strain NPH. EFSA J. 2024, 22, e8514. [CrossRef]
- Choudhuri S, DiNovi M, dos Santos L, Leblanc J, Meyland I, Mueller U: 3-PHYTASE FROM ASPERGILLUS NIGER EXPRESSED IN ASPERGILLUS NIGER First draft prepared by. Safety evaluation of certain food additives 2012:19.
| Study | Phytase type | Daily dose (FTU) | Duration | Micronutrient | Population | Bioavailability effect |
|---|---|---|---|---|---|---|
| [13] | A. niger | 380 | 3 d | Fe | Ad, n=17 | No effect |
| [14] | A. niger | 1176 | 1 d | Zn | Ch, n=26 | Increase |
| [15] | A. niger | 190 | 2 d | Fe | Ad, n=41 | Increase |
| [16] | A. niger | 20.5 | 1 d | Zn | Ch, n=35 | Increase |
| [17] | A. niger | 190 | 1 d | Zn | Ad, n=60 | Increase |
| [18] | A. niger | 400 | 1 d | Fe | Ch, n=18 | Increase |
| [19] | A. niger | 380 | 113 d | Fe, Zn | Ch, n=189 | Increase |
| [20] | A. niger | 190 | 2 d | Fe | Ad, n=101 | Increase |
| [21] | A. niger | 7500 | 16 w | Fe | Ad, n=41 | No effect |
| [22] | Wheat | 304 | 1 d | Fe | Ad, n=74 | Increase |
| [23] | A. niger | 428 | 2 d | Fe | Ad, n=20 | Increase |
| Study | Source of phytic acid | Duration | Micronutrient | Population | Bioavailability effect |
|---|---|---|---|---|---|
| [24] | Polenta maize | 2 d | Zn | Ad, n=5 | Decrease |
| [25] | High or low phytic acid diet | 8 w | Fe | Ad, n=28 | Increase |
| [26] | Wheat bread, phytic acid free | 2 d | Mn | Ad, n=20 | Decrease |
| [27] | Wheat rolls | 4 d | Fe | Ad, n=49 | Decrease |
| [28] | Wheat rolls | 4 d | Fe | Ad, n=13 | No effect |
| [29] | Phytic acid powder | 1 d | Fe | Ad, n=30 | Decrease |
| [30] | Dry food | 1 d | Cu, Zn | Ad, n=10 | Decrease |
| [31] | White wheat rolls | 4 d | Ca, Zn | Ad, n=40 | Decrease |
| [32] | High or low PA diet | n/m | Zn | Ad, n=22 | Decrease |
| [33] | Maize | 1 d | Ca | Ad, n=5 | Decrease |
| [34] | Soybean | 3 d | Ca | Ad, n=16 | Decrease |
| [35] | Wholegrain rye bread | 12 w | Fe | Ad, n=55 | Decrease |
| [36] | Different 1-day menus | 8 d | Zn | Ad, n=10 | Decrease |
| [37] | Milk based cereal and porridge | 6 mo | Fe, Zn | Ch, n=267 | No effect |
| [38] | Maize | 10 w | Zn | Ch, n=60 | No effect |
| [39] | Beans | 3 w | Fe | Ad, n=25 | Decrease |
| [40] | Bean porridge | 2 d | Fe | Ad, n=20 | Decrease |
| Study | Phytase type | Duration | Micronutrient | Population | Bioavailability effect |
|---|---|---|---|---|---|
| [41] | n/m | 1 d | Fe | Ad, n=18 | Increase |
| [42] | A. niger | 1 d | Zn, Fe | Ch, n=9 | Increase |
| [43] | A. niger | 2 d | Fe | Ch, n=12 | No effect |
| [44] | A. niger | 1 d | Mn | Ad, n=16 | Increase |
| [45] | A. niger | 2 d | Fe | Ad, n=78 | Increase |
| [46] | Wheat | 1 d | Fe | Ad, n=42 | Increase |
| [47] | A. niger | 2 d | Fe | Ad, n=15 | Increase |
| [48] | n/m | 40 d | Zn, Fe | Ch, n=10 | Increase |
| [49] | A. niger | 2 d | Fe | Ad, n=97 | Increase |
| [50] | n/m | 2 d | Zn | Ad, n=39 | Increase |
| [51] | Finase S40 | 2 d | Fe | Ch, n=10 | Increase |
| [52] | A. niger | 9 d | Zn | Ad, n=17 | No effect |
| [53] | A. niger | 3-7 d | Zn | Ch, n=23 | Increase |
| [54] | A. niger | 42 d | Fe | Ad, n=22 | Increase |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
