Preprint
Article

This version is not peer-reviewed.

Simulation of a Bio-Inspired Flocking-Based Aggregation Behaviour in Swarm Robotics

A peer-reviewed article of this preprint also exists.

Submitted:

22 November 2024

Posted:

26 November 2024

You are already at the latest version

Abstract
This paper presents a biologically inspired flocking-based aggregation behaviour of a swarm of mobile robots. Aggregation behaviour is essential to many swarm systems, such as swarm robotics systems, in order to accomplish complex tasks that are impossible for a single agent. In this work, we developed a robot controller using Reynolds' flocking rules to coordinate the movements of multiple e-puck robots during the aggregation process. To improve aggregation behaviour among these robots and address the scalability issues in current flocking-based aggregation approaches, we proposed using a K-means algorithm to identify clusters of agents. Using the developed controller, we simulated the aggregation behaviour among the swarm of robots. Five experiments were conducted using Webots simulation software. The performance of the developed system was evaluated under a variety of environments and conditions, such as various obstacles, agent failure, different numbers of robots, and arena sizes. The results of the experiments demonstrated that the proposed algorithm is robust and scalable. Moreover, we compared our proposed algorithm with another implementation of the flocking-based self-organizing aggregation behaviour based on Reynolds' rules in a swarm of e-puck robots. Our algorithm outperformed this method in terms of cohesion performance and aggregation completion time.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated