Submitted:
12 August 2024
Posted:
15 August 2024
You are already at the latest version
Abstract
Keywords:
Introduction
Technology Innovation for Renal Autoantibody Discovery
Applications in Glomerular Autoimmunity
Conclusions
Acknowledgements
Conflicts of Interest
Abbreviations
References
- Kestila, M.; Lenkkeri, U.; Mannikko, M.; et al. Positionally cloned gene for a novel glomerular protein--nephrin--is mutated in congenital nephrotic syndrome. Mol Cell 1998, 1, 575–582. [Google Scholar] [CrossRef] [PubMed]
- Boute, N.; Gribouval, O.; Roselli, S.; et al. NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome. Nat Genet 2000, 24, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Beck, L.H., Jr.; Bonegio, R.G.; Lambeau, G.; et al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N Engl J Med 2009, 361, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Tomas, N.M.; Beck, L.H., Jr.; Meyer-Schwesinger, C.; et al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N Engl J Med 2014, 371, 2277–2287. [Google Scholar] [CrossRef]
- Prunotto, M.; Carnevali, M.L.; Candiano, G.; et al. Autoimmunity in membranous nephropathy targets aldose reductase and SOD2. J Am Soc Nephrol 2010, 21, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Becatti, M.; Emmi, G.; Silvestri, E.; et al. Neutrophil Activation Promotes Fibrinogen Oxidation and Thrombus Formation in Behcet Disease. Circulation 2016, 133, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Ghiggeri, G.M.; Seitz-Polski, B.; Justino, J.; et al. Multi-Autoantibody Signature and Clinical Outcome in Membranous Nephropathy. Clin J Am Soc Nephrol 2020, 15, 1762–1776. [Google Scholar] [CrossRef]
- Caza, T.N.; Storey, A.J.; Hassen, S.I.; et al. Discovery of seven novel putative antigens in membranous nephropathy and membranous lupus nephritis identified by mass spectrometry. Kidney Int 2023, 103, 593–606. [Google Scholar] [CrossRef]
- Sethi, S.; Madden, B.J.; Debiec, H.; et al. Exostosin 1/Exostosin 2-Associated Membranous Nephropathy. J Am Soc Nephrol 2019. [Google Scholar] [CrossRef]
- Sethi, S.; Debiec, H.; Madden, B.; et al. Neural epidermal growth factor-like 1 protein (NELL-1) associated membranous nephropathy. Kidney Int 2020, 97, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Debiec, H.; Madden, B.; et al. Semaphorin 3B-associated membranous nephropathy is a distinct type of disease predominantly present in pediatric patients. Kidney Int 2020, 98, 1253–1264. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Madden, B.; Debiec, H.; et al. Protocadherin 7-Associated Membranous Nephropathy. J Am Soc Nephrol 2021. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Theis, J.D.; Palma, L.M.P.; Madden, B. From Patterns to Proteins: Mass Spectrometry Comes of Age in Glomerular Disease. J Am Soc Nephrol 2024, 35, 117–128. [Google Scholar] [CrossRef]
- Al-Rabadi, L.F.; Caza, T.; Trivin-Avillach, C.; et al. Serine Protease HTRA1 as a Novel Target Antigen in Primary Membranous Nephropathy. J Am Soc Nephrol 2021. [Google Scholar] [CrossRef] [PubMed]
- Reinhard, L.; Machalitza, M.; Wiech, T.; et al. Netrin G1 Is a Novel Target Antigen in Primary Membranous Nephropathy. J Am Soc Nephrol 2022, 33, 1823–1831. [Google Scholar] [CrossRef]
- Le Quintrec, M.; Teisseyre, M.; Bec, N.; et al. Contactin-1 is a novel target antigen in membranous nephropathy associated with chronic inflammatory demyelinating polyneuropathy. Kidney Int 2021, 100, 1240–1249. [Google Scholar] [CrossRef] [PubMed]
- Caza, T.N.; Hassen, S.I.; Kuperman, M.; et al. Neural cell adhesion molecule 1 is a novel autoantigen in membranous lupus nephritis. Kidney Int 2021, 100, 171–181. [Google Scholar] [CrossRef] [PubMed]
- Caza, T.N.; Hassen, S.I.; Kenan, D.J.; et al. Transforming Growth Factor Beta Receptor 3 (TGFBR3)-Associated Membranous Nephropathy. Kidney360 2021, 2, 1275–1286. [Google Scholar] [CrossRef]
- Bruschi, M.; Cavalli, A.; Moll, S.; et al. Discovery of anti-Formin-like 1 protein (FMNL1) antibodies in membranous nephropathy and other glomerular diseases. Sci Rep 2022, 12, 13659. [Google Scholar] [CrossRef]
- Wieslander, J.; Barr, J.F.; Butkowski, R.J.; et al. Goodpasture antigen of the glomerular basement membrane: localization to noncollagenous regions of type IV collagen. Proc Natl Acad Sci U S A 1984, 81, 3838–3842. [Google Scholar] [CrossRef] [PubMed]
- Wieslander, J.; Bygren, P.; Heinegard, D. Isolation of the specific glomerular basement membrane antigen involved in Goodpasture syndrome. Proc Natl Acad Sci U S A 1984, 81, 1544–1548. [Google Scholar] [CrossRef] [PubMed]
- Butkowski, R.J.; Wieslander, J.; Wisdom, B.J.; Barr, J.F.; Noelken, M.E.; Hudson, B.G. Properties of the globular domain of type IV collagen and its relationship to the Goodpasture antigen. J Biol Chem 1985, 260, 3739–3747. [Google Scholar] [CrossRef] [PubMed]
- Butkowski, R.J.; Langeveld, J.P.; Wieslander, J.; Hamilton, J.; Hudson, B.G. Localization of the Goodpasture epitope to a novel chain of basement membrane collagen. J Biol Chem 1987, 262, 7874–7877. [Google Scholar] [CrossRef] [PubMed]
- Saus, J.; Wieslander, J.; Langeveld, J.P.; Quinones, S.; Hudson, B.G. Identification of the Goodpasture antigen as the alpha 3(IV) chain of collagen IV. J Biol Chem 1988, 263, 13374–13380. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Cui, Z.; Yang, R.; Jia, X.Y.; Zhang, Y.; Zhao, M.H. Anti-glomerular basement membrane autoantibodies against different target antigens are associated with disease severity. Kidney Int 2009, 76, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
- Netzer, K.O.; Leinonen, A.; Boutaud, A.; et al. The goodpasture autoantigen. Mapping the major conformational epitope(s) of alpha3(IV) collagen to residues 17-31 and 127-141 of the NC1 domain. J Biol Chem 1999, 274, 11267–11274. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Zhao, M.H.; Jia, X.Y.; et al. Antibodies to alpha5 chain of collagen IV are pathogenic in Goodpasture's disease. J Autoimmun 2016, 70, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.R.; Jia, X.Y.; Luo, W.; et al. Laminin-521 is a Novel Target of Autoantibodies Associated with Lung Hemorrhage in Anti-GBM Disease. J Am Soc Nephrol 2021, 32, 1887–1897. [Google Scholar] [CrossRef] [PubMed]
- Shiokawa, M.; Kodama, Y.; Sekiguchi, K.; et al. Laminin 511 is a target antigen in autoimmune pancreatitis. Sci Transl Med 2018, 10. [Google Scholar] [CrossRef]
- Ooi, J.D.; Chang, J.; O'Sullivan, K.M.; et al. The HLA-DRB1*15:01-restricted Goodpasture's T cell epitope induces GN. J Am Soc Nephrol 2013, 24, 419–431. [Google Scholar] [CrossRef]
- Xie, L.J.; Cui, Z.; Chen, F.J.; et al. The susceptible HLA class II alleles and their presenting epitope(s) in Goodpasture's disease. Immunology 2017, 151, 395–404. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.H.; Huynh, M.; Shi, Y.; et al. Experimental Antiglomerular Basement Membrane GN Induced by a Peptide from Actinomyces. J Am Soc Nephrol 2020, 31, 1282–1295. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.H.; Xie, L.J.; Jia, X.Y.; et al. Fever and prodromal infections in anti-glomerular basement membrane disease. Nephrology (Carlton) 2018, 23, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.Y.; Jia, X.Y.; Gu, Q.H.; et al. T cell responses to peptides of Goodpasture autoantigen in patients with anti-glomerular basement membrane disease. Nephrology (Carlton) 2018, 23, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Seitz-Polski, B.; Debiec, H.; Rousseau, A.; et al. Phospholipase A2 Receptor 1 Epitope Spreading at Baseline Predicts Reduced Likelihood of Remission of Membranous Nephropathy. J Am Soc Nephrol 2018, 29, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Seitz-Polski, B.; Dolla, G.; Payre, C.; et al. Epitope Spreading of Autoantibody Response to PLA2R Associates with Poor Prognosis in Membranous Nephropathy. J Am Soc Nephrol 2016, 27, 1517–1533. [Google Scholar] [CrossRef] [PubMed]
- Kao, L.; Lam, V.; Waldman, M.; Glassock, R.J.; Zhu, Q. Identification of the immunodominant epitope region in phospholipase A2 receptor-mediating autoantibody binding in idiopathic membranous nephropathy. J Am Soc Nephrol 2015, 26, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Fresquet, M.; Jowitt, T.A.; Gummadova, J.; et al. Identification of a major epitope recognized by PLA2R autoantibodies in primary membranous nephropathy. J Am Soc Nephrol 2015, 26, 302–313. [Google Scholar] [CrossRef]
- Sethi, S. New 'Antigens' in Membranous Nephropathy. J Am Soc Nephrol 2021, 32, 268–278. [Google Scholar] [CrossRef]
- Sethi, S.; Madden, B.; Casal Moura, M.; et al. Hematopoietic Stem Cell Transplant-Membranous Nephropathy Is Associated with Protocadherin FAT1. J Am Soc Nephrol 2022, 33, 1033–1044. [Google Scholar] [CrossRef]
- Tomas, N.M.; Hoxha, E.; Reinicke, A.T.; et al. Autoantibodies against thrombospondin type 1 domain-containing 7A induce membranous nephropathy. J Clin Invest 2016. [Google Scholar] [CrossRef] [PubMed]
- Buelli, S.; Perico, L.; Galbusera, M.; et al. Mitochondrial-dependent Autoimmunity in Membranous Nephropathy of IgG4-related Disease. EBioMedicine 2015, 2, 456–466. [Google Scholar] [CrossRef] [PubMed]
- Rahman, A.; Isenberg, D.A. Systemic lupus erythematosus. N Engl J Med 2008, 358, 929–939. [Google Scholar] [CrossRef] [PubMed]
- Gensous, N.; Marti, A.; Barnetche, T.; et al. Predictive biological markers of systemic lupus erythematosus flares: a systematic literature review. Arthritis Res Ther 2017, 19, 238. [Google Scholar] [CrossRef] [PubMed]
- Font, J.; Cervera, R.; Ramos-Casals, M.; et al. Clusters of clinical and immunologic features in systemic lupus erythematosus: analysis of 600 patients from a single center. Semin Arthritis Rheum 2004, 33, 217–230. [Google Scholar] [CrossRef]
- Bruschi, M.; Moroni, G.; Sinico, R.A.; et al. Serum IgG2 antibody multicomposition in systemic lupus erythematosus and lupus nephritis (Part 1): cross-sectional analysis. Rheumatology (Oxford) 2021, 60, 3176–3188. [Google Scholar] [CrossRef] [PubMed]
- Bruschi, M.; Moroni, G.; Sinico, R.A.; et al. Serum IgG2 antibody multi-composition in systemic lupus erythematosus and in lupus nephritis (Part 2): prospective study. Rheumatology (Oxford) 2021, 60, 3388–3397. [Google Scholar] [CrossRef] [PubMed]
- Bonanni, A.; Vaglio, A.; Bruschi, M.; et al. Multi-antibody composition in lupus nephritis: isotype and antigen specificity make the difference. Autoimmun Rev 2015, 14, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Watts, A.J.B.; Keller, K.H.; Lerner, G.; et al. Discovery of Autoantibodies Targeting Nephrin in Minimal Change Disease Supports a Novel Autoimmune Etiology. J Am Soc Nephrol 2022, 33, 238–252. [Google Scholar] [CrossRef]
- Hengel, F.E.; Dehde, S.; Lasse, M.; et al. Autoantibodies Targeting Nephrin in Podocytopathies. N Engl J Med 2024. [Google Scholar] [CrossRef] [PubMed]
- Ravani, P.; Rossi, R.; Bonanni, A.; et al. Rituximab in Children with Steroid-Dependent Nephrotic Syndrome: A Multicenter, Open-Label, Noninferiority, Randomized Controlled Trial. J Am Soc Nephrol 2015, 26, 2259–2266. [Google Scholar] [CrossRef] [PubMed]
- Ravani, P.; Magnasco, A.; Edefonti, A.; et al. Short-term effects of rituximab in children with steroid- and calcineurin-dependent nephrotic syndrome: a randomized controlled trial. Clin J Am Soc Nephrol 2011, 6, 1308–1315. [Google Scholar] [CrossRef] [PubMed]
- Basu, B.; Angeletti, A.; Islam, B.; Ghiggeri, G.M. New and Old Anti-CD20 Monoclonal Antibodies for Nephrotic Syndrome. Where We Are? Front Immunol 2022, 13, 805697. [Google Scholar] [CrossRef] [PubMed]
- Patrakka, J.; Ruotsalainen, V.; Reponen, P.; et al. Recurrence of nephrotic syndrome in kidney grafts of patients with congenital nephrotic syndrome of the Finnish type: role of nephrin. Transplantation 2002, 73, 394–403. [Google Scholar] [CrossRef] [PubMed]
- Shirai, Y.; Miura, K.; Ishizuka, K.; et al. A multi-institutional study found a possible role of anti-nephrin antibodies in post-transplant focal segmental glomerulosclerosis recurrence. Kidney Int 2024, 105, 608–617. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
