Submitted:
29 July 2024
Posted:
30 July 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Vascular Diseases
3.1. Pathophysiology and Causes of Vascular Diseases
3.2. EffectsImpact on Blood Flow and Nutrient Delivery
3.3. Consequences for Brain and Muscle Health
3.4. Current Treatments and Management Strategies
4. Sarcopenia
4.1. Pathophysiology and Contributing Factors
4.2. Sarcopenic Obesity
4.4. Relationship between Vascular Disease and Sarcopenia
4.5. Impact on Physical Function and Quality of Life
4.6. Strategies for Prevention and Treatment
5. Neurodegeneration
5.1. Pathophysiology and Risk Factors
5.2. Link between Vascular Health and Neurodegeneration
5.3. Impact on Cognitive and Motor Functions
5.4. Current Therapeutic Approaches
6. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erkkinen, M.G.; Kim, M.O.; Geschwind, M.D. Clinical Neurology and Epidemiology of the Major Neurodegenerative Diseases. Cold Spring Harb Perspect Biol 2018, 10. [Google Scholar] [CrossRef] [PubMed]
- Gonzales, M.M.; Garbarino, V.R.; Pollet, E.; Palavicini, J.P.; Kellogg, D.L., Jr.; Kraig, E.; Orr, M.E. Biological aging processes underlying cognitive decline and neurodegenerative disease. J Clin Invest 2022, 132. [Google Scholar] [CrossRef] [PubMed]
- Ricci, C. Neurodegenerative Disease: From Molecular Basis to Therapy. Int J Mol Sci 2024, 25. [Google Scholar] [CrossRef]
- Dugger, B.N.; Dickson, D.W. Pathology of Neurodegenerative Diseases. Cold Spring Harb Perspect Biol 2017, 9. [Google Scholar] [CrossRef]
- Rey, F.; Ottolenghi, S.; Zuccotti, G.V.; Samaja, M.; Carelli, S. Mitochondrial dysfunctions in neurodegenerative diseases: role in disease pathogenesis, strategies for analysis and therapeutic prospects. Neural Regen Res 2022, 17, 754–758. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.M., 3rd; Cookson, M.R.; Van Den Bosch, L.; Zetterberg, H.; Holtzman, D.M.; Dewachter, I. Hallmarks of neurodegenerative diseases. Cell 2023, 186, 693–714. [Google Scholar] [CrossRef] [PubMed]
- Bhat, A.H.; Dar, K.B.; Anees, S.; Zargar, M.A.; Masood, A.; Sofi, M.A.; Ganie, S.A. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother 2015, 74, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, G.G. Concepts and classification of neurodegenerative diseases. Handb Clin Neurol 2017, 145, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Samudra, N.; Lane-Donovan, C.; VandeVrede, L.; Boxer, A.L. Tau pathology in neurodegenerative disease: disease mechanisms and therapeutic avenues. J Clin Invest 2023, 133. [Google Scholar] [CrossRef]
- Levit, A.; Hachinski, V.; Whitehead, S.N. Neurovascular unit dysregulation, white matter disease, and executive dysfunction: the shared triad of vascular cognitive impairment and Alzheimer disease. Geroscience 2020, 42, 445–465. [Google Scholar] [CrossRef]
- Hayes, G.; Pinto, J.; Sparks, S.N.; Wang, C.; Suri, S.; Bulte, D.P. Vascular smooth muscle cell dysfunction in neurodegeneration. Front Neurosci 2022, 16, 1010164. [Google Scholar] [CrossRef]
- Arosio, B.; Calvani, R.; Ferri, E.; Coelho-Junior, H.J.; Carandina, A.; Campanelli, F.; Ghiglieri, V.; Marzetti, E.; Picca, A. Sarcopenia and Cognitive Decline in Older Adults: Targeting the Muscle-Brain Axis. Nutrients 2023, 15. [Google Scholar] [CrossRef]
- Scarian, E.; Viola, C.; Dragoni, F.; Di Gerlando, R.; Rizzo, B.; Diamanti, L.; Gagliardi, S.; Bordoni, M.; Pansarasa, O. New Insights into Oxidative Stress and Inflammatory Response in Neurodegenerative Diseases. Int J Mol Sci 2024, 25. [Google Scholar] [CrossRef]
- Olufunmilayo, E.O.; Gerke-Duncan, M.B.; Holsinger, R.M.D. Oxidative Stress and Antioxidants in Neurodegenerative Disorders. Antioxidants (Basel) 2023, 12. [Google Scholar] [CrossRef]
- Houldsworth, A. Role of oxidative stress in neurodegenerative disorders: a review of reactive oxygen species and prevention by antioxidants. Brain Commun 2024, 6, fcad356. [Google Scholar] [CrossRef]
- McGinigle, K.L. Peripheral Vascular Disease. Prim Care 2024, 51, 83–93. [Google Scholar] [CrossRef]
- Burtscher, J.; Millet, G.P.; Fresa, M.; Lanzi, S.; Mazzolai, L.; Pellegrin, M. The link between impaired oxygen supply and cognitive decline in peripheral artery disease. Prog Cardiovasc Dis, 1016. [Google Scholar] [CrossRef]
- Sweeney, M.D.; Kisler, K.; Montagne, A.; Toga, A.W.; Zlokovic, B.V. The role of brain vasculature in neurodegenerative disorders. Nat Neurosci 2018, 21, 1318–1331. [Google Scholar] [CrossRef]
- Hainsworth, A.H.; Markus, H.S.; Schneider, J.A. Cerebral Small Vessel Disease, Hypertension, and Vascular Contributions to Cognitive Impairment and Dementia. Hypertension 2024, 81, 75–86. [Google Scholar] [CrossRef]
- Hamilton, O.K.L.; Backhouse, E.V.; Janssen, E.; Jochems, A.C.C.; Maher, C.; Ritakari, T.E.; Stevenson, A.J.; Xia, L.; Deary, I.J.; Wardlaw, J.M. Cognitive impairment in sporadic cerebral small vessel disease: A systematic review and meta-analysis. Alzheimers Dement 2021, 17, 665–685. [Google Scholar] [CrossRef]
- Pala, D.; Barbosa, P.O.; Silva, C.T.; de Souza, M.O.; Freitas, F.R.; Volp, A.C.P.; Maranhão, R.C.; Freitas, R.N. Açai (Euterpe oleracea Mart.) dietary intake affects plasma lipids, apolipoproteins, cholesteryl ester transfer to high-density lipoprotein and redox metabolism: A prospective study in women. Clinical nutrition (Edinburgh, Scotland) 2018, 37, 618–623. [Google Scholar] [CrossRef]
- Pasi, M.; Cordonnier, C. Clinical Relevance of Cerebral Small Vessel Diseases. Stroke 2020, 51, 47–53. [Google Scholar] [CrossRef]
- Mena Romo, L.; Gómez-Choco, M. Neuroimaging in small vessel disease. Hipertens Riesgo Vasc 2023, 40, 25–33. [Google Scholar] [CrossRef]
- Karvelas, N.; Oh, B.; Wang, E.; Cobigo, Y.; Tsuei, T.; Fitzsimons, S.; Younes, K.; Ehrenberg, A.; Geschwind, M.D.; Schwartz, D. , et al. Enlarged perivascular spaces are associated with white matter injury, cognition and inflammation in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Brain Commun 2024, 6, fcae071. [Google Scholar] [CrossRef]
- Backhouse, E.V.; Boardman, J.P.; Wardlaw, J.M. Cerebral Small Vessel Disease: Early-Life Antecedents and Long-Term Implications for the Brain, Aging, Stroke, and Dementia. Hypertension 2024, 81, 54–74. [Google Scholar] [CrossRef]
- Hoiland, R.L.; Robba, C.; Menon, D.K.; Citerio, G.; Sandroni, C.; Sekhon, M.S. Clinical targeting of the cerebral oxygen cascade to improve brain oxygenation in patients with hypoxic–ischaemic brain injury after cardiac arrest. Intensive Care Medicine 2023, 49, 1062–1078. [Google Scholar] [CrossRef]
- Lin, Z.; Lim, C.; Jiang, D.; Soldan, A.; Pettigrew, C.; Oishi, K.; Zhu, Y.; Moghekar, A.; Liu, P.; Albert, M. Longitudinal changes in brain oxygen extraction fraction (OEF) in older adults: Relationship to markers of vascular and Alzheimer's pathology. Alzheimer's & Dementia 2023, 19, 569–577. [Google Scholar]
- Mikkelsen, A.C.D.; Thomsen, K.L.; Mookerjee, R.P.; Hadjihambi, A. The role of brain inflammation and abnormal brain oxygen homeostasis in the development of hepatic encephalopathy. Metabolic Brain Disease 2023, 38, 1707–1716. [Google Scholar] [CrossRef]
- Gąsecki, D.; Kwarciany, M.; Nyka, W.; Narkiewicz, K. Hypertension, brain damage and cognitive decline. Curr Hypertens Rep 2013, 15, 547–558. [Google Scholar] [CrossRef]
- Canavan, M.; O'Donnell, M.J. Hypertension and Cognitive Impairment: A Review of Mechanisms and Key Concepts. Front Neurol 2022, 13, 821135. [Google Scholar] [CrossRef]
- Pacholko, A.; Iadecola, C. Hypertension, Neurodegeneration, and Cognitive Decline. Hypertension 2024, 81, 991–1007. [Google Scholar] [CrossRef]
- Ungvari, Z.; Toth, P.; Tarantini, S.; Prodan, C.I.; Sorond, F.; Merkely, B.; Csiszar, A. Hypertension-induced cognitive impairment: from pathophysiology to public health. Nat Rev Nephrol 2021, 17, 639–654. [Google Scholar] [CrossRef]
- Meissner, A. Hypertension and the Brain: A Risk Factor for More Than Heart Disease. Cerebrovasc Dis 2016, 42, 255–262. [Google Scholar] [CrossRef]
- Baggeroer, C.E.; Cambronero, F.E.; Savan, N.A.; Jefferson, A.L.; Santisteban, M.M. Basic Mechanisms of Brain Injury and Cognitive Decline in Hypertension. Hypertension 2024, 81, 34–44. [Google Scholar] [CrossRef]
- Totoń-Żurańska, J.; Mikolajczyk, T.P.; Saju, B.; Guzik, T.J. Vascular remodelling in cardiovascular diseases: hypertension, oxidation, and inflammation. Clin Sci (Lond) 2024, 138, 817–850. [Google Scholar] [CrossRef]
- Cai, Z.; Gong, Z.; Li, Z.; Li, L.; Kong, W. Vascular Extracellular Matrix Remodeling and Hypertension. Antioxid Redox Signal 2021, 34, 765–783. [Google Scholar] [CrossRef]
- Prado, A.F.; Batista, R.I.M.; Tanus-Santos, J.E.; Gerlach, R.F. Matrix Metalloproteinases and Arterial Hypertension: Role of Oxidative Stress and Nitric Oxide in Vascular Functional and Structural Alterations. Biomolecules 2021, 11. [Google Scholar] [CrossRef]
- Romay, M.C.; Knutsen, R.H.; Ma, F.; Mompeón, A.; Hernandez, G.E.; Salvador, J.; Mirkov, S.; Batra, A.; Sullivan, D.P.; Procissi, D. , et al. Age-related loss of Notch3 underlies brain vascular contractility deficiencies, glymphatic dysfunction, and neurodegeneration in mice. J Clin Invest 2024, 134. [Google Scholar] [CrossRef]
- Pacholko, A.; Iadecola, C. Hypertension, Neurodegeneration, and Cognitive Decline. Hypertension, 2024. [Google Scholar] [CrossRef]
- Ciurică, S.; Lopez-Sublet, M.; Loeys, B.L.; Radhouani, I.; Natarajan, N.; Vikkula, M.; Maas, A.; Adlam, D.; Persu, A. Arterial Tortuosity. Hypertension 2019, 73, 951–960. [Google Scholar] [CrossRef]
- Wardlaw, J.M.; Valdés Hernández, M.C.; Muñoz-Maniega, S. What are white matter hyperintensities made of? Relevance to vascular cognitive impairment. J Am Heart Assoc 2015, 4, 001140. [Google Scholar] [CrossRef]
- Shih, A.Y.; Blinder, P.; Tsai, P.S.; Friedman, B.; Stanley, G.; Lyden, P.D.; Kleinfeld, D. The smallest stroke: occlusion of one penetrating vessel leads to infarction and a cognitive deficit. Nat Neurosci 2013, 16, 55–63. [Google Scholar] [CrossRef]
- Wolf, G.; Lotan, A.; Lifschytz, T.; Ben-Ari, H.; Kreisel Merzel, T.; Tatarskyy, P.; Valitzky, M.; Mernick, B.; Avidan, E.; Koroukhov, N. , et al. Differentially Severe Cognitive Effects of Compromised Cerebral Blood Flow in Aged Mice: Association with Myelin Degradation and Microglia Activation. Front Aging Neurosci 2017, 9, 191. [Google Scholar] [CrossRef]
- Nakada, T.; Kwee, I.L. Fluid Dynamics Inside the Brain Barrier: Current Concept of Interstitial Flow, Glymphatic Flow, and Cerebrospinal Fluid Circulation in the Brain. Neuroscientist 2019, 25, 155–166. [Google Scholar] [CrossRef]
- Rajeev, V.; Fann, D.Y.; Dinh, Q.N.; Kim, H.A.; De Silva, T.M.; Lai, M.K.P.; Chen, C.L.; Drummond, G.R.; Sobey, C.G.; Arumugam, T.V. Pathophysiology of blood brain barrier dysfunction during chronic cerebral hypoperfusion in vascular cognitive impairment. Theranostics 2022, 12, 1639–1658. [Google Scholar] [CrossRef]
- Mierzwa, A.J.; Marion, C.M.; Sullivan, G.M.; McDaniel, D.P.; Armstrong, R.C. Components of myelin damage and repair in the progression of white matter pathology after mild traumatic brain injury. J Neuropathol Exp Neurol 2015, 74, 218–232. [Google Scholar] [CrossRef]
- Pavuluri, K.; Huston, J., 3rd; Ehman, R.L.; Manduca, A.; Jack, C.R., Jr.; Senjem, M.L.; Vemuri, P.; Murphy, M.C. Associations between vascular health, brain stiffness and global cognitive function. Brain Commun 2024, 6, fcae073. [Google Scholar] [CrossRef]
- Vints, W.A.; Kušleikienė, S.; Sheoran, S.; Valatkevičienė, K.; Gleiznienė, R.; Himmelreich, U.; Pääsuke, M.; Česnaitienė, V.J.; Levin, O.; Verbunt, J. Body fat and components of sarcopenia relate to inflammation, brain volume, and neurometabolism in older adults. Neurobiology of aging 2023, 127, 1–11. [Google Scholar] [CrossRef]
- Arosio, B.; Calvani, R.; Ferri, E.; Coelho-Junior, H.J.; Carandina, A.; Campanelli, F.; Ghiglieri, V.; Marzetti, E.; Picca, A. Sarcopenia and Cognitive Decline in Older Adults: Targeting the Muscle–Brain Axis. Nutrients 2023, 15, 1853. [Google Scholar] [CrossRef]
- Gurholt, T.P.; Borda, M.G.; Parker, N.; Fominykh, V.; Kjelkenes, R.; Linge, J.; van der Meer, D.; Sønderby, I.E.; Duque, G.; Westlye, L.T. Linking sarcopenia, brain structure and cognitive performance: a large-scale UK Biobank study. Brain Communications 2024, 6, fcae083. [Google Scholar] [CrossRef]
- Larsson, L.; Degens, H.; Li, M.; Salviati, L.; Lee, Y.I.; Thompson, W.; Kirkland, J.L.; Sandri, M. Sarcopenia: Aging-Related Loss of Muscle Mass and Function. Physiol Rev 2019, 99, 427–511. [Google Scholar] [CrossRef]
- Kara, M.; Kaymak, B.; Frontera, W.; Ata, A.M.; Ricci, V.; Ekiz, T.; Chang, K.V.; Han, D.S.; Michail, X.; Quittan, M. , et al. Diagnosing sarcopenia: Functional perspectives and a new algorithm from the ISarcoPRM. J Rehabil Med 2021, 53, jrm00209. [Google Scholar] [CrossRef]
- Wu, J.; Ding, P.; Wu, H.; Yang, P.; Guo, H.; Tian, Y.; Meng, L.; Zhao, Q. Sarcopenia: Molecular regulatory network for loss of muscle mass and function. Front Nutr 2023, 10, 1037200. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A. Sarcopenia: revised European consensus on definition and diagnosis. Age and ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Cawthon, P.M.; Orwoll, E.S.; Peters, K.E.; Ensrud, K.E.; Cauley, J.A.; Kado, D.M.; Stefanick, M.L.; Shikany, J.M.; Strotmeyer, E.S.; Glynn, N.W. Strong relation between muscle mass determined by D3-creatine dilution, physical performance, and incidence of falls and mobility limitations in a prospective cohort of older men. The Journals of Gerontology: Series A 2019, 74, 844–852. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Larsson, S.C. Epidemiology of sarcopenia: Prevalence, risk factors, and consequences. Metabolism 2023, 155533. [Google Scholar] [CrossRef] [PubMed]
- Barazzoni, R.; Cederholm, T.; Zanetti, M.; Cappellari, G.G. Defining and diagnosing sarcopenia: is the glass now half full? Metabolism 2023, 155558. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Gonzalez, M.C.; Prado, C.M. Sarcopenia≠ low muscle mass. European Geriatric Medicine 2023, 14, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Donato, A.J.; Machin, D.R.; Lesniewski, L.A. Mechanisms of Dysfunction in the Aging Vasculature and Role in Age-Related Disease. Circ Res 2018, 123, 825–848. [Google Scholar] [CrossRef]
- Mengozzi, A.; Pugliese, N.R.; Chiriacò, M.; Masi, S.; Virdis, A.; Taddei, S. Microvascular Ageing Links Metabolic Disease to Age-Related Disorders: The Role of Oxidative Stress and Inflammation in Promoting Microvascular Dysfunction. J Cardiovasc Pharmacol 2021, 78, S78–s87. [Google Scholar] [CrossRef]
- Damluji, A.A.; Alfaraidhy, M.; AlHajri, N.; Rohant, N.N.; Kumar, M.; Al Malouf, C.; Bahrainy, S.; Ji Kwak, M.; Batchelor, W.B.; Forman, D.E. , et al. Sarcopenia and Cardiovascular Diseases. Circulation 2023, 147, 1534–1553. [Google Scholar] [CrossRef]
- Jeon, Y.K.; Shin, M.J.; Saini, S.K.; Custodero, C.; Aggarwal, M.; Anton, S.D.; Leeuwenburgh, C.; Mankowski, R.T. Vascular dysfunction as a potential culprit of sarcopenia. Exp Gerontol 2021, 145, 111220. [Google Scholar] [CrossRef]
- El Assar, M.; Álvarez-Bustos, A.; Sosa, P.; Angulo, J.; Rodríguez-Mañas, L. Effect of Physical Activity/Exercise on Oxidative Stress and Inflammation in Muscle and Vascular Aging. Int J Mol Sci 2022, 23. [Google Scholar] [CrossRef] [PubMed]
- Purnamasari, D.; Tetrasiwi, E.N.; Kartiko, G.J.; Astrella, C.; Husam, K.; Laksmi, P.W. Sarcopenia and Chronic Complications of Type 2 Diabetes Mellitus. Rev Diabet Stud 2022, 18, 157–165. [Google Scholar] [CrossRef]
- Banks, N.F.; Rogers, E.M.; Church, D.D.; Ferrando, A.A.; Jenkins, N.D.M. The contributory role of vascular health in age-related anabolic resistance. J Cachexia Sarcopenia Muscle 2022, 13, 114–127. [Google Scholar] [CrossRef] [PubMed]
- Gallinoro, E.; Paolisso, P.; Candreva, A.; Bermpeis, K.; Fabbricatore, D.; Esposito, G.; Bertolone, D.; Fernandez Peregrina, E.; Munhoz, D.; Mileva, N. , et al. Microvascular Dysfunction in Patients With Type II Diabetes Mellitus: Invasive Assessment of Absolute Coronary Blood Flow and Microvascular Resistance Reserve. Front Cardiovasc Med 2021, 8, 765071. [Google Scholar] [CrossRef] [PubMed]
- Jahn, L.A.; Hartline, L.; Liu, Z.; Barrett, E.J. Metformin improves skeletal muscle microvascular insulin resistance in metabolic syndrome. Am J Physiol Endocrinol Metab 2022, 322, E173–e180. [Google Scholar] [CrossRef]
- Ou, Q.; Pan, D. Sarcopenia and risk of cardio-cerebrovascular disease: A two-sample Mendelian randomization study. Biosci Trends 2023, 17, 413–414. [Google Scholar] [CrossRef]
- Fang, M.; Liu, C.; Liu, Y.; Tang, G.; Li, C.; Guo, L. Association between sarcopenia with incident cardio-cerebrovascular disease: A systematic review and meta-analysis. Biosci Trends 2023, 17, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ding, L.; Hu, H.; He, H.; Xiong, Z.; Zhu, X. Associations of Body-Roundness Index and Sarcopenia with Cardiovascular Disease among Middle-Aged and Older Adults: Findings from CHARLS. J Nutr Health Aging 2023, 27, 953–959. [Google Scholar] [CrossRef]
- Hu, C.H.; Yang, C.C.; Tu, S.J.; Huang, I.J.; Ganbat, D.; Guo, L.Y. Characteristics of the Electrophysiological Properties of Neuromuscular Motor Units and Its Adaptive Strategy Response in Lower Extremity Muscles for Seniors with Pre-Sarcopenia: A Preliminary Study. Int J Environ Res Public Health 2021, 18. [Google Scholar] [CrossRef]
- Mosole, S.; Carraro, U.; Kern, H.; Loefler, S.; Zampieri, S. Use it or lose it: tonic activity of slow motoneurons promotes their survival and preferentially increases slow fiber-type groupings in muscles of old lifelong recreational sportsmen. European journal of translational myology 2016, 26. [Google Scholar] [CrossRef]
- Barberi, L.; Scicchitano, B.M.; Musaro, A. Molecular and cellular mechanisms of muscle aging and sarcopenia and effects of electrical stimulation in seniors. European journal of translational myology 2015, 25. [Google Scholar] [CrossRef] [PubMed]
- Sui, S.X.; Williams, L.J.; Holloway-Kew, K.L.; Hyde, N.K.; Pasco, J.A. Skeletal Muscle Health and Cognitive Function: A Narrative Review. Int J Mol Sci 2020, 22. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, T.; Ulfhake, B. Sarcopenia: What Is the Origin of This Aging-Induced Disorder? Front Genet 2021, 12, 688526. [Google Scholar] [CrossRef] [PubMed]
- Coletti, C.; Acosta, G.F.; Keslacy, S.; Coletti, D. Exercise-mediated reinnervation of skeletal muscle in elderly people: An update. Eur J Transl Myol 2022, 32. [Google Scholar] [CrossRef] [PubMed]
- Mosole, S.; Rossini, K.; Kern, H.; Löfler, S.; Fruhmann, H.; Vogelauer, M.; Burggraf, S.; Grim-Stieger, M.; Cvečka, J.; Hamar, D. Reinnervation of Vastus lateralis is increased significantly in seniors (70-years old) with a lifelong history of high-level exercise (2013, revisited here in 2022). European Journal of Translational Myology 2022, 32. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, D.J.; Piasecki, M.; Atherton, P. The age-related loss of skeletal muscle mass and function: Measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing research reviews 2018, 47, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Kern, H.; Hofer, C.; Loefler, S.; Zampieri, S.; Gargiulo, P.; Baba, A.; Marcante, A.; Piccione, F.; Pond, A.; Carraro, U. Atrophy, ultra-structural disorders, severe atrophy and degeneration of denervated human muscle in SCI and Aging. Implications for their recovery by Functional Electrical Stimulation, updated 2017. Neurological research 2017, 39, 660–666. [Google Scholar] [CrossRef] [PubMed]
- Vints, W.A.J.; Kušleikienė, S.; Sheoran, S.; Valatkevičienė, K.; Gleiznienė, R.; Himmelreich, U.; Pääsuke, M.; Česnaitienė, V.J.; Levin, O.; Verbunt, J. , et al. Body fat and components of sarcopenia relate to inflammation, brain volume, and neurometabolism in older adults. Neurobiol Aging 2023, 127, 1–11. [Google Scholar] [CrossRef]
- Gurholt, T.P.; Borda, M.G.; Parker, N.; Fominykh, V.; Kjelkenes, R.; Linge, J.; van der Meer, D.; Sønderby, I.E.; Duque, G.; Westlye, L.T. , et al. Linking sarcopenia, brain structure and cognitive performance: a large-scale UK Biobank study. Brain Commun 2024, 6, fcae083. [Google Scholar] [CrossRef]
- Taubert, M.; Roggenhofer, E.; Melie-Garcia, L.; Muller, S.; Lehmann, N.; Preisig, M.; Vollenweider, P.; Marques-Vidal, P.; Lutti, A.; Kherif, F. , et al. Converging patterns of aging-associated brain volume loss and tissue microstructure differences. Neurobiol Aging 2020, 88, 108–118. [Google Scholar] [CrossRef]
- Trost, W.; Hars, M.; Fernandez, N.; Herrmann, F.; Chevalley, T.; Ferrari, S.; Gold, G.; Rizzoli, R.; Vuilleumier, P.; Trombetti, A. Functional brain changes in sarcopenia: evidence for differential central neural mechanisms in dynapenic older women. Aging Clinical and Experimental Research 2023, 35, 1015–1025. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wu, X.; Yan, Z.; Cui, Y.; Liu, Y.; Cui, S.; Wang, Y.; Liu, T. Unveiling the muscle-brain axis: A bidirectional mendelian randomization study investigating the causal relationship between sarcopenia-related traits and brain aging. Archives of Gerontology and Geriatrics 2024, 123, 105412. [Google Scholar] [CrossRef]
- Lu, C.-f.; Liu, W.-s.; Cang, X.-m.; Sun, X.; Wang, X.-q.; Wang, C.-h.; Xu, F. The bidirectional associations between sarcopenia-related traits and cognitive performance. Scientific Reports 2024, 14, 7591. [Google Scholar] [CrossRef] [PubMed]
- Carda, S.; Cisari, C.; Invernizzi, M. Sarcopenia or muscle modifications in neurologic diseases: a lexical or patophysiological difference? Eur J Phys Rehabil Med 2013, 49, 119–130. [Google Scholar] [PubMed]
- Ardeljan, A.D.; Hurezeanu, R. Sarcopenia. 2020.
- Beeri, M.S.; Leugrans, S.E.; Delbono, O.; Bennett, D.A.; Buchman, A.S. Sarcopenia is associated with incident Alzheimer's dementia, m ild cognitive impairment, and cognitive decline. Journal of the American Geriatrics Society 2021, 69, 1826–1835. [Google Scholar] [CrossRef]
- Ladang, A.; Kovacs, S.; Lengelé, L.; Locquet, M.; Beaudart, C.; Reginster, J.-Y.; Bruyère, O.; Cavalier, E. Neurofilament-light chains (NF-L), a biomarker of neuronal damage, is increased in patients with severe sarcopenia: results of the SarcoPhAge study. Aging Clinical and Experimental Research 2023, 35, 2029–2037. [Google Scholar] [CrossRef] [PubMed]
- Pratt, J.; Pessanha, L.; Narici, M.; Boreham, C.; De Vito, G. Handgrip strength asymmetry as a new biomarker for sarcopenia and individual sarcopenia signatures. Aging Clinical and Experimental Research 2023, 35, 2563–2571. [Google Scholar] [CrossRef] [PubMed]
- Gurholt, T.; Borda, M.G.; Parker, N.; Duque, G.; Westlye, L.T.; Aarsland, D.; Andreassen, O.A. 366. Connecting Sarcopenia, Brain Structure, and Cognitive Performance: Large-Scale Evidence From the UK Biobank. Biological Psychiatry 2023, 93, S241–S242. [Google Scholar] [CrossRef]
- Arnold, W.D.; Clark, B.C. Neuromuscular junction transmission failure in aging and sarcopenia: the nexus of the neurological and muscular systems. Ageing Research Reviews 2023, 101966. [Google Scholar] [CrossRef]
- Qian, Z.; Huang, Y.; Zhang, Y.; Yang, N.; Fang, Z.; Zhang, C.; Zhang, L. Metabolic clues to aging: exploring the role of circulating metabolites in frailty, sarcopenia and vascular aging related traits and diseases. Frontiers in Genetics 2024, 15, 1353908. [Google Scholar] [CrossRef]
- Li, Y.; Hong, M.; Shi, H. Premorbid sarcopenia and functional outcome after acute stroke: a meta-analysis. Asia Pac J Clin Nutr 2023, 32, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Kopylova, V.; Boronovskiy, S.; Nartsissov, Y. Approaches to vascular network, blood flow, and metabolite distribution modeling in brain tissue. Biophysical Reviews 2023, 15, 1335–1350. [Google Scholar] [CrossRef] [PubMed]
- Wälchli, T.; Bisschop, J.; Carmeliet, P.; Zadeh, G.; Monnier, P.P.; De Bock, K.; Radovanovic, I. Shaping the brain vasculature in development and disease in the single-cell era. Nature Reviews Neuroscience 2023, 24, 271–298. [Google Scholar] [CrossRef] [PubMed]
- Tayler, H.M.; MacLachlan, R.; Güzel, Ö.; Miners, J.S.; Love, S. Elevated late-life blood pressure may maintain brain oxygenation and slow amyloid-β accumulation at the expense of cerebral vascular damage. Brain Communications 2023, 5, fcad112. [Google Scholar] [CrossRef] [PubMed]
- Seto, M.; Dumitrescu, L.; Mahoney, E.R.; Sclafani, A.M.; De Jager, P.L.; Menon, V.; Koran, M.E.; Robinson, R.A.; Ruderfer, D.M.; Cox, N.J. Multi-omic characterization of brain changes in the vascular endothelial growth factor family during aging and Alzheimer's disease. Neurobiology of aging 2023, 126, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, J.D.; Schwartz, M.A. Vascular Mechanobiology: Homeostasis, Adaptation, and Disease. Annu Rev Biomed Eng 2021, 23, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Tomiyama, H. Vascular function: a key player in hypertension. Hypertens Res 2023, 46, 2145–2158. [Google Scholar] [CrossRef]
- Trimm, E.; Red-Horse, K. Vascular endothelial cell development and diversity. Nat Rev Cardiol 2023, 20, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Simionescu, M. Implications of early structural-functional changes in the endothelium for vascular disease. Arterioscler Thromb Vasc Biol 2007, 27, 266–274. [Google Scholar] [CrossRef]
- Xu, J.; Shi, G.P. Vascular wall extracellular matrix proteins and vascular diseases. Biochim Biophys Acta 2014, 1842, 2106–2119. [Google Scholar] [CrossRef]
- Fraile-Martinez, O.; De Leon-Oliva, D.; Boaru, D.L.; De Castro-Martinez, P.; Garcia-Montero, C.; Barrena-Blázquez, S.; García-García, J.; García-Honduvilla, N.; Alvarez-Mon, M.; Lopez-Gonzalez, L. Connecting epigenetics and inflammation in vascular senescence: state of the art, biomarkers and senotherapeutics. Frontiers in Genetics 2024, 15, 1345459. [Google Scholar] [CrossRef]
- Sutton, N.R.; Malhotra, R.; St. Hilaire, C.; Aikawa, E.; Blumenthal, R.S.; Gackenbach, G.; Goyal, P.; Johnson, A.; Nigwekar, S.U.; Shanahan, C.M. Molecular mechanisms of vascular health: insights from vascular aging and calcification. Arteriosclerosis, thrombosis, and vascular biology 2023, 43, 15–29. [Google Scholar] [CrossRef]
- Cheng, J.; Wen, J.; Wang, N.; Wang, C.; Xu, Q.; Yang, Y. Ion Channels and Vascular Diseases. Arterioscler Thromb Vasc Biol 2019, 39, e146–e156. [Google Scholar] [CrossRef]
- Sacchetti, S.; Puricelli, C.; Mennuni, M.; Zanotti, V.; Giacomini, L.; Giordano, M.; Dianzani, U.; Patti, G.; Rolla, R. Research into New Molecular Mechanisms in Thrombotic Diseases Paves the Way for Innovative Therapeutic Approaches. Int J Mol Sci 2024, 25. [Google Scholar] [CrossRef]
- Rajendran, P.; Rengarajan, T.; Thangavel, J.; Nishigaki, Y.; Sakthisekaran, D.; Sethi, G.; Nishigaki, I. The vascular endothelium and human diseases. Int J Biol Sci 2013, 9, 1057–1069. [Google Scholar] [CrossRef]
- Erusalimsky, J.D. Vascular endothelial senescence: from mechanisms to pathophysiology. J Appl Physiol (1985) 2009, 106, 326–332. [Google Scholar] [CrossRef]
- Bloom, S.I.; Islam, M.T.; Lesniewski, L.A.; Donato, A.J. Mechanisms and consequences of endothelial cell senescence. Nat Rev Cardiol 2023, 20, 38–51. [Google Scholar] [CrossRef]
- Direito, R.; Barbalho, S.M.; Sepodes, B.; Figueira, M.E. Plant-Derived Bioactive Compounds: Exploring Neuroprotective, Metabolic, and Hepatoprotective Effects for Health Promotion and Disease Prevention. Pharmaceutics 2024, 16. [Google Scholar] [CrossRef]
- Han, Y.; Kim, S.Y. Endothelial senescence in vascular diseases: Current understanding and future opportunities in senotherapeutics. Experimental & Molecular Medicine 2023, 55, 1–12. [Google Scholar]
- Rahman, M.S.; Islam, R.; Bhuiyan, M.I.H. Ion transporter cascade, reactive astrogliosis and cerebrovascular diseases. Frontiers in Pharmacology 2024, 15, 1374408. [Google Scholar] [CrossRef]
- Coste, B.; Delmas, P. PIEZO Ion Channels in Cardiovascular Functions and Diseases. Circulation Research 2024, 134, 572–591. [Google Scholar] [CrossRef] [PubMed]
- Kalaria, R.N. Cerebrovascular disease and mechanisms of cognitive impairment: evidence from clinicopathological studies in humans. Stroke 2012, 43, 2526–2534. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, B.; Rypma, B.; Gratton, G.; Fabiani, M. Age-related changes in cerebrovascular health and their effects on neural function and cognition: A comprehensive review. Psychophysiology 2021, 58, e13796. [Google Scholar] [CrossRef]
- Erickson, M.A.; Dohi, K.; Banks, W.A. Neuroinflammation: a common pathway in CNS diseases as mediated at the blood-brain barrier. Neuroimmunomodulation 2012, 19, 121–130. [Google Scholar] [CrossRef]
- Lacoste, B.; Prat, A.; Freitas-Andrade, M.; Gu, C. The Blood-Brain Barrier: Composition, Properties, and Roles in Brain Health. Cold Spring Harb Perspect Biol, 2024. [Google Scholar] [CrossRef]
- Archie, S.R.; Al Shoyaib, A.; Cucullo, L. Blood-Brain Barrier Dysfunction in CNS Disorders and Putative Therapeutic Targets: An Overview. Pharmaceutics 2021, 13. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Kumar, D.; Jha, S.K.; Jha, N.K.; Ambasta, R.K. Ion Channels in Neurological Disorders. Adv Protein Chem Struct Biol 2016, 103, 97–136. [Google Scholar] [CrossRef]
- Song, S.; Luo, L.; Sun, B.; Sun, D. Roles of glial ion transporters in brain diseases. Glia 2020, 68, 472–494. [Google Scholar] [CrossRef]
- Liu, R.; Collier, J.M.; Abdul-Rahman, N.-H.; Capuk, O.; Zhang, Z.; Begum, G. Dysregulation of Ion Channels and Transporters and Blood-Brain Barrier Dysfunction in Alzheimer's Disease and Vascular Dementia. Aging and Disease 2024. [Google Scholar]
- Korszun-Karbowniczak, J.; Krysiak, Z.J.; Saluk, J.; Niemcewicz, M.; Zdanowski, R. The Progress in Molecular Transport and Therapeutic Development in Human Blood–Brain Barrier Models in Neurological Disorders. Cellular and Molecular Neurobiology 2024, 44, 34. [Google Scholar] [CrossRef]
- Khor, S.L.Q.; Ng, K.Y.; Koh, R.Y.; Chye, S.M. Blood-brain Barrier and Neurovascular Unit Dysfunction in Parkinson's Disease: From Clinical Insights to Pathogenic Mechanisms and Novel Therapeutic Approaches. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders) 2024, 23, 315–330. [Google Scholar]
- Mendelson, S.J.; Prabhakaran, S. Diagnosis and management of transient ischemic attack and acute ischemic stroke: a review. Jama 2021, 325, 1088–1098. [Google Scholar] [CrossRef] [PubMed]
- Shao, C.; Wang, J.; Tian, J.; Tang, Y.-d. Coronary artery disease: from mechanism to clinical practice. Coronary Artery Disease: Therapeutics and Drug Discovery, 2020; 1–36. [Google Scholar]
- Weintraub, N.L. Understanding abdominal aortic aneurysm. The New England journal of medicine 2009, 361, 1114. [Google Scholar] [CrossRef] [PubMed]
- Anagnostakos, J.; Lal, B.K. Abdominal aortic aneurysms. Progress in cardiovascular diseases 2021, 65, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Amalinei, C.; Căruntu, I.-D. Etiology and pathogenesis of aortic aneurysm. Aortic Aneurysm-Recent Advances2013, 2013. [Google Scholar]
- Tao, J.; Cao, X.; Yu, B.; Qu, A. Vascular stem/progenitor cells in vessel injury and repair. Frontiers in Cardiovascular Medicine 2022, 9, 845070. [Google Scholar] [CrossRef] [PubMed]
- Paloschi, V.; Pauli, J.; Winski, G.; Wu, Z.; Li, Z.; Botti, L.; Meucci, S.; Conti, P.; Rogowitz, F.; Glukha, N. Utilization of an Artery-on-a-Chip to Unravel Novel Regulators and Therapeutic Targets in Vascular Diseases. Advanced healthcare materials 2024, 13, 2302907. [Google Scholar] [CrossRef] [PubMed]
- Qadura, M.; Syed, M.H.; Anand, S.; Bosch, J.; Connolly, S.; Aboyans, V.; Muehlhofer, E.; Yusuf, S.; Eikelboom, J. The predictive value of interarm systolic blood pressure differences in patients with vascular disease: Sub-analysis of the COMPASS trial. Atherosclerosis 2023, 372, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Sillesen, H.H. Peripheral vascular disease. Textbook of diabetes 2024, 755–767. [Google Scholar]
- Villa-Bellosta, R. Vascular calcification: key roles of phosphate and pyrophosphate. International Journal of Molecular Sciences 2021, 22, 13536. [Google Scholar] [CrossRef] [PubMed]
- Bessueille, L.; Magne, D. Inflammation: a culprit for vascular calcification in atherosclerosis and diabetes. Cellular and Molecular Life Sciences 2015, 72, 2475–2489. [Google Scholar] [CrossRef]
- Pescatore, L.A.; Gamarra, L.F.; Liberman, M. Multifaceted mechanisms of vascular calcification in aging. Arteriosclerosis, thrombosis, and vascular biology 2019, 39, 1307–1316. [Google Scholar] [CrossRef]
- Ren, S.-C.; Mao, N.; Yi, S.; Ma, X.; Zou, J.-Q.; Tang, X.; Fan, J.-M. Vascular calcification in chronic kidney disease: an update and perspective. Aging and Disease 2022, 13, 673. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Dhalla, N.S. The role of pro-Inflammatory cytokines in the pathogenesis of cardiovascular disease. International Journal of Molecular Sciences 2024, 25, 1082. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Lim, S.; Park, S. Role of inflammation in arterial calcification. Korean Circulation Journal 2021, 51, 114–125. [Google Scholar] [CrossRef]
- Hao, N.; Zhou, Z.; Zhang, F.; Li, Y.; Hu, R.; Zou, J.; Zheng, R.; Wang, L.; Xu, L.; Tan, W. Interleukin-29 Accelerates Vascular Calcification via JAK2/STAT3/BMP2 Signaling. Journal of the American Heart Association 2023, 12, e027222. [Google Scholar] [CrossRef]
- Russo, M.P.; Grande-Ratti, M.F.; Burgos, M.A.; Molaro, A.A.; Bonella, M.B. Prevalence of diabetes, epidemiological characteristics and vascular complications. Archivos de cardiología de México 2023, 93, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Drumond, D.B. Avaliação da prevalência de calcificações vasculares e estimativa de risco cardiovascular baseados nos escores de Adragão e Kaupilla em transplantados renais. Universidade de São Paulo.
- Kang, J.-H.; Kawano, T.; Murata, M.; Toita, R. Vascular calcification and cellular signaling pathways as potential therapeutic targets. Life Sciences 2023, 122309. [Google Scholar] [CrossRef]
- Izzo, C.; Secondulfo, C.; Bilancio, G.; Visco, V.; Virtuoso, N.; Migliarino, S.; Ciccarelli, M.; Di Pietro, P.; La Mura, L.; Damato, A. Chronic Kidney Disease with Mineral Bone Disorder and Vascular Calcification: An Overview. Life 2024, 14, 418. [Google Scholar] [CrossRef] [PubMed]
- Tousoulis, D.; Kampoli, A.-M.; Tentolouris Nikolaos Papageorgiou, C.; Stefanadis, C. The role of nitric oxide on endothelial function. Current vascular pharmacology 2012, 10, 4–18. [Google Scholar] [CrossRef] [PubMed]
- Suvorava, T.; Metry, S.; Pick, S.; Kojda, G. Alterations in endothelial nitric oxide synthase activity and their relevance to blood pressure. Biochemical pharmacology 2022, 205, 115256. [Google Scholar] [CrossRef]
- Castellon, X.; Bogdanova, V. Chronic inflammatory diseases and endothelial dysfunction. Aging and disease 2016, 7, 81. [Google Scholar] [CrossRef]
- Higashi, Y. Roles of oxidative stress and inflammation in vascular endothelial dysfunction-related disease. Antioxidants 2022, 11, 1958. [Google Scholar] [CrossRef]
- Schulman, I.H.; Zhou, M.-S. Vascular insulin resistance: a potential link between cardiovascular and metabolic diseases. Current hypertension reports 2009, 11, 48–55. [Google Scholar] [CrossRef]
- Wu, H.; Ballantyne, C.M. Metabolic inflammation and insulin resistance in obesity. Circulation research 2020, 126, 1549–1564. [Google Scholar] [CrossRef] [PubMed]
- Claassen, J.A.; Thijssen, D.H.; Panerai, R.B.; Faraci, F.M. Regulation of cerebral blood flow in humans: physiology and clinical implications of autoregulation. Physiological reviews 2021, 101, 1487–1559. [Google Scholar] [CrossRef]
- Wang, S.; Tang, C.; Liu, Y.; Border, J.J.; Roman, R.J.; Fan, F. Impact of impaired cerebral blood flow autoregulation on cognitive impairment. Frontiers in Aging 2022, 3, 1077302. [Google Scholar] [CrossRef]
- Tohirova, J.; Shernazarov, F. Atherosclerosis: causes, symptoms, diagnosis, treatment and prevention. Science and innovation 2022, 1, 7–12. [Google Scholar]
- Alfarisi, H.A.H.; Mohamed, Z.B.H.; Ibrahim, M.B. Basic pathogenic mechanisms of atherosclerosis. Egyptian Journal of Basic and Applied Sciences 2020, 7, 116–125. [Google Scholar] [CrossRef]
- BUILDER, V. Cardiovascular Pathologies and Disorders. Mosby's Pathology for Massage Professionals-E-Book: Mosby's Pathology for Massage Professionals-E-Book, 2021; 234. [Google Scholar]
- Golledge, J. Update on the pathophysiology and medical treatment of peripheral artery disease. Nature reviews cardiology 2022, 19, 456–474. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, K.; Ninomiya, T. Stroke and cerebrovascular diseases in patients with chronic kidney disease. The Lancet Neurology 2014, 13, 823–833. [Google Scholar] [CrossRef]
- Zhao, Q.; Yan, T.; Chopp, M.; Venkat, P.; Chen, J. Brain–kidney interaction: renal dysfunction following ischemic stroke. Journal of Cerebral Blood Flow & Metabolism 2020, 40, 246–262. [Google Scholar]
- Makrantonaki, E.; Wlaschek, M.; Scharffetter-Kochanek, K. Pathogenesis of wound healing disorders in the elderly. JDDG: Journal der Deutschen Dermatologischen Gesellschaft 2017, 15, 255–275. [Google Scholar] [CrossRef] [PubMed]
- Bowers, S.; Franco, E. Chronic wounds: evaluation and management. American family physician 2020, 101, 159–166. [Google Scholar] [PubMed]
- Haller, H.L.; Sander, F.; Popp, D.; Rapp, M.; Hartmann, B.; Demircan, M.; Nischwitz, S.P.; Kamolz, L.P. Oxygen, pH, lactate, and metabolism—How old knowledge and new insights might be combined for new wound treatment. Medicina 2021, 57, 1190. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ding, B.-S. Comprehensive review of the vascular niche in regulating organ regeneration and fibrosis. Stem cells translational medicine 2022, 11, 1135–1142. [Google Scholar] [CrossRef]
- Gardener, H.; Wright, C.B.; Rundek, T.; Sacco, R.L. Brain health and shared risk factors for dementia and stroke. Nature Reviews Neurology 2015, 11, 651–657. [Google Scholar] [CrossRef]
- Bir, S.C.; Khan, M.W.; Javalkar, V.; Toledo, E.G.; Kelley, R.E. Emerging concepts in vascular dementia: a review. Journal of Stroke and Cerebrovascular Diseases 2021, 30, 105864. [Google Scholar] [CrossRef] [PubMed]
- Chojdak-Łukasiewicz, J.; Dziadkowiak, E.; Zimny, A.; Paradowski, B. Cerebral small vessel disease: A review. Advances in Clinical and Experimental Medicine 2021, 30, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Kalaria, R.N.; Corbett, A.; Ballard, C. Update on vascular dementia. Journal of geriatric psychiatry and neurology 2016, 29, 281–301. [Google Scholar] [CrossRef] [PubMed]
- Vasilijević, S.R.; Vuković, M.; Jerkić, L. Cognitive and language deficits in vascular dementia. Acta Medica Medianae 2021, 60. [Google Scholar] [CrossRef]
- D'Onofrio, G.; Sancarlo, D.; Addante, F.; Ciccone, F.; Cascavilla, L.; Paris, F.; Picoco, M.; Nuzzaci, C.; Elia, A.C.; Greco, A. Caregiver burden characterization in patients with Alzheimer's disease or vascular dementia. International journal of geriatric psychiatry 2015, 30, 891–899. [Google Scholar] [CrossRef]
- Xu, J.; Qiu, C. Worldwide economic costs and societal burden of dementia. Biomarkers for Preclinical Alzheimer’s Disease, 2018; 3-13. [Google Scholar]
- Béjot, Y.; Daubail, B.; Giroud, M. Epidemiology of stroke and transient ischemic attacks: Current knowledge and perspectives. Revue neurologique 2016, 172, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Lioutas, V.-A.; Ivan, C.S.; Himali, J.J.; Aparicio, H.J.; Leveille, T.; Romero, J.R.; Beiser, A.S.; Seshadri, S. Incidence of transient ischemic attack and association with long-term risk of stroke. Jama 2021, 325, 373–381. [Google Scholar] [CrossRef] [PubMed]
- Schorr, E.N.; Peden-McAlpine, C.; Treat-Jacobson, D.; Lindquist, R. Characterization of the peripheral artery disease symptom experience. Geriatric Nursing 2015, 36, 293–300. [Google Scholar] [CrossRef] [PubMed]
- Abola, M.T.B.; Evans, N.S.; Ratchford, E.V. Vascular disease patient information page: leg cramps. Vascular Medicine 2022, 27, 415–417. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.W.; Montgomery, P.S.; Wang, M.; Shen, B. Association between calf muscle oxygen saturation with ambulatory function and quality of life in symptomatic patients with peripheral artery disease. Journal of vascular surgery 2020, 72, 632–642. [Google Scholar] [CrossRef] [PubMed]
- Cerqueira, M.S.; Do Nascimento, J.D.S.; Maciel, D.G.; Barboza, J.A.M.; Vieira, W.H.D.B. Effects of blood flow restriction without additional exercise on strength reductions and muscular atrophy following immobilization: A systematic review. Journal of sport and health science 2020, 9, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Tibbs, D.J. Varicose veins and related disorders; Butterworth-Heinemann: 2013.
- Guo, S.a.; DiPietro, L.A. Factors affecting wound healing. Journal of dental research 2010, 89, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, H.N.; Hardman, M.J. Wound healing: cellular mechanisms and pathological outcomes. Open biology 2020, 10, 200223. [Google Scholar] [CrossRef]
- Hess, D.A.; Verma, S.; Bhatt, D.; Bakbak, E.; Terenzi, D.C.; Puar, P.; Cosentino, F. Vascular repair and regeneration in cardiometabolic diseases. European Heart Journal 2022, 43, 450–459. [Google Scholar] [CrossRef]
- Evans, C.E.; Iruela-Arispe, M.L.; Zhao, Y.-Y. Mechanisms of endothelial regeneration and vascular repair and their application to regenerative medicine. The American journal of pathology 2021, 191, 52–65. [Google Scholar] [CrossRef]
- Marco, M.; Valentina, I.; Daniele, M.; Valerio, D.R.; Andrea, P.; Roberto, G.; Laura, G.; Luigi, U. Peripheral arterial disease in persons with diabetic foot ulceration: a current comprehensive overview. Current Diabetes Reviews 2021, 17, 474–485. [Google Scholar] [CrossRef] [PubMed]
- Doughty, K.N.; Del Pilar, N.X.; Audette, A.; Katz, D.L. Lifestyle medicine and the management of cardiovascular disease. Current cardiology reports 2017, 19, 1–10. [Google Scholar] [CrossRef]
- Blumenthal, J.A.; Hinderliter, A.L.; Smith, P.J.; Mabe, S.; Watkins, L.L.; Craighead, L.; Ingle, K.; Tyson, C.; Lin, P.-H.; Kraus, W.E. Effects of lifestyle modification on patients with resistant hypertension: results of the TRIUMPH randomized clinical trial. Circulation 2021, 144, 1212–1226. [Google Scholar] [CrossRef] [PubMed]
- Sadat-Ebrahimi, S.R.; Parnianfard, N.; Vahed, N.; Babaei, H.; Ghojazadeh, M.; Tang, S.; Azarpazhooh, A. An evidence-based systematic review of the off-label uses of lisinopril. British journal of clinical pharmacology 2018, 84, 2502–2521. [Google Scholar] [CrossRef] [PubMed]
- Beltran Romero, L.M.; Vallejo-Vaz, A.J.; Muniz Grijalvo, O. Cerebrovascular disease and statins. Frontiers in Cardiovascular Medicine 2021, 8, 778740. [Google Scholar] [CrossRef] [PubMed]
- Liao, X.-Z.; Fu, Y.-H.; Ma, J.-Y.; Zhu, W.-G.; Yuan, P. Non-vitamin K antagonist oral anticoagulants versus warfarin in patients with atrial fibrillation and peripheral artery disease: a systematic review and meta-analysis. Cardiovascular Drugs and Therapy 2020, 34, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Mogul, A.; Leppien, E.E.; Laughlin, E.; Spinler, S.A. Aspirin for primary prevention of cardiovascular disease: a review of recent literature and updated guideline recommendations. Expert Opinion on Pharmacotherapy 2021, 22, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Mishima, E.; Suzuki, T.; Ito, S. Selection of patients for angioplasty for treatment of atherosclerotic renovascular disease: predicting responsive patients. American Journal of Hypertension 2020, 33, 391–401. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Zeng, Z.; He, Y.; Zhao, R.; Niu, J.; Sun, H.; Li, S.; Dong, J.; Jing, Z.; Zhou, J. Recent advances in targeted therapy for inflammatory vascular diseases. Journal of Controlled Release 2024, 372, 730–750. [Google Scholar] [CrossRef]
- Yu, X.; Wang, B.; Qiu, C.; He, Y.; Chen, T.; Zhu, Q.; Li, Z.; Wu, Z. A systematic review and meta-analysis of primary bypass surgery compared with bypass surgery after endovascular treatment in peripheral artery disease patients. Journal of Vascular Surgery 2023. [Google Scholar] [CrossRef]
- Minniti, G.; Laurindo, L.F.; Machado, N.M.; Duarte, L.G.; Guiguer, E.L.; Araujo, A.C.; Dias, J.A.; Lamas, C.B.; Nunes, Y.C.; Bechara, M.D. Mangifera indica L., By-Products, and Mangiferin on Cardio-Metabolic and Other Health Conditions: A Systematic Review. Life 2023, 13, 2270. [Google Scholar] [CrossRef] [PubMed]
- Nunes, Y.C.; de Oliveira Santos, G.; Machado, N.M.; Otoboni, A.M.; Laurindo, L.F.; Bishayee, A.; Fimognari, C.; Bishayee, A.; Barbalho, S.M. Peanut (Arachis hypogaea L.) seeds and by-products in metabolic syndrome and cardiovascular disorders: A systematic review of clinical studies. Phytomedicine, 2023; 155170. [Google Scholar]
- Takeda, L.N.; Laurindo, L.F.; Guiguer, E.L.; Bishayee, A.; Araújo, A.C.; Ubeda, L.C.C.; Goulart, R.d.A.; Barbalho, S.M. Psidium guajava L.: A systematic review of the multifaceted health benefits and economic importance. Food Reviews International 2023, 39, 4333–4363. [Google Scholar] [CrossRef]
- Laurindo, L.; Barbalho, S.; Araújo, A. Açaí (Euterpe oleracea Mart.) in health and disease: a critical review. Nutrients 15 (4): 989. 2023.
- Imaizumi, V.M.; Laurindo, L.F.; Manzan, B.; Guiguer, E.L.; Oshiiwa, M.; Otoboni, A.M.M.B.; Araujo, A.C.; Tofano, R.J.; Barbalho, S.M. Garlic: A systematic review of the effects on cardiovascular diseases. Critical Reviews in Food Science and Nutrition 2023, 63, 6797–6819. [Google Scholar] [CrossRef] [PubMed]
- Pagotto, G.L.d.O.; Santos, L.M.O.d.; Osman, N.; Lamas, C.B.; Laurindo, L.F.; Pomini, K.T.; Guissoni, L.M.; Lima, E.P.d.; Goulart, R.d.A.; Catharin, V.M.S. Ginkgo biloba: A Leaf of Hope in the Fight against Alzheimer’s Dementia: Clinical Trial Systematic Review. Antioxidants 2024, 13, 651. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Zhang, L.; Pan, J.; Shi, H.; Zhang, M.; Li, C. Advances in the study of the vascular protective effects and molecular mechanisms of hawthorn (Crataegus anamesa Sarg.) extracts in cardiovascular diseases. Food & Function 2023, 14, 5870–5890. [Google Scholar]
- Cloud, A.; Vilcins, D.; McEwen, B. The effect of hawthorn (Crataegus spp.) on blood pressure: a systematic review. Advances in Integrative Medicine 2020, 7, 167–175. [Google Scholar] [CrossRef]
- Dwivedi, S.; Chopra, D. Revisiting Terminalia arjuna–an ancient cardiovascular drug. Journal of traditional and complementary medicine 2014, 4, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Thakur, S.; Kaurav, H.; Chaudhary, G. Terminalia arjuna: a potential ayurvedic cardio tonic. International Journal for Research in Applied Sciences and Biotechnology 2021, 8, 227–236. [Google Scholar] [CrossRef]
- Dutta, A.; Das, M. Terminalia arjuna and Cardiovascular Protection: A Comprehensive Overview. Ancient and Traditional Foods, Plants, Herbs and Spices used in Cardiovascular Health and Disease, 93–110.
- Trombetti, A.; Reid, K.; Hars, M.; Herrmann, F.; Pasha, E.; Phillips, E.; Fielding, R. Age-associated declines in muscle mass, strength, power, and physical performance: impact on fear of falling and quality of life. Osteoporosis international 2016, 27, 463–471. [Google Scholar] [CrossRef]
- Larsson, L.; Degens, H.; Li, M.; Salviati, L.; Lee, Y.I.; Thompson, W.; Kirkland, J.L.; Sandri, M. Sarcopenia: aging-related loss of muscle mass and function. Physiological reviews 2019, 99, 427–511. [Google Scholar] [CrossRef]
- Rodrigues, F.; Domingos, C.; Monteiro, D.; Morouço, P. A review on aging, sarcopenia, falls, and resistance training in community-dwelling older adults. International journal of environmental research and public health 2022, 19, 874. [Google Scholar] [CrossRef] [PubMed]
- Marzetti, E.; Calvani, R.; Bernabei, R.; Leeuwenburgh, C. Apoptosis in skeletal myocytes: a potential target for interventions against sarcopenia and physical frailty–a mini-review. Gerontology 2012, 58, 99–106. [Google Scholar] [CrossRef]
- Dao, T.; Green, A.E.; Kim, Y.A.; Bae, S.-J.; Ha, K.-T.; Gariani, K.; Lee, M.-r.; Menzies, K.J.; Ryu, D. Sarcopenia and muscle aging: a brief overview. Endocrinology and metabolism 2020, 35, 716–732. [Google Scholar] [CrossRef]
- Wiedmer, P.; Jung, T.; Castro, J.P.; Pomatto, L.C.; Sun, P.Y.; Davies, K.J.; Grune, T. Sarcopenia–Molecular mechanisms and open questions. Ageing research reviews 2021, 65, 101200. [Google Scholar] [CrossRef]
- Ranieri, F.; Di Lazzaro, V. The role of motor neuron drive in muscle fatigue. Neuromuscular Disorders 2012, 22, S157–S161. [Google Scholar] [CrossRef]
- Lepley, A.S.; Lepley, L.K. Mechanisms of arthrogenic muscle inhibition. Journal of sport rehabilitation 2021, 31, 707–716. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.E. Hormones and sarcopenia. Current pharmaceutical design 2017, 23, 4484–4492. [Google Scholar] [CrossRef]
- Tezze, C.; Sandri, M.; Tessari, P. Anabolic resistance in the pathogenesis of sarcopenia in the elderly: role of nutrition and exercise in young and old people. Nutrients 2023, 15, 4073. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Xie, W.; Fu, X.; Lu, W.; Jin, H.; Lai, J.; Zhang, A.; Yu, Y.; Li, Y.; Xiao, W. Inflammation and sarcopenia: a focus on circulating inflammatory cytokines. Experimental Gerontology 2021, 154, 111544. [Google Scholar] [CrossRef]
- Wang, J.; Leung, K.-S.; Chow, S.K.-H.; Cheung, W.-H. Inflammation and age-associated skeletal muscle deterioration (sarcopaenia). Journal of orthopaedic translation 2017, 10, 94–101. [Google Scholar] [CrossRef]
- Sharma, B.; Dabur, R. Role of pro-inflammatory cytokines in regulation of skeletal muscle metabolism: a systematic review. Current medicinal chemistry 2020, 27, 2161–2188. [Google Scholar] [CrossRef] [PubMed]
- Mahmoodi, M.; Shateri, Z.; Nazari, S.A.; Nouri, M.; Nasimi, N.; Sohrabi, Z.; Dabbaghmanesh, M.H. Association between oxidative balance score and sarcopenia in older adults. Scientific Reports 2024, 14, 5362. [Google Scholar] [CrossRef] [PubMed]
- Alhmly, H.F.; Fielding, R.A. A critical review of current worldwide definitions of sarcopenia. Calcified Tissue International 2024, 114, 74–81. [Google Scholar] [CrossRef]
- Nishikawa, H.; Asai, A.; Fukunishi, S.; Nishiguchi, S.; Higuchi, K. Metabolic syndrome and sarcopenia. Nutrients 2021, 13, 3519. [Google Scholar] [CrossRef] [PubMed]
- Capel, F.; Pinel, A.; Walrand, S. Accumulation of intramuscular toxic lipids, a link between fat mass accumulation and sarcopenia. OCL Oilseeds and fats crops and lipids 2019, 26, np. [Google Scholar] [CrossRef]
- de Lima, E.P.; Moretti Jr, R.C.; Torres Pomini, K.; Laurindo, L.F.; Sloan, K.P.; Sloan, L.A.; Castro, M.V.M.d.; Baldi Jr, E.; Ferraz, B.F.R.; de Souza Bastos Mazuqueli Pereira, E. Glycolipid Metabolic Disorders, Metainflammation, Oxidative Stress, and Cardiovascular Diseases: Unraveling Pathways. Biology 2024, 13, 519. [Google Scholar] [CrossRef]
- Masenga, S.K.; Kabwe, L.S.; Chakulya, M.; Kirabo, A. Mechanisms of oxidative stress in metabolic syndrome. International journal of molecular sciences 2023, 24, 7898. [Google Scholar] [CrossRef]
- Cho, H.H. Investigation of mechanisms responsible for myocyte cell death in metabolic syndrome. 2017.
- Delafontaine, P.; Yoshida, T. The renin-angiotensin system and the biology of skeletal muscle: mechanisms of muscle wasting in chronic disease states. Transactions of the American Clinical and Climatological Association 2016, 127, 245. [Google Scholar]
- Sasaki, K.-i.; Fukumoto, Y. Sarcopenia as a comorbidity of cardiovascular disease. Journal of cardiology 2022, 79, 596–604. [Google Scholar] [CrossRef]
- He, Y.; Xie, W.; Li, H.; Jin, H.; Zhang, Y.; Li, Y. Cellular senescence in sarcopenia: possible mechanisms and therapeutic potential. Frontiers in Cell and Developmental Biology 2022, 9, 793088. [Google Scholar] [CrossRef]
- Granic, A.; Suetterlin, K.; Shavlakadze, T.; Grounds, M.D.; Sayer, A.A. Hallmarks of ageing in human skeletal muscle and implications for understanding the pathophysiology of sarcopenia in women and men. Clinical Science 2023, 137, 1721–1751. [Google Scholar] [CrossRef] [PubMed]
- Priego, T.; Martín, A.; González-Hedström, D.; Granado, M.; López-Calderón, A. Role of hormones in sarcopenia. In Vitamins and hormones, Elsevier: 2021; Vol. 115, pp. 535-570.
- White, T.A.; LeBrasseur, N.K. Myostatin and sarcopenia: opportunities and challenges-a mini-review. Gerontology 2014, 60, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Yasar, E.; Tek, N.A.; Tekbudak, M.Y.; Yurtdaş, G.; Gülbahar, Ö.; Uyar, G.Ö.; Ural, Z.; Çelik, Ö.M.; Erten, Y. The relationship between myostatin, inflammatory markers, and sarcopenia in patients with chronic kidney disease. Journal of Renal Nutrition 2022, 32, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.N.; Yoon, S.S. Sarcopenia: neurological point of view. Journal of bone metabolism 2017, 24, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Delbono, O.; Rodrigues, A.C.Z.; Bonilla, H.J.; Messi, M.L. The emerging role of the sympathetic nervous system in skeletal muscle motor innervation and sarcopenia. Ageing research reviews 2021, 67, 101305. [Google Scholar] [CrossRef]
- Daily, J.W.; Park, S. Sarcopenia is a cause and consequence of metabolic dysregulation in aging humans: effects of gut dysbiosis, glucose dysregulation, diet and lifestyle. Cells 2022, 11, 338. [Google Scholar] [CrossRef]
- Antuña, E.; Cachán-Vega, C.; Bermejo-Millo, J.C.; Potes, Y.; Caballero, B.; Vega-Naredo, I.; Coto-Montes, A.; Garcia-Gonzalez, C. Inflammaging: implications in sarcopenia. International journal of molecular sciences 2022, 23, 15039. [Google Scholar] [CrossRef]
- Ooi, H.; Welch, C. Obstacles to the Early Diagnosis and Management of Sarcopenia: Current Perspectives. Clinical Interventions in Aging 2024, 323–332. [Google Scholar] [CrossRef]
- Qiu, C.; Yang, X.; Yu, P. Sarcopenia: Pathophysiology and Treatment Strategies. Endocrine, Metabolic & Immune Disorders-Drug Targets (Formerly Current Drug Targets-Immune, Endocrine & Metabolic Disorders) 2024, 24, 31–38. [Google Scholar]
- Hirsch, C.H.; Hategan, A. Physiology and pathology of aging. In Geriatric Psychiatry: A Case-Based Textbook, Springer: 2024; pp. 3-29.
- Rubin, J.; Nambi, V.; Chambless, L.E.; Steffes, M.W.; Juraschek, S.P.; Coresh, J.; Sharrett, A.R.; Selvin, E. Hyperglycemia and arterial stiffness: the atherosclerosis risk in the communities study. Atherosclerosis 2012, 225, 246–251. [Google Scholar] [CrossRef]
- Kim, H.-L. Arterial stiffness and hypertension. Clinical hypertension 2023, 29, 31. [Google Scholar] [CrossRef] [PubMed]
- Ikonomidis, I.; Thymis, J. The vicious circle of arterial elasticity, blood pressure, glycemia, and renal function. Hypertension Research 2023, 46, 1599–1602. [Google Scholar] [CrossRef] [PubMed]
- Laurent, S.; Agabiti-Rosei, C.; Bruno, R.M.; Rizzoni, D. Microcirculation and macrocirculation in hypertension: a dangerous cross-link? Hypertension 2022, 79, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Tsuchikura, S.; Shoji, T.; Kimoto, E.; Shinohara, K.; Hatsuda, S.; Koyama, H.; Emoto, M.; Nishizawa, Y. Central versus peripheral arterial stiffness in association with coronary, cerebral and peripheral arterial disease. Atherosclerosis 2010, 211, 480–485. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; McEniery, C.M. Central versus peripheral artery stiffening and cardiovascular risk. Arteriosclerosis, Thrombosis, and Vascular Biology 2020, 40, 1028–1033. [Google Scholar] [CrossRef] [PubMed]
- Fantin, F.; Giani, A.; Manzato, G.; Zampieri, A.; Comellato, G.; Urbani, S.; Zoico, E.; Mazzali, G.; Zamboni, M. Sarcopenia, sarcopenic obesity, and arterial stiffness among older adults. Frontiers in Cardiovascular Medicine 2024, 11. [Google Scholar] [CrossRef]
- Erkan, M.; OZCAN, S.G.G.; BEKIRCAVUSOGLU, A.F.; CATALKAYA, S. Sarcopenia is Associated with Aortic Arch Calcification on Chest X-ray in Unselected Middle-and Older-Aged Patients. 2024.
- Aziz, M.; Jacob, A.; Matsuda, A.; Wang, P. milk fat globule-EGF factor 8 expression, function and plausible signal transduction in resolving inflammation. Apoptosis 2011, 16, 1077–1086. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.-Q.; Zhan, J.-K.; Liu, Y.-S. Roles and mechanisms of MFG-E8 in vascular aging-related diseases. Ageing Research Reviews 2020, 64, 101176. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Jiang, M.; Fang, Z.T.; Chen, Z.; Li, L.; Liu, Z.; Wang, J.; Yin, X.; Wang, J.; Wu, M. Current evidence of synaptic dysfunction after stroke: Cellular and molecular mechanisms. CNS Neuroscience & Therapeutics 2024, 30, e14744. [Google Scholar]
- Danese, E.; Montagnana, M.; Lippi, G. Proteomics and frailty: a clinical overview. Expert Review of Proteomics 2018, 15, 657–664. [Google Scholar] [CrossRef]
- Tuo, Q.z.; Zhang, S.t.; Lei, P. Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Medicinal research reviews 2022, 42, 259–305. [Google Scholar] [CrossRef] [PubMed]
- Gunsch, G.; Paradie, E.; Townsend, K.L. Peripheral nervous system glia in support of metabolic tissue functions. Trends in Endocrinology & Metabolism, 2023. [Google Scholar]
- Kuzuya, M. Drug-related sarcopenia as a secondary sarcopenia. Geriatrics & Gerontology International 2024, 24, 195–203. [Google Scholar]
- Swidan, S. Drug-Related Sarcopenia. In Metabolic Therapies in Orthopedics, Second Edition, CRC Press: 2018; pp. 239-249.
- Matsumoto, A.; Yoshimura, Y.; Nagano, F.; Shimazu, S.; Shiraishi, A.; Kido, Y.; Bise, T. Potentially inappropriate medications are negatively associated with functional recovery in patients with sarcopenia after stroke. Aging Clinical and Experimental Research 2022, 34, 2845–2855. [Google Scholar] [CrossRef]
- Saied, S.; Prokopidis, K.; Adenaya, A.; Isanejad, M.; Sankaranarayanan, R. Is sarcopenia an associated factor of increased administration of specific medications in patients with heart failure? A systematic review and meta-analysis. Frontiers in Cardiovascular Medicine 2024, 11. [Google Scholar] [CrossRef] [PubMed]
- Zamboni, M.; Mazzali, G.; Brunelli, A.; Saatchi, T.; Urbani, S.; Giani, A.; Rossi, A.P.; Zoico, E.; Fantin, F. The role of crosstalk between adipose cells and myocytes in the pathogenesis of sarcopenic obesity in the elderly. Cells 2022, 11, 3361. [Google Scholar] [CrossRef]
- Ciudin, A.; Simó-Servat, A.; Palmas, F.; Barahona, M.J. Sarcopenic obesity: a new challenge in the clinical practice. Endocrinología, Diabetes y Nutrición (English ed.) 2020, 67, 672–681. [Google Scholar] [CrossRef]
- Benz, E.; Pinel, A.; Guillet, C.; Capel, F.; Pereira, B.; De Antonio, M.; Pouget, M.; Cruz-Jentoft, A.J.; Eglseer, D.; Topinkova, E. , et al. Sarcopenia and Sarcopenic Obesity and Mortality Among Older People. JAMA Netw Open 2024, 7, e243604. [Google Scholar] [CrossRef]
- Silveira, E.A.; da Silva Filho, R.R.; Spexoto, M.C.B.; Haghighatdoost, F.; Sarrafzadegan, N.; de Oliveira, C. The role of sarcopenic obesity in cancer and cardiovascular disease: a synthesis of the evidence on pathophysiological aspects and clinical implications. International journal of molecular sciences 2021, 22, 4339. [Google Scholar] [CrossRef]
- Evans, K.; Abdelhafiz, D.; Abdelhafiz, A.H. Sarcopenic obesity as a determinant of cardiovascular disease risk in older people: a systematic review. Postgraduate medicine 2021, 133, 831–842. [Google Scholar] [CrossRef]
- Bellafronte, N.T.; de Queirós Mattoso Ono, A.; Chiarello, P.G. Sarcopenic obesity in chronic kidney disease: challenges in diagnosis using different diagnostic criteria. Medical Principles and Practice 2021, 30, 477–486. [Google Scholar] [CrossRef]
- Lynch, G.; Murphy, C.; de Marco Castro, E.; Roche, H. Inflammation and metabolism: the role of adiposity in sarcopenic obesity. Proceedings of the Nutrition Society 2020, 79, 435–447. [Google Scholar] [CrossRef]
- Gonzalez, A.; Simon, F.; Achiardi, O.; Vilos, C.; Cabrera, D.; Cabello-Verrugio, C. The critical role of oxidative stress in sarcopenic obesity. Oxidative Medicine and Cellular Longevity 2021, 2021, 4493817. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.-h.; Choi, K.M. Sarcopenic obesity, insulin resistance, and their implications in cardiovascular and metabolic consequences. International journal of molecular sciences 2020, 21, 494. [Google Scholar] [CrossRef]
- Jurdana, M.; Cemazar, M. Sarcopenic obesity in cancer. Radiology and Oncology 2024, 58, 1–8. [Google Scholar] [CrossRef]
- Carneiro, I.P.; Mazurak, V.C.; Prado, C.M. Clinical implications of sarcopenic obesity in cancer. Current oncology reports 2016, 18, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Chou, H.-H.; Lai, T.-J.; Yen, C.-H.; Chang, P.-S.; Pan, J.-C.; Lin, P.-T. Sarcopenic obesity tendency and nutritional status is related to the risk of sarcopenia, frailty, depression and quality of life in patients with dementia. International journal of environmental research and public health 2022, 19, 2492. [Google Scholar] [CrossRef]
- Zhang, J.; Na, X.; Li, Z.; Ji, J.S.; Li, G.; Yang, H.; Yang, Y.; Tan, Y.; Zhang, J.; Xi, M. Sarcopenic obesity is part of obesity paradox in dementia development: evidence from a population-based cohort study. BMC medicine 2024, 22, 133. [Google Scholar] [CrossRef]
- Long, D.; Liu, M.; Li, H.; Song, J.; Jiang, X.; Wang, G.; Yang, X. Dysbacteriosis induces abnormal neurogenesis via LPS in a pathway requiring NF-κB/IL-6. Pharmacological Research 2021, 167, 105543. [Google Scholar] [CrossRef] [PubMed]
- Lyra e Silva, N.M.; Gonçalves, R.A.; Pascoal, T.A.; Lima-Filho, R.A.; Resende, E.d.P.F.; Vieira, E.L.; Teixeira, A.L.; de Souza, L.C.; Peny, J.A.; Fortuna, J.T. Pro-inflammatory interleukin-6 signaling links cognitive impairments and peripheral metabolic alterations in Alzheimer’s disease. Translational psychiatry 2021, 11, 251. [Google Scholar] [CrossRef]
- Mucher, P.; Batmyagmar, D.; Perkmann, T.; Repl, M.; Radakovics, A.; Ponocny-Seliger, E.; Lukas, I.; Fritzer-Szekeres, M.; Lehrner, J.; Knogler, T. Basal myokine levels are associated with quality of life and depressed mood in older adults. Psychophysiology 2021, 58, e13799. [Google Scholar] [CrossRef]
- Sadier, N.S.; El Hajjar, F.; Al Sabouri, A.A.K.; Abou-Abbas, L.; Siomava, N.; Almutary, A.G.; Tambuwala, M.M. Irisin: An unveiled bridge between physical exercise and a healthy brain. Life Sciences 2024, 339, 122393. [Google Scholar] [CrossRef] [PubMed]
- Pignataro, P.; Dicarlo, M.; Zerlotin, R.; Zecca, C.; Dell’Abate, M.T.; Buccoliero, C.; Logroscino, G.; Colucci, S.; Grano, M. FNDC5/Irisin system in neuroinflammation and neurodegenerative diseases: update and novel perspective. International Journal of Molecular Sciences 2021, 22, 1605. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Chen, N.; Kang, X.; Hu, Y.; Shi, S. Irisin alleviates FFA induced β-cell insulin resistance and inflammatory response through activating PI3K/AKT/FOXO1 signaling pathway. Endocrine 2022, 1–12. [Google Scholar]
- Wang, Y.; Tian, M.; Tan, J.; Pei, X.; Lu, C.; Xin, Y.; Deng, S.; Zhao, F.; Gao, Y.; Gong, Y. Irisin ameliorates neuroinflammation and neuronal apoptosis through integrin αVβ5/AMPK signaling pathway after intracerebral hemorrhage in mice. Journal of Neuroinflammation 2022, 19, 82. [Google Scholar] [CrossRef] [PubMed]
- Fang, M.; Liu, C.; Liu, Y.; Tang, G.; Li, C.; Guo, L. Association between sarcopenia with incident cardio-cerebrovascular disease: A systematic review and meta-analysis. BioScience Trends 2023, 17, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Khadra, D.; Itani, L.; Tannir, H.; Kreidieh, D.; El Masri, D.; El Ghoch, M. Association between sarcopenic obesity and higher risk of type 2 diabetes in adults: a systematic review and meta-analysis. World journal of diabetes 2019, 10, 311. [Google Scholar] [CrossRef] [PubMed]
- Pilati, I.; Slee, A.; Frost, R. Sarcopenic obesity and depression: a systematic review. The Journal of Frailty & Aging, 2022; 1–8. [Google Scholar]
- Kueck, P.J.; Morris, J.K.; Stanford, J.A. Current Perspectives: Obesity and Neurodegeneration-Links and Risks. Degenerative neurological and neuromuscular disease 2024, 111–129. [Google Scholar] [CrossRef] [PubMed]
- Jung, C.-H.; Mok, J.-O. Recent Updates on Associations among Various Obesity Metrics and Cognitive Impairment: from Body Mass Index to Sarcopenic Obesity. Journal of Obesity & Metabolic Syndrome 2022, 31, 287. [Google Scholar]
- Mastelić, T.; Višić, V.; Marasović, T.B.; Milanović, M.; Kralj, Ž.; Burilović, E.; Pernat, M.; Vukorepa, D.; Rančić, N.; Baković, M. Sarkopenija kod osoba oboljelih od demencije/Sarcopenia in Persons Suffering from Dementia.
- Booranasuksakul, U.; Macdonald, I.A.; Stephan, B.C.; Siervo, M. Body Composition, Sarcopenic Obesity, and Cognitive Function in Older Adults: Findings From the National Health and Nutrition Examination Survey (NHANES) 1999–2002 and 2011–2014. Journal of the American Nutrition Association 2024, 1–14. [Google Scholar] [CrossRef]
- Damluji, A.A.; Alfaraidhy, M.; AlHajri, N.; Rohant, N.N.; Kumar, M.; Al Malouf, C.; Bahrainy, S.; Ji Kwak, M.; Batchelor, W.B.; Forman, D.E. Sarcopenia and cardiovascular diseases. Circulation 2023, 147, 1534–1553. [Google Scholar] [CrossRef]
- He, N.; Zhang, Y.; Zhang, L.; Zhang, S.; Ye, H. Relationship between sarcopenia and cardiovascular diseases in the elderly: an overview. Frontiers in cardiovascular medicine 2021, 8, 743710. [Google Scholar] [CrossRef] [PubMed]
- Pizzimenti, M.; Meyer, A.; Charles, A.L.; Giannini, M.; Chakfé, N.; Lejay, A.; Geny, B. Sarcopenia and peripheral arterial disease: a systematic review. Journal of cachexia, sarcopenia and muscle 2020, 11, 866–886. [Google Scholar] [CrossRef] [PubMed]
- Cretoiu, S.M.; Zugravu, C.A. Nutritional considerations in preventing muscle atrophy. Muscle Atrophy 2018, 497–528. [Google Scholar]
- Muñoz-Cánoves, P.; Neves, J.; Sousa-Victor, P. Understanding muscle regenerative decline with aging: new approaches to bring back youthfulness to aged stem cells. The FEBS journal 2020, 287, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Mojikon, F.D.; Kasimin, M.E.; Molujin, A.M.; Gansau, J.A.; Jawan, R. Probiotication of Nutritious Fruit and Vegetable Juices: An Alternative to Dairy-Based Probiotic Functional Products. Nutrients 2022, 14. [Google Scholar] [CrossRef]
- Kim, K.; Anderson, E.M.; Scali, S.T.; Ryan, T.E. Skeletal muscle mitochondrial dysfunction and oxidative stress in peripheral arterial disease: a unifying mechanism and therapeutic target. Antioxidants 2020, 9, 1304. [Google Scholar] [CrossRef] [PubMed]
- Damiano, S.; Muscariello, E.; La Rosa, G.; Di Maro, M.; Mondola, P.; Santillo, M. Dual role of reactive oxygen species in muscle function: can antioxidant dietary supplements counteract age-related sarcopenia? International journal of molecular sciences 2019, 20, 3815. [Google Scholar] [CrossRef] [PubMed]
- Thoma, A.; Akter-Miah, T.; Reade, R.L.; Lightfoot, A.P. Targeting reactive oxygen species (ROS) to combat the age-related loss of muscle mass and function. Biogerontology 2020, 21, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Poggiogalle, E.; Mendes, I.; Ong, B.; Prado, C.M.; Mocciaro, G.; Mazidi, M.; Lubrano, C.; Lenzi, A.; Donini, L.M.; Siervo, M. Sarcopenic obesity and insulin resistance: Application of novel body composition models. Nutrition 2020, 75, 110765. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-j.; Zhu, C.-f. Causal relationship between insulin resistance and sarcopenia. Diabetology & metabolic syndrome 2023, 15, 46. [Google Scholar]
- Cleasby, M.E.; Jamieson, P.; Atherton, P.J. Insulin resistance and sarcopenia: mechanistic links between common co-morbidities. Journal of Endocrinology 2016. [Google Scholar] [CrossRef]
- Barbalho, S.M.; Flato, U.A.P.; Tofano, R.J.; Goulart, R.d.A.; Guiguer, E.L.; Detregiachi, C.R.P.; Buchaim, D.V.; Araújo, A.C.; Buchaim, R.L.; Reina, F.T.R. Physical exercise and myokines: relationships with sarcopenia and cardiovascular complications. International journal of molecular sciences 2020, 21, 3607. [Google Scholar] [CrossRef] [PubMed]
- Laurindo, L.F.; Camargo, F.C.; Perfeito, A.; Ciano, B.B.; Coelho, C.T.; Apolinário, G.A.; Vicentin, I.D.N.; Andreasi, J.C.; Boaro, B.L.; Tofano, R.J. Examining the Correlations between the Visceral Adiposity Index and Various Anthropometric, Biochemical, and Insulin Resistance Parameters in Brazilians: Findings from a Cross-Sectional Study. 2024.
- Lopez-Candales, A.; Burgos, P.M.H.; Hernandez-Suarez, D.F.; Harris, D. Linking chronic inflammation with cardiovascular disease: from normal aging to the metabolic syndrome. Journal of nature and science 2017, 3. [Google Scholar]
- Pansuria, M.; Xi, H.; Li, L.; Yang, X.-F.; Wang, H. Insulin resistance, metabolic stress, and atherosclerosis. Frontiers in bioscience (Scholar edition) 2012, 4, 916. [Google Scholar]
- Poznyak, A.; Grechko, A.V.; Poggio, P.; Myasoedova, V.A.; Alfieri, V.; Orekhov, A.N. The diabetes mellitus–atherosclerosis connection: The role of lipid and glucose metabolism and chronic inflammation. International journal of molecular sciences 2020, 21, 1835. [Google Scholar] [CrossRef] [PubMed]
- Silveira Rossi, J.L.; Barbalho, S.M.; Reverete de Araujo, R.; Bechara, M.D.; Sloan, K.P.; Sloan, L.A. Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors. Diabetes/metabolism research and reviews 2022, 38, e3502. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, H.; Sakuma, K. Comprehensive approach to sarcopenia treatment. Current clinical pharmacology 2014, 9, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, T. Selected methods of resistance training for prevention and treatment of sarcopenia. Cells 2022, 11, 1389. [Google Scholar] [CrossRef] [PubMed]
- Malafarina, V.; Uriz-Otano, F.; Iniesta, R.; Gil-Guerrero, L. Effectiveness of nutritional supplementation on muscle mass in treatment of sarcopenia in old age: a systematic review. Journal of the American Medical Directors Association 2013, 14, 10–17. [Google Scholar] [CrossRef]
- Kwak, J.Y.; Kwon, K.-S. Pharmacological interventions for treatment of sarcopenia: current status of drug development for sarcopenia. Annals of geriatric medicine and research 2019, 23, 98. [Google Scholar] [CrossRef]
- Ispoglou, T.; Wilson, O.; McCullough, D.; Aldrich, L.; Ferentinos, P.; Lyall, G.; Stavropoulos-Kalinoglou, A.; Duckworth, L.; Brown, M.A.; Sutton, L. A narrative review of non-pharmacological strategies for managing sarcopenia in older adults with cardiovascular and metabolic diseases. Biology 2023, 12, 892. [Google Scholar] [CrossRef]
- Rivera, F.B.; Escolano, B.T.; Nifas, F.M.; Choi, S.; Carado, G.P.; Lerma, E.; Vijayaraghavan, K.; Yu, M.G. Interrelationship of Sarcopenia and Cardiovascular Diseases: A review of potential mechanisms and management. Journal of the ASEAN Federation of Endocrine Societies 2024, 39, 69. [Google Scholar] [CrossRef] [PubMed]
- Fábrega-Cuadros, R.; Hita-Contreras, F.; Martínez-Amat, A.; Jiménez-García, J.D.; Achalandabaso-Ochoa, A.; Lavilla-Lerma, L.; García-Garro, P.A.; Álvarez-Salvago, F.; Aibar-Almazán, A. Associations between the severity of sarcopenia and health-related quality of life in community-dwelling middle-aged and older adults. International Journal of Environmental Research and Public Health 2021, 18, 8026. [Google Scholar] [CrossRef]
- Reis, J.M.S.; Alves, L.S.; Vogt, B.P. According to revised EWGSOP sarcopenia consensus cut-off points, low physical function is associated with nutritional status and quality of life in maintenance hemodialysis patients. Journal of Renal Nutrition 2022, 32, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Haider, S.; Luger, E.; Kapan, A.; Titze, S.; Lackinger, C.; Schindler, K.E.; Dorner, T.E. Associations between daily physical activity, handgrip strength, muscle mass, physical performance and quality of life in prefrail and frail community-dwelling older adults. Quality of Life Research 2016, 25, 3129–3138. [Google Scholar] [CrossRef]
- Swan, L.; Martin, N.; Horgan, N.F.; Warters, A.; O’Sullivan, M. Assessing Sarcopenia, Frailty, and Malnutrition in Community-Dwelling Dependant Older Adults—An Exploratory Home-Based Study of an Underserved Group in Research. International Journal of Environmental Research and Public Health 2022, 19, 16133. [Google Scholar] [CrossRef]
- Liguori, I.; Russo, G.; Aran, L.; Bulli, G.; Curcio, F.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D. Sarcopenia: assessment of disease burden and strategies to improve outcomes. Clinical interventions in aging 2018, 913–927. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Chen, C. Towards a mechanistic understanding of depression, anxiety, and their comorbidity: Perspectives from cognitive neuroscience. Frontiers Media SA: 2023; Vol. 17, p 1268156.
- Nogueira, G.; Fidelix, Y.L.; Nascimento, J.R.A.d.; Oliveira, D.V.d. Physical activity and sedentary behavior as predictors of fear of falling and risk of sarcopenia in older adults. Fisioterapia em Movimento 2023, 36, e36118. [Google Scholar] [CrossRef]
- Öztürk, G.B.; Kiliç, C.; Bozkurt, M.; Karan, M.A. Prevalence and associates of fear of falling among community-dwelling older adults. The Journal of nutrition, health and aging 2021, 25, 433–439. [Google Scholar] [CrossRef]
- Manrique-Espinoza, B.; Salinas-Rodríguez, A.; Rosas-Carrasco, O.; Gutiérrez-Robledo, L.M.; Avila-Funes, J.A. Sarcopenia is associated with physical and mental components of health-related quality of life in older adults. Journal of the American medical directors association 2017, 18, 636–e631. [Google Scholar] [CrossRef]
- Bruyère, O.; Beaudart, C.; Ethgen, O.; Reginster, J.-Y.; Locquet, M. The health economics burden of sarcopenia: a systematic review. Maturitas 2019, 119, 61–69. [Google Scholar] [CrossRef]
- Mijnarends, D.; Schols, J.; Halfens, R.; Meijers, J.; Luiking, Y.; Verlaan, S.; Evers, S. Burden-of-illness of Dutch community-dwelling older adults with sarcopenia: Health related outcomes and costs. European Geriatric Medicine 2016, 7, 276–284. [Google Scholar] [CrossRef]
- Denison, H.J.; Cooper, C.; Sayer, A.A.; Robinson, S.M. Prevention and optimal management of sarcopenia: a review of combined exercise and nutrition interventions to improve muscle outcomes in older people. Clinical interventions in aging 2015, 859–869. [Google Scholar]
- Negm, A.M.; Lee, J.; Hamidian, R.; Jones, C.A.; Khadaroo, R.G. Management of sarcopenia: a network meta-analysis of randomized controlled trials. Journal of the American Medical Directors Association 2022, 23, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.-Q.; Xiao, G.-L.; Hu, P.-W.; He, Y.-Q.; Lv, S.; Xiao, W.-F. Possible sarcopenia: early screening and intervention-narrative review. Annals of Palliative Medicine 2020, 9, 4283293–4284293. [Google Scholar] [CrossRef] [PubMed]
- Cannataro, R.; Cione, E.; Bonilla, D.A.; Cerullo, G.; Angelini, F.; D'Antona, G. Strength training in elderly: An useful tool against sarcopenia. Frontiers in sports and active living 2022, 4, 950949. [Google Scholar] [CrossRef] [PubMed]
- Barbalho, S.M.; de Alvares Goulart, R.; Minniti, G.; Bechara, M.D.; de Castro, M.V.M.; Dias, J.A.; Laurindo, L.F. Unraveling the rationale and conducting a comprehensive assessment of KD025 (Belumosudil) as a candidate drug for inhibiting adipogenic differentiation—a systematic review. Naunyn-Schmiedeberg's Archives of Pharmacology 2024, 397, 2681–2699. [Google Scholar] [CrossRef]
- Mellen, R.; Girotto, O.; Marques, E.; Laurindo, L.; Grippa, P.; Mendes, C. Insights into Pathogenesis, Nutritional and Drug Approach in Sarcopenia: A Systematic Review. Biomedicines 2023, 11, 1, 136. [Google Scholar] [CrossRef]
- Coelho-Júnior, H.J.; Calvani, R.; Picca, A.; Tosato, M.; Landi, F.; Marzetti, E. Engagement in aerobic exercise is associated with a reduced prevalence of sarcopenia and severe sarcopenia in Italian older adults. Journal of Personalized Medicine 2023, 13, 655. [Google Scholar] [CrossRef]
- Aoki, K.; Konno, M.; Honda, K.; Abe, T.; Nagata, T.; Takehara, M.; Sugasawa, T.; Takekoshi, K.; Ohmori, H. Habitual aerobic exercise diminishes the effects of sarcopenia in senescence-accelerated mice Prone8 model. Geriatrics 2020, 5, 48. [Google Scholar] [CrossRef]
- Hickson, M. Nutritional interventions in sarcopenia: a critical review. Proceedings of the Nutrition Society 2015, 74, 378–386. [Google Scholar] [CrossRef] [PubMed]
- Damanti, S.; Azzolino, D.; Roncaglione, C.; Arosio, B.; Rossi, P.; Cesari, M. Efficacy of nutritional interventions as stand-alone or synergistic treatments with exercise for the management of sarcopenia. Nutrients 2019, 11, 1991. [Google Scholar] [CrossRef] [PubMed]
- Breen, L.; Phillips, S.M. Skeletal muscle protein metabolism in the elderly: Interventions to counteract the'anabolic resistance'of ageing. Nutrition & metabolism 2011, 8, 1–11. [Google Scholar]
- Barbalho, S.M.; Sloan, L.A.; Araujo, A.C.; Laurindo, L.F.; Sloan, K.P. Vitamin D and Its Role on Inflammation, Oxidative Stress and Cardiovascular Disease. In Lipophilic Vitamins in Health and Disease, Springer: 2024; pp. 291-311.
- Lalia, A. Omega-3 fatty acids to combat sarcopenia; College of Medicine-Mayo Clinic: 2016.
- Bruyère, O.; Reginster, J.-Y.; Beaudart, C. Lifestyle approaches to prevent and retard sarcopenia: A narrative review. Maturitas 2022, 161, 44–48. [Google Scholar] [CrossRef] [PubMed]
- Barazzoni, R.; Bischoff, S.; Boirie, Y.; Busetto, L.; Cederholm, T.; Dicker, D.; Toplak, H.; Van Gossum, A.; Yumuk, V.; Vettor, R. Sarcopenic obesity: time to meet the challenge. Obesity facts 2018, 11, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Picca, A.; Fanelli, F.; Calvani, R.; Mulè, G.; Pesce, V.; Sisto, A.; Pantanelli, C.; Bernabei, R.; Landi, F.; Marzetti, E. Gut dysbiosis and muscle aging: searching for novel targets against sarcopenia. Mediators of Inflammation 2018, 2018, 7026198. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Cheung, W.H.; Li, J.; Chow, S.K.H.; Yu, J.; Wong, S.H.; Ip, M.; Sung, J.J.Y.; Wong, R.M.Y. Understanding the gut microbiota and sarcopenia: a systematic review. Journal of cachexia, sarcopenia and muscle 2021, 12, 1393–1407. [Google Scholar] [CrossRef]
- Sakuma, K.; Hamada, K.; Yamaguchi, A.; Aoi, W. Current nutritional and pharmacological approaches for attenuating sarcopenia. Cells 2023, 12, 2422. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.-T.; Wang, J.-H. The therapeutic intervention of sex steroid hormones for sarcopenia. Frontiers in Medicine 2021, 8, 739251. [Google Scholar] [CrossRef]
- German, I.J.S.; Torres, K.; Andreo, J.C.; Shindo, J.; Dallantonia, C.; Haber, L.; Detregiachi, C.R.P.; Araujo, A.; Guiguer, E.L.; Girio, R. New Trends to Treat Muscular Atrophy: Systematic Review. 2023.
- Laurindo, L.F.; Barbalho, S.M.; Marquess, A.R.; Grecco, A.I.d.S.; Goulart, R.d.A.; Tofano, R.J.; Bishayee, A. Pomegranate (Punica granatum L.) and metabolic syndrome risk factors and outcomes: A systematic review of clinical studies. Nutrients 2022, 14, 1665. [Google Scholar] [CrossRef]
- Kim, A.; Park, S.-M.; Kim, N.S.; Lee, H. Ginsenoside Rc, an Active Component of Panax ginseng, Alleviates Oxidative Stress-Induced Muscle Atrophy via Improvement of Mitochondrial Biogenesis. Antioxidants 2023, 12, 1576. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Miccono, A.; Peroni, G.; Guerriero, F.; Morazzoni, P.; Riva, A.; Guido, D.; Perna, S. A systematic review on the effects of botanicals on skeletal muscle health in order to prevent sarcopenia. Evidence-Based Complementary and Alternative Medicine 2016, 2016, 5970367. [Google Scholar] [CrossRef] [PubMed]
- Oliynyk, S.; Oh, S. Actoprotective effect of ginseng: improving mental and physical performance. Journal of ginseng research 2013, 37, 144. [Google Scholar] [CrossRef]
- Lopresti, A.L.; Smith, S.J. Ashwagandha (Withania somnifera) for the treatment and enhancement of mental and physical conditions: A systematic review of human trials. Journal of Herbal Medicine 2021, 28, 100434. [Google Scholar] [CrossRef]
- Laurindo, L.F.; de Carvalho, G.M.; de Oliveira Zanuso, B.; Figueira, M.E.; Direito, R.; de Alvares Goulart, R.; Buglio, D.S.; Barbalho, S.M. Curcumin-based nanomedicines in the treatment of inflammatory and immunomodulated diseases: An evidence-based comprehensive review. Pharmaceutics 2023, 15, 229. [Google Scholar] [CrossRef]
- Silva, I.F.d.; Bragante, W.R.; Junior, R.C.M.; Laurindo, L.F.; Guiguer, E.L.; Araújo, A.C.; Fiorini, A.M.; Nicolau, C.C.; Oshiiwa, M.; Lima, E.P.d. Effects of Smallanthus sonchifolius Flour on Metabolic Parameters: A Systematic Review. Pharmaceuticals 2024, 17, 658. [Google Scholar] [CrossRef]
- Laurindo, L.F.; Rodrigues, V.D.; Minniti, G.; de Carvalho, A.C.A.; Zutin, T.L.M.; DeLiberto, L.K.; Bishayee, A.; Barbalho, S.M. Pomegranate (Punica granatum L.) phytochemicals target the components of metabolic syndrome. The Journal of Nutritional Biochemistry, 0967. [Google Scholar]
- German, I.J.S.; Pomini, K.T.; Andreo, J.C.; Shindo, J.V.T.C.; Castro, M.V.M.d.; Detregiachi, C.R.P.; Araújo, A.C.; Guiguer, E.L.; Fornari Laurindo, L.; Bueno, P.C.d.S. New Trends to Treat Muscular Atrophy: A Systematic Review of Epicatechin. Nutrients 2024, 16, 326. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, D.; Mao, Q.; Xia, H. Role of neuroinflammation in neurodegeneration development. Signal Transduction and Targeted Therapy 2023, 8, 267. [Google Scholar] [CrossRef]
- Ciurea, A.V.; Mohan, A.G.; Covache-Busuioc, R.-A.; Costin, H.-P.; Glavan, L.-A.; Corlatescu, A.-D.; Saceleanu, V.M. Unraveling molecular and genetic insights into neurodegenerative diseases: Advances in understanding Alzheimer’s, Parkinson’s, and Huntington’s diseases and amyotrophic lateral sclerosis. International journal of molecular sciences 2023, 24, 10809. [Google Scholar] [CrossRef]
- Tanaka, M.; Tuka, B.; Vécsei, L. Navigating the Neurobiology of Migraine: From Pathways to Potential Therapies. MDPI: 2024; Vol. 13, p 1098.
- Pluvinage, J.V.; Wyss-Coray, T. Systemic factors as mediators of brain homeostasis, ageing and neurodegeneration. Nature Reviews Neuroscience 2020, 21, 93–102. [Google Scholar] [CrossRef]
- Sheikh, A.M.; Yano, S.; Tabassum, S.; Nagai, A. The Role of the Vascular System in Degenerative Diseases: Mechanisms and Implications. International Journal of Molecular Sciences 2024, 25, 2169. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, M.D.; Kisler, K.; Montagne, A.; Toga, A.W.; Zlokovic, B.V. The role of brain vasculature in neurodegenerative disorders. Nature neuroscience 2018, 21, 1318–1331. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Wang, L.; Cheng, W.; Lv, J.; Guan, X.; Guo, T.; Wu, J.; Zhang, W.; Gao, T.; Liu, X. Two distinct trajectories of clinical and neurodegeneration events in Parkinson’s disease. npj Parkinson's Disease 2023, 9, 111. [Google Scholar] [CrossRef] [PubMed]
- Bartl, M.; Dakna, M.; Schade, S.; Otte, B.; Wicke, T.; Lang, E.; Starke, M.; Ebentheuer, J.; Weber, S.; Toischer, K. Blood markers of inflammation, neurodegeneration, and cardiovascular risk in early Parkinson's disease. Movement Disorders 2023, 38, 68–81. [Google Scholar] [CrossRef] [PubMed]
- Nim, S.; O’Hara, D.M.; Corbi-Verge, C.; Perez-Riba, A.; Fujisawa, K.; Kapadia, M.; Chau, H.; Albanese, F.; Pawar, G.; De Snoo, M.L. Disrupting the α-synuclein-ESCRT interaction with a peptide inhibitor mitigates neurodegeneration in preclinical models of Parkinson’s disease. Nature Communications 2023, 14, 2150. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Kuruvilla, A. Vascular parkinsonism: what makes it different? Postgraduate medical journal 2011, 87, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Jacob, M.A.; Cai, M.; Bergkamp, M.; Darweesh, S.K.; Gelissen, L.M.; Marques, J.; Norris, D.G.; Duering, M.; Esselink, R.A.; Tuladhar, A.M. Cerebral small vessel disease progression increases risk of incident parkinsonism. Annals of neurology 2023, 93, 1130–1141. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, C.; Xu, W.; Chen, J.; Tuo, J.; Wen, Y.; Huang, Z.; Zeng, R. Serum Sirtuin1 level decreases in Parkinson's disease and vascular parkinsonism: A prospective observational study. Clinical Neurology and Neurosurgery 2023, 225, 107595. [Google Scholar] [CrossRef] [PubMed]
- Oveisgharan, S.; Yu, L.; Poole, V.N.; Evia, A.M.; Barnes, L.L.; Schneider, J.A.; Arfanakis, K.; Bennett, D.A.; Buchman, A.S. Association of white matter hyperintensities with pathology and progression of parkinsonism in aging. JAMA neurology 2021, 78, 1494–1502. [Google Scholar] [CrossRef]
- Visser, A.E.; de Vries, N.M.; Richard, E.; Bloem, B.R. Tackling vascular risk factors as a possible disease modifying intervention in Parkinson’s disease. npj Parkinson's Disease 2024, 10, 50. [Google Scholar] [CrossRef]
- Camerino, I.; Ferreira, J.; Vonk, J.M.; Kessels, R.P.; de Leeuw, F.-E.; Roelofs, A.; Copland, D.; Piai, V. Systematic review and meta-analyses of word production abilities in dysfunction of the basal ganglia: Stroke, small vessel disease, Parkinson’s disease, and Huntington’s disease. Neuropsychology Review 2024, 34, 1–26. [Google Scholar] [CrossRef]
- Al-Bachari, S.; Naish, J.H.; Parker, G.J.; Emsley, H.C.; Parkes, L.M. Blood–brain barrier leakage is increased in Parkinson’s disease. Frontiers in physiology 2020, 11, 593026. [Google Scholar] [CrossRef]
- Miyazaki, I.; Asanuma, M. Neuron-astrocyte interactions in Parkinson’s disease. Cells 2020, 9, 2623. [Google Scholar] [CrossRef] [PubMed]
- Paolini Paoletti, F.; Simoni, S.; Parnetti, L.; Gaetani, L. The contribution of small vessel disease to neurodegeneration: focus on Alzheimer’s disease, Parkinson’s disease and multiple sclerosis. International journal of molecular sciences 2021, 22, 4958. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.L.; Ahn, J.H.; Chang, W.H.; Jung, W.; Kim, B.S.; Han, K.; Youn, J.; Shin, D.W. Risk of Parkinson disease in stroke patients: A nationwide cohort study in South Korea. European Journal of Neurology 2024, e16194. [Google Scholar] [CrossRef]
- Al-Kuraishy, H.M.; Jabir, M.S.; Al-Gareeb, A.I.; Albuhadily, A.K. New insight on the possible role of statins in Vascular Parkinsonism: A need for presumptive therapy. Ageing Research Reviews 2024, 102209. [Google Scholar] [CrossRef]
- Eisenmenger, L.B.; Peret, A.; Famakin, B.M.; Spahic, A.; Roberts, G.S.; Bockholt, J.H.; Johnson, K.M.; Paulsen, J.S. Vascular contributions to Alzheimer's disease. Translational Research 2023, 254, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Twait, E.L.; Gerritsen, L.; Moonen, J.E.; Verberk, I.M.; Teunissen, C.E.; Visser, P.J.; van der Flier, W.M.; Geerlings, M.I.; UCC SMART Study Group, t.N.C. Plasma Markers of Alzheimer's Disease Pathology, Neuronal Injury, and Astrocytic Activation and MRI Load of Vascular Pathology and Neurodegeneration: The SMART-MR Study. Journal of the American Heart Association 2024, e032134. [Google Scholar] [CrossRef]
- Lei, T.; Yang, Z.; Li, H.; Qin, M.; Gao, H. Interactions between nanoparticles and pathological changes of vascular in Alzheimer’s disease. Advanced Drug Delivery Reviews 2024, 115219. [Google Scholar] [CrossRef]
- Toribio-Fernandez, R.; Ceron, C.; Tristão-Pereira, C.; Fernandez-Nueda, I.; Perez-Castillo, A.; Fernandez-Ferro, J.; Moro, M.A.; Ibañez, B.; Fuster, V.; Cortes-Canteli, M. Oral anticoagulants: A plausible new treatment for Alzheimer's disease? British Journal of Pharmacology 2024, 181, 760–776. [Google Scholar] [CrossRef]
- Tu, M.-C.; Huang, S.-M.; Hsu, Y.-H.; Yang, J.-J.; Lin, C.-Y.; Kuo, L.-W. Joint diffusional kurtosis magnetic resonance imaging analysis of white matter and the thalamus to identify subcortical ischemic vascular disease. Scientific Reports 2024, 14, 2570. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Xing, H.; Zhang, Z. Microvascular Perfusion Imaging in Alzheimer's Disease. Journal of Integrative Neuroscience 2024, 23, 70. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, S.; Avenanti, A.; Vécsei, L.; Tanaka, M. Neural correlates and molecular mechanisms of memory and learning. MDPI: 2024; Vol. 25, p 2724.
- Liloia, D.; Zamfira, D.A.; Tanaka, M.; Manuello, J.; Crocetta, A.; Keller, R.; Cozzolino, M.; Duca, S.; Cauda, F.; Costa, T. Disentangling the role of gray matter volume and concentration in autism spectrum disorder: A meta-analytic investigation of 25 years of voxel-based morphometry research. Neuroscience & Biobehavioral Reviews.
- Martos, D.; Lőrinczi, B.; Szatmári, I.; Vécsei, L.; Tanaka, M. The Impact of C-3 Side Chain Modifications on Kynurenic Acid: A Behavioral Analysis of Its Analogs in the Motor Domain. International journal of molecular sciences 2024, 25, 3394. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, M.; Szabó, Á.; Körtési, T.; Szok, D.; Tajti, J.; Vécsei, L. From CGRP to PACAP, VIP, and beyond: unraveling the next chapters in migraine treatment. Cells 2023, 12, 2649. [Google Scholar] [CrossRef]
- Tajti, J.; Szok, D.; Csáti, A.; Szabó, Á.; Tanaka, M.; Vécsei, L. Exploring Novel Therapeutic Targets in the Common Pathogenic Factors in Migraine and Neuropathic Pain. Int J Mol Sci 2023, 24. [Google Scholar] [CrossRef]
- Fornari Laurindo, L.; Aparecido Dias, J.; Cressoni Araujo, A.; Torres Pomini, K.; Machado Galhardi, C.; Rucco Penteado Detregiachi, C.; Santos de Argollo Haber, L.; Donizeti Roque, D.; Dib Bechara, M.; Vialogo Marques de Castro, M. Immunological dimensions of neuroinflammation and microglial activation: exploring innovative immunomodulatory approaches to mitigate neuroinflammatory progression. Frontiers in Immunology 2024, 14, 1305933. [Google Scholar] [CrossRef] [PubMed]
- Valotto Neto, L.J.; Reverete de Araujo, M.; Moretti Junior, R.C.; Mendes Machado, N.; Joshi, R.K.; dos Santos Buglio, D.; Barbalho Lamas, C.; Direito, R.; Fornari Laurindo, L.; Tanaka, M. Investigating the Neuroprotective and Cognitive-Enhancing Effects of Bacopa monnieri: A Systematic Review Focused on Inflammation, Oxidative Stress, Mitochondrial Dysfunction, and Apoptosis. Antioxidants 2024, 13, 393. [Google Scholar] [CrossRef] [PubMed]
- Kalick, L.S.; Khan, H.A.; Maung, E.; Baez, Y.; Atkinson, A.N.; Wallace, C.E.; Day, F.; Delgadillo, B.E.; Mondal, A.; Watanapokasin, R.J.P.r. Mangosteen for malignancy prevention and intervention: Current evidence, molecular mechanisms, and future perspectives. 2023, 188, 106630.
- Bosso, H.; Barbalho, S.M.; de Alvares Goulart, R.; Otoboni, A. Green coffee: economic relevance and a systematic review of the effects on human health. Critical reviews in food science and nutrition 2023, 63, 394–410. [Google Scholar] [CrossRef] [PubMed]
- Barbalho, S.M.; Araújo, A.C.; Penteado Detregiachi, C.R.; Buchaim, D.V.; Guiguer É, L. The Potential Role of Medicinal Plants in Bone Regeneration. Alternative therapies in health and medicine 2019, 25, 32–39. [Google Scholar]
- Barbalho, S.M.; Bosso, H.; Salzedas-Pescinini, L.M.; de Alvares Goulart, R. Green tea: A possibility in the therapeutic approach of inflammatory bowel diseases?: Green tea and inflammatory bowel diseases. Complementary therapies in medicine 2019, 43, 148–153. [Google Scholar] [CrossRef]
- Bássoli, R.; Audi, D.; Ramalho, B.; Audi, M.; Quesada, K.; Barbalho, S. The Effects of Curcumin on Neurodegenerative Diseases: A Systematic Review. Journal of Herbal Medicine 2023, 42, 100771. [Google Scholar] [CrossRef]
- Marton, L.T.; Barbalho, S.M.; Sloan, K.P.; Sloan, L.A.; Goulart, R.d.A.; Araújo, A.C.; Bechara, M.D. Curcumin, autoimmune and inflammatory diseases: going beyond conventional therapy–a systematic review. Critical Reviews in Food Science and Nutrition 2022, 62, 2140–2157. [Google Scholar] [CrossRef] [PubMed]
- Buglio, D.S.; Marton, L.T.; Laurindo, L.F.; Guiguer, E.L.; Araújo, A.C.; Buchaim, R.L.; Goulart, R.d.A.; Rubira, C.J.; Barbalho, S.M. The role of resveratrol in mild cognitive impairment and Alzheimer's disease: a systematic review. Journal of Medicinal Food 2022, 25, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Laurindo, L.F.; Direito, R.; Bueno Otoboni, A.M.; Goulart, R.A.; Quesada, K.; Barbalho, S.M.J.F.R.I. Grape processing waste: effects on inflammatory bowel disease and colorectal cancer. 2024, 40, 336-369.
- Barbalho, S.M.; Bueno Ottoboni, A.M.M.; Fiorini, A.M.R.; Guiguer, E.L.; Nicolau, C.C.T.; Goulart, R.d.A.; Flato, U.A.P.J.C.r.i.f.s. ; nutrition. Grape juice or wine: which is the best option? 2020, 60, 3876–3889. [Google Scholar] [PubMed]
- Barbalho, S.; Direito, R.; Laurindo, L.; Marton, L.; Guiguer, E.; Goulart RdA, T.R.; Carvalho, A.; Flato, U.; Capelluppi Tofano, V. Ginkgo biloba in the aging process: A narrative review. Antioxidants, 11 (3), 525. 2022.
- Jászberényi, M.; Thurzó, B.; Bagosi, Z.; Vécsei, L.; Tanaka, M. The Orexin/Hypocretin System, the Peptidergic Regulator of Vigilance, Orchestrates Adaptation to Stress. Biomedicines 2024, 12, 448. [Google Scholar] [CrossRef]
- Tanaka, M.; Vécsei, L. A Decade of Dedication: Pioneering Perspectives on Neurological Diseases and Mental Illnesses. MDPI: 2024; Vol. 12, p 1083.
- Tanaka, M.; Battaglia, S.; Giménez-Llort, L.; Chen, C.; Hepsomali, P.; Avenanti, A.; Vécsei, L. Innovation at the intersection: emerging translational research in neurology and psychiatry. MDPI: 2024; Vol. 13, p 790.
- Tanaka, M.; Vécsei, L. From Lab to Life: Exploring Cutting-Edge Models for Neurological and Psychiatric Disorders. Biomedicines 2024, 12, 613. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, S.; Avenanti, A.; Vécsei, L.; Tanaka, M. Neurodegeneration in cognitive impairment and mood disorders for experimental, clinical and translational neuropsychiatry. MDPI: 2024; Vol. 12, p 574.
- Battaglia, S.; Schmidt, A.; Hassel, S.; Tanaka, M. Case reports in neuroimaging and stimulation. Frontiers Media SA: 2023; Vol. 14, p 1264669.
- Tanaka, M.; Diano, M.; Battaglia, S. Editorial: Insights into structural and functional organization of the brain: evidence from neuroimaging and non-invasive brain stimulation techniques. Front Psychiatry 2023, 14, 1225755. [Google Scholar] [CrossRef]
- Tanaka, M.; Szabó, Á.; Vécsei, L. Preclinical modeling in depression and anxiety: Current challenges and future research directions. Adv Clin Exp Med 2023, 32, 505–509. [Google Scholar] [CrossRef]



Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
