Submitted:
15 July 2024
Posted:
16 July 2024
Read the latest preprint version here
Abstract
Keywords:
MSC: 11A41; 11A25; 11N05; 11N37; 11N56; 11M06; 11M26
1. Introduction and Motivation
- Cubic Polynomial Inequality
- Higher-Degree Polynomial Inequality
- Quadratic Form involving sums of Prime Counting Function, and,
- Logarithmic Weighted Sum Inequality
2. Important Derivations Regarding
3. Inequalities Involving Polynomials in
3.1. Cubic Polynomial Inequality

3.2. Higher-Degree Polynomial Inequality

3.3. Quadratic Form Involving Sums of Prime Counting Function

3.4. Logarithmic Weighted Sum Inequality

4. A More General Framework
4.1. A Typical Example
4.1.1. deg(P), deg(Q) and deg(R) Are Odd
4.1.2. deg(P), deg(Q) and deg(R) Are Even


4.2. Furture Scope for Research
5. Application: Equivalence with Ramanujan’s Inequality
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berndt, Bruce C., Ramanujan’s Notebooks: Part I, Springer New York, NY, 1985. [CrossRef]
- Ramanujan Aiyangar, Srinivasa, and Bruce C Berndt, Ramanujan’s Notebooks: Part IV, New York: Springer-Verlag, 1994. [CrossRef]
- Adrian, W. Dudek, David J. Platt, On Solving a Curious Inequality of Ramanujan, Experimental Mathematics, 2015; 24, 289–294. [Google Scholar] [CrossRef]
- E. C. Titchmarsh, The Theory of the Riemann Zeta-function, Oxford University Press, 1951. Second edition revised by D. R. Heath-Brown, published by Oxford University Press, 1986. [CrossRef]
- De, Subham. On proving an Inequality of Ramanujan using Explicit Order Estimates of the Mertens Function, Preprints 2024. [CrossRef]
- L. Schoenfeld, Sharper bounds for the Chebyshev Functions θ(x) and ψ(x). II, Mathematics of Computation, vol. 30, no. 134, pp. 337-360. [CrossRef]
- A. E. Ingham, The distribution of prime numbers, Cambridge University Press, 1932. Reprinted by Stechert-Hafner, 1964, and (with a foreword by R. C. Vaughan) by Cambridge University Press, 1990. [CrossRef]
- F. Dress, M. F. Dress, M. El Marraki, Fonction sommatoire de la fonction de Mobius. 2, Majorations asymptotiques elementaires, Exp. Math. 2 (1993) 99-112. [CrossRef]
- E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Vol. 2 (of 2), Teubner, 1909. Reprinted by Chelsea, 1953. [CrossRef]
- T. M. Apostol, Introduction to Analytic Number Theory, Springer, 1976. [CrossRef]
- Jameson, G.J.O. The Prime Number Theorem, Cambridge; Cambridge University Press, London Mathematical Society student texts: Cambridge ; New York, 2003; Vol. 53. [Google Scholar] [CrossRef]
- Olver, F. W. J. , Asymptotics and Special Functions, Academic Press, New York, 1974. [CrossRef]
- De, Subham, On the proof of the Prime Number Theorem using Order Estimates for the Chebyshev Theta Function, International Journal of Science and Research (IJSR), Vol. 12 Issue 11, Nov. 2023, pp. 1677-1691.
- L Ahlfors, Complex Analysis, McGraw-Hill Education, 3rd edition, Jan. 1, 1979. [CrossRef]
- Mehdi Hassani, “On an Inequality of Ramanujan Concerning the Prime Counting Function”, Ramanujan Journal 28 (2012), 435–442. [CrossRef]
- Ramanujan, S, “Collected Papers”, Chelsea, New York, 1962.
- Hardy, G. H. A formula of Ramanujan in the theory of primes1. 1. London Math. Soc. 1937, 12, 94–98. [Google Scholar] [CrossRef]
- Hardy, G. H. , Collected Papers, vol. II, Clarendon Press, Oxford, 1967.
- Axler, Christian. On Ramanujan’s prime counting inequality. arXiv 2022, arXiv:2207.02486. [Google Scholar]
- M. J. Mossinghoff, T. S. M. J. Mossinghoff, T. S. Nonnegative Trigonometric Polynomials and a Zero-Free Region for the Riemann Zeta-Function 2014, arXiv:1410.3926. [Google Scholar]
- T. S. Trudgian, Updating the Error Term in the Prime Number Theorem, Ramanujan J., 2014.
- T. Oliveira e Silva, Tables ofValues of π(x) and π2(x), Available online: http://www.ieeta.pt/∼tos/primes.html, 2012.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
