Submitted:
30 April 2024
Posted:
02 May 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Numerical Modeling
- -
- Root Mean Square Error (𝑅𝑀𝑆𝐸) given by Equation 3, the lower its value, the greater the agreement between the numerical and experimental results.
- -
- Willmott's Concordance Index () (Equation 4) determines the accuracy of the method and indicates how far the estimated values are from the observed values. This index ranges from 0, for no agreement, to 1, for perfect agreement.
- -
- Dispersion Index ( represents a measure of relative error (Equation 5).
- -
- represents the systematic deviation from the actual value (Equation 6).
- -
- Person's Correlation Coefficient () given by Equation 7.
- -
- Performance Index () expressed by Equation 8.where:
2.3. Metamodeling
3. Results and Discussion
3.1. Deterministic Approach

3.1. Probabilistic Approach
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gruijthuijsen MFJ. Validation of the wave prediction model SWAN using field data from Lake George, Australia. [Internet] [Thesis]. [Faculty of Civil Engineering and Geosciences, Delft University of Technology, The Netherlands, 1996.]; 1996. Available from: https://repository.tudelft.nl/islandora/object/uuid%3Aa8a1face-a0ef-4307-85cf-7931c92bb6eb.
- Booij N, Holthuijsen LH, Ris RC. THE “SWAN” WAVE MODEL FOR SHALLOW WATER. Coastal Engineering. 1996 Jan 29;1(25):668–76. [CrossRef]
- Booij N, Ris RC, Holthuijsen LH. A third-generation wave model for coastal regions: 1. Model description and validation. Journal of Geophysical Research: Oceans [Internet]. 1999 Apr 15 [cited 2019 Sep 5];104(C4):7649–66. Available from: http://iodlabs.ucsd.edu/falk/modeling/swan1_jgr99.pdf.
- Mao M, Westhuysen van der, Xia M, Schwab DJ, Chawla A. Modeling wind waves from deep to shallow waters in Lake Michigan using unstructured SWAN. Journal of Geophysical Research: Oceans. 2016 Jun 1;121(6):3836–65. [CrossRef]
- Nikishova A, Kalyuzhnaya A, Boukhanovsky A, Hoekstra A. Uncertainty quantification and sensitivity analysis applied to the wind wave model SWAN. Environmental Modelling & Software. 2017 Sep;95:344–57. [CrossRef]
- Lemke N, Fontoura JAS, Calliari LJ, Ferreira NM. ESTIMATIVA DE CENÁRIOS CARACTERÍSTICOS DE ONDAS NA ENSEADA DE SÃO LOURENÇO DO SUL, LAGOA DOS PATOS – RS. Exatas & Engenharia. 2018 Feb 22;8(20).
- Marinho C, Neto JA, Nicolodi JL, Lemke N, Fontoura josé AS. Wave regime characterization in the northern sector of Patos Lagoon, Rio Grande do Sul, Brazil. OCEAN AND COASTAL RESEARCH. 2020 Jan 1;68. [CrossRef]
- Mattosinho G de O, Ferreira F de O, Maciel G de F, Vieira AS, Yuri Taglieri Sáo. Meteorological-hydrodynamic model coupling for safe inland navigation of waterway stretches in dam reservoirs, using a scarce database. Brazilian Journal of Water Resources. 2022;27(e1).
- Alves JH, Tolman HL, Roland A, Abdolali A, Ardhuin F, Mann G, et al. NOAA’s Great Lakes Wave Prediction System: A Successful Framework for Accelerating the Transition of Innovations to Operations. AMERICAN METEOROLOGICAL SOCIETY (BAMS). 2022 Dec 14;(104):E837–50. [CrossRef]
- Shu Z, Zhang J, Wang L, Jin J, Cui N, Wang G, et al. Evaluation of the impact of multi-source uncertainties on meteorological and hydrological ensemble forecasting. Engineering. 2022 Jul;24. [CrossRef]
- Zhang W, Zhao H, Chen G, Yang J. Assessing the performance of SWAN model for wave simulations in the Bay of Bengal. Ocean Engineering. 2023 Oct 1;285:115295–5. [CrossRef]
- Sapiega P, Zalewska T, Struzik P. Application of SWAN model for wave forecasting in the southern Baltic Sea supplemented with measurement and satellite data. Environmental Modelling & Software. 2023 Jan;163:105624. [CrossRef]
- Majidi AG, Ramos V, Amarouche K, Santos PR, Neves L das , Pinto FT. Assessing the impact of wave model calibration in the uncertainty of wave energy estimation. Renewable Energy. 2023 Aug 1;212:415–29. [CrossRef]
- Diebold M, Heller P. Scaling wind fields to estimate extreme wave heights in mountainous lakes. Journal of Applied Water Engineering and Research. 2017 Apr 23;7(1):1–9. [CrossRef]
- Marques M, Andrade FO. Automated computation of two-dimensional fetch fields: case study of the Salto Caxias reservoir in southern Brazil. Lake and Reservoir Management. 2017 Jan 2;33(1):62–73. [CrossRef]
- Mattosinho G de O, Maciel G de F, Ferreira F de O, Vieira AS. Dissipação de energia de ondas dela vegetação em recintos fechados. In: Proceedings of the IAHR XXVIII Congreso Latinoamericano de Hidráulica . Buenos Aires, Argentina; 2018.
- Różyński G. Local Wave Energy Dissipation and Morphological Beach Characteristics along a Northernmost Segment of the Polish Coast. Archives of Hydro-Engineering and Environmental Mechanics. 2018 Dec 1;65(2):91–108. [CrossRef]
- Jalil A, Li YP, Zhang K, Gao X, Wang W, KHAN HOS, et al. Wind-induced hydrodynamic changes impact on sediment resuspension for large, shallow Lake Taihu, China. International Journal of Sediment Research. 2019 Jun 1;34(3):205–15. [CrossRef]
- Li J, Zang J, Liu S, Jia W, Chen Q. Numerical investigation of wave propagation and transformation over a submerged reef. Coastal Engineering Journal. 2019 May 2;61(3):363–79. [CrossRef]
- Mattosinho G de O, Maciel G de F, Vieira AS. O modelo Swan-Veg como ferramenta útil na previsão de ondas em reservatórios de barragens. Brazilian Journal of Development. 2019;5(7):8618–28.
- Holanda FS, Wanderley L de L, Mendonça B de S, Santos LDV, Rocha IP, Pedrotti A. Formação de ondas e os processos erosivos nas margens do lago da UHE Xingó. Revista Brasileira de Geografia Física. 2020 Apr 20;13(2):887–7.
- Jin KR, Ji ZG. Calibration and verification of a spectral wind–wave model for Lake Okeechobee. Ocean Engineering. 2001 May 1;28(5):571–84. [CrossRef]
- Moeini MH, Etemad-Shahidi A. WAVE PARAMETER HINDCASTING IN A LAKE USING THE SWAN MODEL. Scientia Iranica. 2009 Apr 1;16(2):156–64.
- Vieira AS, Fortes JC, Maciel G de F. Comparative analysis of wind generated waves on the Ilha Solteira lake, by using numerical models OndisaCad and Swan. In: 5th SCACR International Short Conference on APPLIED COASTAL RESEARCH. COASTAL RESEARCH; 2011.
- Vieira AS. Análises, aplicações e validações–numérico/experimentais do modelo SWAN em áreas restritas e ao largo [Thesis]. Aleph. [FACULDADE DE ENGENHARIA DE ILHA SOLTEIRA, PROGRAMA DE POS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA, UNIVERSIDADE ESTADUAL PAULISTA ”JULIO DE MESQUITA FILHO”]; 2013. p. 251p.
- Mattosinho G de O. Dissipação de Energia de Ondas Geradas por Ventos em Reservatórios de Barragens, devido à presença de Vegetação [Dissertação (Mestre em Engenharia Mecânica)]. [Universidade Estadual Paulista (UNESP), Faculdade de Engenharia de Ilha Solteira]; 2016. p. 85.
- Mattosinho G de O, Mateus Barbosa Nishigima, Ferreira F de O, Evandro Fernandes Cunha, Maciel G de F. Modelagem de ondas em reservatórios: inovações para otimização dos usos múltiplos do reservatório de ilha solteira. Peer Review. 2023;5(13):271–90.
- Trovati LR. PRODUÇÃO DE ONDAS INDUZIDAS PELO VENTO NO LAGO DE ILHA SOLTEIRA [Internet]. Ilha Solteira: Universidade Estadual Paulista (UNESP,) Faculdade de Engenharia , Laboratório de Hidrologia e Hidrometria; 2001 p. 1–61. Available from: https://www.feis.unesp.br/Home/departamentos/engenhariacivil/hidrologialh/rel_final_ondisa1.pdf.
- Trovati LR. Projeto ONDISA5: Hidrovia Tietê–Paraná: alerta de vento e ondas para segurança da navegação: relatório final. Ilha Solteira: Universidade Estadual Paulista (UNESP), Faculdade de Engenharia, Laboratório de Hidrologia e Hidrometria; 2011 Jun.
- Fortes CJ, Pinheiro L, Santos JA, Neves MG, Capitão R. SOPRO – Pacote integrado de modelos de avaliação dos efeitos das ondas em portos. Tecnologias da Água. 2006;1:51–61.
- Lemke N, Fontoura JAS, Calliari LJ, Aguiar DF, Melo E, Nicolodi JL, et al. Estudo comparativo entre modelagem e medições de ondas na Lagoa dos Patos - RS, Brasil. In: XI Simpósio sobre Ondas, Marés, Engenharia Oceânica e Oceanografia por Satélite (XI OMARSAT). Arraial do Cabo, RJ: Instituto de Estudos do Mar Almirante Paulo Moreira.; 2015.
- Simão CE. Estudo do Padrão de Ondulações na Lagoa dos Patos utilizando o modelo SWAN (DELFT3D), RS, Brasil [Dissertation]. [ Universidade Federal do Rio Grande (FURG)]; 2016.
- Lemke N, Calliari LJ, Fontoura josé AS, Aguiar DF. Wave directional measurement in Patos Lagoon, RS, Brazil. Brazilian Journal of Water Resources. 2017 Jan 1;22(0). [CrossRef]
- Lima GMV, Fontoura JAS, Lemke N, Da Silva MJB. Estimativa do Transporte Sedimentar Induzido por Ondas de Norte na Porção Sul da Margem Oeste do Canal do Canal de Acesso ao Porto do Rio Grande (4a Secção da Barra do Rio Grande, RS). Revista Interdisciplinar de Pesquisa em Engenharia. 2019 Feb 12;5(1):177–85.
- Lemke N, Calliari LJ, Fontoura josé AS, Serpa CG, Silva M. Morfodinâmica da foz do Arroio Carahá em laguna costeira micromaré (Lagoa dos Patos, sul do Brasil). Pesquisas em Geociências. 2021 Sep 30;48(3).
- Marelli S, Lüthen N, Sudret B. UQLAB USER MANUAL POLYNOMIAL CHAOS EXPANSIONS [Internet]. Zurich, Switzerland: Chair of Risk, Safety and Uncertainty Quantification, ETH Zurich, ; 2022. Available from: https://www.uqlab.com/pce-user-manual.
- Hernandez FBT. Torres de transmissão de energia caem em Ilha Solteira - VENTO FORTE CAUSOU A QUEDA [Internet]. www.youtube.com. 2010 [cited 2022 Jul 31]. Available from: https://www.youtube.com/watch?v=-7aUYZA0XpQ.
- Hernandez FBT. TEMPORAL PREJUDICA GERAÇÃO DE ENERGIA ELÉTRICA EM ILHA SOLTEIRA [Internet]. UNESP - Área de Hidráulica e Irrigação Unesp.br. 2010 [cited 2022 Jul 31]. Available from: https://www2.feis.unesp.br/irrigacao/temmais_com_19out10.php.
- Maciel G de F, Vieira AS, Fortes CJ, Cunha EF, Ferreira F de O, Fiorot GH. Aplicação do Modelo Numérico SWAN à Geração e Propagação de Ondas Geradas por Vento em Recintos Fechados . In: XXV Congreso Latinoamericano de Hidráulica. San José, Costa Rica.: IAHR; 2012.
- Mattosinho G.O, Nishigima M.B, Ferreira F de O, Maciel G de F. MODELOS DE PREVISÃO DE ALTURAS DE ONDAS: ESTUDO DE CASO COM MODELOS DE SEGUNDA E TERCEIRA GERAÇÃO. In: Proceedings of the 29th IAHR LAD Congress. México: IAHR; 2021.
- The SWAN team. SCIENTIFIC AND TECHNICAL DOCUMENTATION. Delft, The Netherlands: Environmental Fluid Mechanics Section, Environmental Fluid Mechanics Section, Delft University of Technology; 2020.
- ASME (The American Society of Mechanical Engineers). Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications. Journal of Fluids Engineering. 2008;130(7):078001.
- ASME (The American Society of Mechanical Engineers). Verification & Validation in Computational Fluid Dynamics & Heat Transfer - ASME [Internet]. www.asme.org. 2009. Available from: https://www.asme.org/codes-standards/find-codes-standards/v-v-20-standard-verification-validation-computational-fluid-dynamics-heat-transfer.
- The SWAN team. USER MANUAL SWAN Cycle III version 41.31. Delft, The Netherlands: Environmental Fluid Mechanics Section, Faculty of Civil Engineering and Geosciences, Delft University of Technology; 2020.
- Willmott CJ, Ackleson SG, Davis RE, Feddema JJ, Klink KM, Legates DR, et al. Statistics for the evaluation and comparison of models. Journal of Geophysical Research. 1985;90(C5):8995. [CrossRef]
- Soize C. Uncertainty Quantification: An Accelerated Course with Advanced Applications in Computational Engineering [Internet]. Softcover reprint of the original 1st ed. 2017 edition. Amazon. Springer; 2018 [cited 2023 Jul 3]. Available from: https://www.amazon.com/Uncertainty-Quantification-Applications-Computational-Interdisciplinary/dp/3319853724.
- Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, et al. Global Sensitivity Analysis. The Primer. John Wiley & Sons, Ltd. 2007 Dec 18;
- Sobol IM, Shukman BV. Random and quasirandom sequences: Numerical estimates of uniformity of distribution. Mathematical and Computer Modelling [Internet]. 1993 Oct 1 [cited 2023 Jul 3];18(8):39–45. Available from: https://www.sciencedirect.com/science/article/pii/089571779390160Z?via%3Dihub . [CrossRef]
- Crestaux T, Maitre OL, Martinez JM. Polynomial chaos expansion for sensitivity analysis. Reliability Engineering & System Safety. 2009 Jul 1;94(7):1161–72. [CrossRef]
- Palar PS, Zuhal LR, Shimoyama K, Tsuchiya T. Global sensitivity analysis via multi-fidelity polynomial chaos expansion. Reliability Engineering & System Safety. 2018 Feb 1;170:175–90. [CrossRef]
- Marelli S, Sudret B. UQLab: A Framework for Uncertainty Quantification in Matlab. Second International Conference on Vulnerability and Risk Analysis and Management (ICVRAM) and the Sixth International Symposium on Uncertainty, Modeling, and Analysis (ISUMA). 2014 Jul 7;2554–63.
- Nagel JB, Rieckermann J, Sudret B. Principal component analysis and sparse polynomial chaos expansions for global sensitivity analysis and model calibration: Application to urban drainage simulation. Reliability Engineering & System Safety. 2020 Mar;195:106737. [CrossRef]
- Nispel A, Ekwaro-Osire S, Dias JP, Cunha A. Uncertainty Quantification for Fatigue Life of Offshore Wind Turbine Structure. ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg. 2021 Jul 12;7(4). [CrossRef]
- Coastal Engineering Research Center (CERC). SHORE PROTECTION MANUAL VOLUME 1 [Internet]. Vol. 1, TUDelft. Washington, DC 20314: US Army Corps of Engineers; 1984 p. 1–652. Available from: https://repository.tudelft.nl/islandora/object/uuid%3A98791127-e7ae-40a1-b850-67d575fa1289.
- Rogers WE, Babanin AV, Wang DW. Observation-Consistent Input and Whitecapping Dissipation in a Model for Wind-Generated Surface Waves: Description and Simple Calculations. Journal of Atmospheric and Oceanic Technology [Internet]. 2012 Sep 1 [cited 2022 Nov 20];29(9):1329–46. Available from: https://journals.ametsoc.org/view/journals/atot/29/9/jtech-d-11-00092_1.xml . [CrossRef]



















| MESH | X COORD. [UTM] | Y COORD. [UTM] | ||
| 100 m | 458710 | 7742040 | 521 | 387 |
| 150 m | 445905 | 7741400 | 541 | 310 |
| 250 m | 459645 | 7742090 | 208 | 155 |
| 1000 m | 456680 | 7741700 | 58 | 33 |
| Variables and parameters | Values |
| Wind speed | 5.0 m/s |
| Mesh1, Mesh2, Mesh3 | 100, 150, 250 [m] |
| No. of nodes X, Y (Mesh1) | 521, 387 |
| No. of nodes X, Y(Mesh2) | 541, 310 |
| No. of nodes X, Y(Mesh3) | 263, 174 |
| ( | 0.178, 0.177, 0.180 [m] |
| 100, 150, 250 | |
| 1.50, 1.63 (OK, | |
| 0.179 [m] | |
| 0.007 | |
| 0.006 | |
| 1.65% |
| Data | Mesh 1000 m | Mesh 250 m | Mesh 150 m | Mesh 100 m |
| (pressure sensor) | 0.0 a 0.39 m | 0.0 a 0.39 m | 0.0 a 0.39 m | 0.0 a 0.39 m |
| (SWAN) | 0.0 a 0.71 m | 0.0 a 0.70 m | 0.0 a 0.69 m | 0.0 a 0.69 m |
| 0.08 m | 0.08 m | 0.08 m | 0.08 m | |
| 0.04 m | 0.04 m | 0.04 m | 0.04 m | |
| average pressure sensor | 0.10 m | 0.10 m | 0.10 m | 0.10 m |
| average SWAN | 0.14 m | 0.14 m | 0.14 m | 0.14 m |
| 0.76 | 0.80 | 0.82 | 0.83 | |
| 0.82 | 0.81 | 0.81 | 0.80 | |
| 0.81 | 0.81 | 0.79 | 0.79 | |
| 0.67 | 0.65 | 0.64 | 0.63 |
| Dados | GEN3 KOM | GEN3 JANS | GEN3 WESTH | |
| (pressure sensor) | 0.0 a 0.39 m | 0.0 a 0.39 m | 0.0 a 0.39 m | |
| (SWAN) | 0.0 a 0.71 m | 0.0 a 0.77 m | 0.0 a 1.59 m | |
| 0.08 m | 0.06 m | 0.20 m | ||
| 0.04 m | 0.02 m | 0.11 m | ||
| average pressure sensor | 0.10 m | 0.10 m | 0.10 m | |
| average SWAN | 0.14 m | 0.12 m | 0.21 m | |
| 0.76 | 0.64 | 2.01 | ||
| 0.82 | 0.86 | 0.58 | ||
| 0.81 | 0.79 | 0.81 | ||
| 0.67 | 0.68 | 0.47 |
| Dados | WCAP KOM | WCAP JANS | WCAP LHIG | WCAP AB |
| (pressure sensor) | 0.0 a 0.39 m | 0.0 a 0.39 m | 0.0 a 0.39 m | 0.0 a 0.39 m |
| (SWAN) | 0.0 a 0.71 m | 0.0 a 0.63 m | 0.0 a 0.54 m | 0.0 a 0.59 m |
| 0.08 m | 0.06 m | 0.12 m | 0.06 m | |
| 0.04 m | 0.01 m | 0.09 m | 0.02 m | |
| average pressure sensor | 0.10 m | 0.10 m | 0.10 m | 0.10 m |
| average SWAN | 0.14 m | 0.12 m | 0.19 m | 0.12 m |
| 0.76 | 0.62 | 1.21 | 0.62 | |
| 0.82 | 0.87 | 0.67 | 0.86 | |
| 0.81 | 0.81 | 0.78 | 0.81 | |
| 0.67 | 0.70 | 0.52 | 0.70 |
| VARIABLE | MINIMUM | MAXIMUM |
| Wind speed | 0.1 m/s | 22.0 m/s |
| Wind direction | 0.0° | 359.99° |
| Bottom friction coef. () | 0.029 | 0.067 |
| Depth-induced wave breaking ( | 0.3 | 0.8 |
| Whitecapping coef. | 2.124 10-5 | 2.596 10-5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
