Submitted:
11 April 2024
Posted:
12 April 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction

2. Results and Discusion
2.1. Materials and Methods
2.2. Optimized Synthesis of TNBD by Nitration of 6,7-Dinitro-1,4-benzodioxane (6,7-dinitro-2,3-dihydro-1,4-benzodioxine):

2.1. Structure and Properties Investigation
2.1.1. Physicochemical Properties
2.1.2. Chemical/Hydrolytic Stability
2.1.3. Spectral Properties


2.1.4. Thermal Properties

2.1.5. Crystal Properties and Structure Factors Leading to High Density

| a = 10.9946(4), | A alpha = 90.0 deg. |
| b = 10.1532(4), | A beta = 94.415(2) deg. |
| c = 10.1814(3), | A gamma = 90.0 deg. |
| Cell volume | 1133.18(7) Å3 |

| Empirical formula | C8 H4 N4 O10 |
| Formula weight | 316.138 |
| Temperature | 173(2) K (-100 0C) |
| Wavelength | 0.71073 Å |
| Crystal system | Monoclinic |
| Space group | C 2/c |
| Unit cell dimensions | a = 10.9946(4), A alpha = 90.0 deg. |
| b = 10.1532(4),A beta = 94.415(2) deg. | |
| c = 10.1814(3), A gamma = 90.0 deg. | |
| Volume | 1133.18(7) Å3 |
| Z | 4 |
| Density (calculated) | 1.853 g/cm3 |
| Density (measured, pycnom.) | 1.84 g/cm3 |
| Absorption coefficient | 0.176 mm-1 |
| F(000) | 640 |
| Crystal size | 0.31 x 0.22 x 0.21 mm |
| Two theta max. for data | 58.0 deg. |
| Reflections collected | 2368 |
| Independent reflections | 1464 [R(int) = 0.020] |
| Refinement method | Full-matrix least-squares on F2 |
| Data / restraints / parameters | 1292 / 0 / 108 |
| Final R indices [I>3sigma(I)] | R1 = 0.032, wR2 = 0.077 |
| R indices (all data) | R1 = 0.041, wR2 = 0.116 |
| Largest diff. peak and hole | 0.41 and -0.37 e.Å-3 |


2.1.6. Electrostatic Potential Map (MEP ) for TNBD Molecule

2.1.6. Main Calculated Detonation Performance Parameters of TNBD in Comparison with Known Energetic Materials Possessing Close Structural Patterns
| Detonation parameters | TNBD | DNAN, 2,4-dinitro- anisole |
TNAN, 2,4,6-Trinitro- anisole |
TNT | Tetryl |
| Oxygen balance, % | -40.48 | -96.90 | -62.50 | -73.97 | -47.40 |
| Detonation temperature (K) |
3874 |
2743 |
2366 |
3744 |
3370 |
| Detonation pressure (kbar) |
277.84 |
159 |
205 |
202 |
260 |
| Detonation velocity (m/s) |
7726.9 at d=1.85 g/cm3 |
5706 at d=1.341 g/cm3 |
6800 at d=1.57 g/cm3 |
6950 at d=1.64g/cm3 |
7570 at d= 1.71 g/cm3 |
| Volume of detonation products (L/kg) |
555.8 |
626 |
760 |
730 |
800 |
Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Appendix A. X-ray Difraction Analysis Data. Geometry Tables for the Compound TNBD
| INTRAMOLECULAR BOND LENGTHS | |||||||||||
| Minimum bond length= 0.80Å : Maximum bond length= 1.60Å | |||||||||||
| O(1) - C(9) | 1.338(2) O(1) - C(2) | 1.453(2) | |||||||||
| O(82) - N(8) | 1.212(2) O(72) - N(7) | 1.212(2) | |||||||||
| O(81) - N(8) | 1.225(2) N(7) - O(71) | 1.215(2) | |||||||||
| N(7) - C(7) | 1.473(2) N(8) - C(8) | 1.472(2) | |||||||||
| C(7) - C(7) | 1.383(3) C(7) - C(8) | 1.388(2) | |||||||||
| C(9) - C(9) | 1.405(3) C(9) - C(8) | 1.391(2) | |||||||||
| C(2) - C(2) | 1.503(3) C(2) - H(2A) | 0.92(3) | |||||||||
| C(2) - H(2B) | 0.91(2) | ||||||||||
| INTRAMOLECULAR BOND ANGLES | |||||||||||
| Minimum bond length= 0.80Å : Maximum bond length= 1.60Å | |||||||||||
| C(9) - O(1) - C(2) | 113.81(11) O(72) - N(7) - O(71) | 126.22(14) | |||||||||
| O(72) - N(7) - C(7) | 116.99(12) O(71) - N(7) - C(7) | 116.79(12) | |||||||||
| O(82) - N(8) - O(81) | 126.22(13) O(82) - N(8) - C(8) | 117.17(12) | |||||||||
| O(81) - N(8) - C(8) | 116.61(13) N(7) - C(7) - C(7) | 121.79(8) | |||||||||
| N(7) - C(7) - C(8) | 118.94(13) C(7) - C(7) - C(8) | 119.18(8) | |||||||||
| O(1) - C(9) - C(9) | 122.69(7) O(1) - C(9) - C(8) | 118.69(12) | |||||||||
| C(9) - C(9) - C(8) | 118.60(8) N(8) - C(8) - C(7) | 120.19(12) | |||||||||
| N(8) - C(8) - C(9) | 117.51(12) C(7) - C(8) - C(9) | 122.21(14) | |||||||||
| O(1) - C(2) - C(2) | 110.23(11) O(1) - C(2) - H(2A) | 108.(2) | |||||||||
| O(1) - C(2) - H(2B) | 105.6(15) C(2) - C(2) - H(2A) | 106.(2) | |||||||||
| C(2) - C(2) - H(2B) | 111.9(14) H(2A) - C(2) - H(2B) | 115.(2) | |||||||||
| INTRAMOLECULAR TORSION ANGLES (H omitted) | |||||||||||
| Minimum bond length= 0.80Å : Maximum bond length= 1.60Å | |||||||||||
| C(2) - O(1) - C(9) - C(9) | 167.41(11) C(2) - O(1) - C(9) - C(8) | 165.99(13) | |||||||||
| C(9) - O(1) - C(2) - C(2) | -136.50(10) O(72) - N(7) - C(7) - C(7) | 43.76(9) | |||||||||
| O(72) - N(7) - C(7) - C(8) | 47.05(10) O(71) - N(7) - C(7) - C(7) | -135.42(12) | |||||||||
| O(71) - N(7) - C(7) - C(8) | -132.12(14) O(82) - N(8) - C(8) - C(7) | -113.15(13) | |||||||||
| O(82) - N(8) - C(8) - C(9) | 70.38(11) O(81) - N(8) - C(8) - C(7) | 67.25(11) | |||||||||
| O(81) - N(8) - C(8) - C(9) | -109.22(12) C(7) - C(7) - N(7) - O(72) | -136.24(14) | |||||||||
| N(7) - C(7) - C(7) - N(7) | 0.00(8) C(7) - C(7) - N(7) - O(71) | 44.58(11) | |||||||||
| N(7) - C(7) - C(7) - C(8) | -176.70(13) C(8) - C(7) - N(7) - O(72) | 47.05(10) | |||||||||
| C(8) - C(7) - N(7) - O(71) | -132.12(14) N(7) - C(7) - C(8) - N(8) | 0.40(9) | |||||||||
| N(7) - C(7) - C(8) - C(9) | 176.7(2) C(8) - C(7) - C(7) - N(7) | 176.70(12) | |||||||||
| C(7) - C(7) - C(8) - N(8) | -176.39(15) C(7) - C(7) - C(8) - C(9) | -0.09(10) | |||||||||
| C(8) - C(7) - C(7) - C(8) | 0.00(8) O(1) - C(9) - C(9) - O(1) | 0.00(7) | |||||||||
| O(1) - C(9) - C(9) - C(8) | 178.59(13) C(9) - C(9) - O(1) - C(2) | -12.59(9) | |||||||||
| O(1) - C(9) - C(8) - N(8) | -1.20(8) O(1) - C(9) - C(8) - C(7) | -177.6(2) | |||||||||
| C(8) - C(9) - O(1) - C(2) | 165.99(13) C(8) - C(9) - C(9) - O(1) | -178.59(12) | |||||||||
| C(9) - C(9) - C(8) - N(8) | 177.44(14) C(9) - C(9) - C(8) - C(7) | 1.05(10) | |||||||||
| C(8) - C(9) - C(9) - C(8) | 0.00(8) C(7) - C(8) - N(8) - O(82) | -113.15(13) | |||||||||
| C(7) - C(8) - N(8) - O(81) | 67.25(11) N(8) - C(8) - C(7) - N(7) | 0.40(9) | |||||||||
| N(8) - C(8) - C(7) - C(7) | 3.61(8) N(8) - C(8) - C(9) - O(1) | -1.20(8) | |||||||||
| C(9) - C(8) - N(8) - O(82) | 70.38(11) C(9) - C(8) - N(8) - O(81) | -109.22(12) | |||||||||
| N(8) - C(8) - C(9) - C(9) | -2.56(7) C(7) - C(8) - C(9) - O(1) | -177.6(2) | |||||||||
| C(9) - C(8) - C(7) - N(7) | 176.7(2) C(9) - C(8) - C(7) - C(7) | 179.90(13) | |||||||||
| C(7) - C(8) - C(9) - C(9) | -178.95(13) O(1) - C(2) - C(2) - O(1) | -0.02(7) | |||||||||
| C(2) - C(2) - O(1) - C(9) | 43.50(10) | ||||||||||
| INTERMOLECULAR NON-BONDED DISTANCES | |||||||||||
| Minimum distance= 1.95Å : Maximum distance= 3.50Å | |||||||||||
| Atom(1) | Atom(2) | distance | ns | np | Ta | Tb | Tc | x(2) | y(2) | z(2) | |
| O(1) | - | O(82) | 3.0534(15) | 3 | 1 | 0 | 0 | 1 | 0.19772 | 0.08779 | 0.59972 |
| O(1) | - | O(71) | 3.235(2) | 2 | 1 | 0 | 1 | 1 | -0.03531 | 0.22086 | 0.61436 |
| O(1) | - | N(8) | 3.448(2) | 3 | 1 | 0 | 0 | 1 | 0.29370 | 0.04775 | 0.56425 |
| O(82) | - | H(2A) | 3.03(3) | 3 | 1 | 0 | 0 | 1 | 0.42330 | 0.46537 | 0.67214 |
| O(82) | - | H(2B) | 3.25(2) | 3 | 1 | 0 | 0 | 1 | 0.53069 | 0.38884 | 0.62140 |
| O(72) | - | O(81) | 3.388(2) | 3 | 1 | 0 | 1 | 1 | 0.31223 | 1.00975 | 0.45335 |
| O(72) | - | C(7) | 3.457(2) | 5 | 1 | 0 | 0 | 0 | -0.05135 | 0.57427 | 0.20630 |
| O(81) | - | C(7) | 3.262(2) | 2 | 1 | 0 | 1 | 1 | -0.05135 | 0.42573 | 0.70630 |
| O(81) | - | C(8) | 3.220(2) | 6 | 1 | 0 | 1 | 0 | 0.10141 | 0.54512 | 0.83681 |
| O(81) | - | C(2) | 3.461(2) | 3 | 1 | 0 | 0 | 1 | 0.47263 | 0.39265 | 0.68007 |
| ns is the symmetry operator number - (* denotes inversion indicator)np is the lattice point number | |||||||||||
| DIHEDRAL ANGLES FORMED BY LSQ PLANES | |||||||||||
| PLANE - PLANE | ANGLE | E.S.D | |||||||||
| PLANE | 1 (C5 C6 C7 C8 C9 C10) | PLANE 2 (O71 N7 O72) | PLANE 3 (O81 N8 O82) | ||||||||
| 1 | 2 | 46.143 | 0.081 | ||||||||
| 1 | 3 | 68.706 | 0.103 | ||||||||
References
- Klapötke, T.M. Chemistry of high-energy materials, 6th ed.; Walter de Gruyter: Berlin/Boston, 2022; pp. 1–937. ISBN 978-3110739497. [Google Scholar]
- Meyer, R.; Köhler, J.; Homburg, A. Explosives, 6th ed.; Wiley-WCH Verlag Gmbh & Co.: Weinheim, Germany, 2007; pp. 1–433. ISBN 978-3-527-61703-6. [Google Scholar]
- Agrawal, J.P.; Hodgson, R. Organic Chemistry of Explosives; Wiley Interscience: N.Y., 2007; pp. 1–416. ISBN 978-0-470-02967-1.
- Urbanski, T. Chemistry and Technology of Explosives. Warszawa. 1964, Vol. 1, pp. 1–635.
- Orlova, Y.Y. Chemistry and Technology of High Explosives; Khimiya: Leningrad, 1973; pp. 1–686. [Google Scholar]
- Zeman, S. Influence of the energy content and its outputs on sensitivity of polynitroarenes. J. Energ. Mater. 2019, 37, 445–458. [Google Scholar] [CrossRef]
- Matyáš, R.; Pachman, J. Primary explosives; Springer-Verlag: Berlin/Heidelberg, Germany, 2013; ISBN 978-3-642-28436-6. [Google Scholar] [CrossRef]
- Östmark, H.; Bemm, U.; Bergman, H.; Langlet, A. N-Guanylurea-Dinitramide: A New Energetic Material with Low Sensitivity for Propellants and Explosives Applications. Termochim. Acta. 2002, 384, 253–259. [Google Scholar] [CrossRef]
- Coburn, M.D.; Harris, B.W.; Lee, K.-Y.; Stinecipher, M.M.; Heyden, H.H. Explosives synthesis at Los Alamos, Ind. Eng. Chem. Prod. Res. Dev. 1986, 25, 68–72. [Google Scholar] [CrossRef]
- Tselinskii, I.V. Applications of energetic materials in engineering, technology and national economy. Soros Educat. J. 1997, 11, 46–52. [Google Scholar]
- Zeman, S. Sensitivities of high energy compounds. In Structure and Bonding, Klapoetke T. (Ed.), High Energy Density Compounds, Springer. 2007, Vol. 125, pp. 195–271. [CrossRef]
- Akhavan, J. The Chemistry of Explosives, 4th ed.; RSC: London, UK, 2022; ISBN 978-1-83916-446-0. [Google Scholar]
- Agrawal, J.P. Past, Present and Future of Thermally Stable Explosives. Cent. Eur. J. Energ. Mater 1733, 9, 273–290. [Google Scholar]
- Bellamy, A.; Ward, S.J.; Golding, P. A New Synthetic Route to 1,3,5-Triamino-2,4,6-Trinitrobenzene (TATB). Propellants, Explos. Pyrotech. 2002, 27, 49–58. [Google Scholar] [CrossRef]
- Pagoria, P.F.; Lee, G.S.; Mitchell, A.R.; Schmidt, R.D. A review of energetic materials synthesis. Thermochim. Acta, 2002, 84, 187–204. [Google Scholar] [CrossRef]
- Cao, W.L.; Li, Z.M.; Yang, J.Q.; Zhang, J.G. Recent advances on the nitrogen-rich 1, 2, 4-oxadiazole-azoles-based energetic materials. Def. Technol. 2022, 18, 344–367. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.; Jabeen, F.; Gopinathan-Pillai, G.; Arami, J.A.; Killian, B.J.; Stiegler, K.D.; Yudewitz, D.S.; Thiemann, P.L.; Turk, J.D.; Zhou, W. Synthesis and Properties of Energetic 1, 2, 4-Oxadiazoles. Eur. J. Org. Chem. 2015, 34, 7468–7474. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.; Killian, B.J.; Jabeen, F.; Pillai, G.G.; Berman, H.M.; Mathelier, M.; Sibble, A.J.; Yeung, J.; Zhou, W.; Steel, P.J. Synthesis, Characterization and Energetic Properties of 1, 3, 4-Oxadiazoles. Eur. J. Org. Chem. 2015, 23, 5183–5188. [Google Scholar] [CrossRef]
- Xiong, H.; Yang, H.; Lei, C.; Yang, P.; Hu, W.; Cheng, G. Combinations of furoxan and 1, 2, 4-oxadiazole for the generation of high performance energetic materials. Dalton Trans. 2019, 48, 14705–14711. [Google Scholar] [CrossRef] [PubMed]
- Fershtat, L.L.; Makhova, N.N. 1, 2, 5-Oxadiazole-Based High-Energy-Density Materials: Synthesis and Performance. ChemPlusChem. 2020, 85, 13–42. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, M.; Zhang, J.; Zhai, L.; Cao, Y.; Wang, X.; Qiu, L.; Wang, B.; Meng, Z. Thermal chemistry and decomposition behaviors of energetic materials with trimerizing furoxan skeleton. Propellants, Explos. Pyrotech. 2023. [Google Scholar] [CrossRef]
- Qian, L.; Yang, H.; Xiong, H.; Gu, H.; Tang, J.; Xue, Y.; Cheng, G. Low sensitive energetic material based on the combination of furoxan and 1, 3, 4-oxadiazole structures. Energ. Mater. Front. 2020, 1, 74–82. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Ge, Z.; Wang, B.; Lai, W.; Luo, Y. . Study of furoxan derivatives for energetic applications. Chin. J. Chem. 2013, 31, 520–524. [Google Scholar] [CrossRef]
- Larin, A.A.; Bystrov, D.M.; Fershtat, L.L.; Konnov, A.A.; Makhova, N.N.; Monogarov, K.A.; Meerov, D.B.; Melnikov, I.N.; Pivkina, A.N.; Kiselev, V.G.; Muravyev, N.V. Nitro-, cyano-, and methylfuroxans, and their bis-derivatives: From green primary to melt-cast explosives. Molecules, 2020, 25, 5836. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, X.; Pang, S.; He, C. Enhanced Energetic Performance via the Combination of Furoxan and Oxa-[5, 5] bicyclic Structures. Int. J. Mol. Sci. 2023, 24, 8846. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Dou, H.; He, C.; Pang, S. Boosting the energetic performance of trinitromethyl-1, 2, 4-oxadiazole moiety by increasing nitrogen-oxygen in the bridge. Int. J. Mol. Sci., 2022, 23, 10002. [Google Scholar] [CrossRef] [PubMed]
- Zlotin, S.G.; Churakov, A.M.; Egorov, M.P.; Fershtat, L.L.; Klenov, M.S.; Kuchurov, I.V.; Makhova, N.N.; Smirnov, G.A.; Tomilov, Y.V.; Tartakovsky, V.A. Advanced energetic materials: novel strategies and versatile applications. Mendeleev Commun. 2021, 31, 731–749. [Google Scholar] [CrossRef]
- Walker, R.W.; Morley, C. Basic chemistry of combustion, In: Comprehensive Chemical Kinetics; Pilling, M.J., Ed.; Elsevier: Amsterdam, the Netherlands, 1997; Volume 35, ISBN 9780444824851. [Google Scholar] [CrossRef]
- Sainsbury, M. Compounds containing a Six-membered Ring having two Hetero-atoms from Group VIB of the Periodic Table: Dioxanes, Oxathianes and Dithianes. In Rodd's Chemistry of Carbon Compounds; Elsevier: Amsterdam, the Netherlands, 1964; pp. 375–426. [Google Scholar] [CrossRef]
- Dao, L.H.; Hopkinson, A.C.; Lee-Ruff, E. Reactions of bishalomethylarenes with superoxide. Can. J. Chem. 1977, 55, 3791–3796. [Google Scholar] [CrossRef]
- Baran, A.; Aydin, G.; Savran, T.; Sahin, E.; Balci, M. Trisequential Photooxygenation Reaction: Application to the Synthesis of Carbasugars. Org. Lett. 2013, 15, 4350–4353. [Google Scholar] [CrossRef]
- Roth, W.R.; Scholz, B.P. Zur Energiedelle von Diradikalen, II. Das 2,3-Dimethylen-1,4-cyclohexadiyl. Chem. Ber. 1982, 115, 1197–1208. [Google Scholar] [CrossRef]
- Baker, W. CCXL.Cyclic esters of sulphuric acid. Part I. The reactions of methylene sulphate. J. Chem. Soc. 1931, 1765–1771. [Google Scholar] [CrossRef]
- Pilkington, L.I.; Barker, D. Synthesis and biology of 1, 4-benzodioxane lignan natural products. Nat. Prod. Rep. 2015, 32, 1369–1388. [Google Scholar] [CrossRef]
- Vorländer, D. Ethylenic salts of bibasic acids and phenols. Justus Liebigs Ann. Chem. 1894, 280, 167–206. [Google Scholar] [CrossRef]
- Matos, M.A.R.; Sousa, C.C.; Morais, V.M. Experimental and computational thermochemistry of 1, 4-benzodioxan and its 6-R derivatives. J. Phys. Chem. (A). 2008, 112, 7961–7968. [Google Scholar] [CrossRef] [PubMed]
- Bolchi, C.; Bavo, F.; Appiani, R.; Roda, G.; Pallavicini, M. 1, 4-Benzodioxane, an evergreen, versatile scaffold in medicinal chemistry: A review of its recent applications in drug design. Eur. J. Med. Chem. 2020, 200, 112419. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, B. , Habibullah, H., & Khan, S. Chemistry and pharmacology of benzodioxanes (Microreview). Org. Chem. an Indian J. (OCAIJ). 2008, 4, 65–77. [Google Scholar]
- Liu, Z.; Zhang, Y.; Dong, J.; Fang, Y.; Jiang, Y.; Yang, X.; Cheng, F. Synthesis and antitumor activity of novel hybrid compounds between 1, 4-benzodioxane and imidazolium salts. Arch. Pharm. 2022, 355, 2200109. [Google Scholar] [CrossRef]
- Daukshas, V.K.; Udrenaite, E.B. Advances in chemistry in the benzo-1, 4-dioxane series. Chem. Heterocycl. Compd. 1975, 11, 1003–1017. [Google Scholar] [CrossRef]
- Daukshas, V.K.; Purvanetskas, G.V.; Balyavichyus, L.Z.; Udrenaite, E.B.; Gineitite, V.L. Electrophilic substitution of acetamido- and acetoxybenzo-1,4-dioxanes. Chem. Heterocycl. Compd. 1977, 13, 373. [Google Scholar] [CrossRef]
- Labanauskas, L.K.; Brukstus, A.B.; Gaidelis, P.G.; Buchinskaite, V.A.; Udrenaite, E.B.; Dauksas, V.K. Synthesis and anti-inflammatory activity of new derivatives of 6-benzoyl-1, 4-benzodioxane. Pharm. Chem. J. 2000, 34, 353–355. [Google Scholar] [CrossRef]
- Labanauskas, L.; Udrėnaitė, E.; Gaidelis, P.; Brukštus, A. Synthesis of 5-(2-, 3- and 4-methoxyphenyl)-4H-1, 2, 4-triazole-3-thiol derivatives exhibiting anti-inflammatory activity. Il Farmaco, 2004, 59, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Labanauskas, L.; Brukstus, A.; Udrenaite, E.; Bucinskaite, V.; Susvilo, I.; Urbelis, G. Synthesis and anti-inflammatory activity of 1-acylaminoalkyl-3, 4-dialkoxybenzene derivatives. Il Farmaco, 2005, 60, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Labanauskas, L.; Bucinskaite, V.; Brukstus, A.; Urbelis, G.; Sharlauskas, I. Synthesis of a Novel Heterocyclic System: 3-Chloro-7, 8-dihydro [1, 4] dioxino [2 ″, 3 ″: 4′, 5′] benzo [4, 5] imidazo [1, 2-c][1, 2, 3] thiadiazole. Chem. Het. Comp. 2005, 41, 802–803. [Google Scholar] [CrossRef]
- Šarlauskas, J.; Miliukienė, V.; Anusevičius, Ž.; Misevičienė, L.; Krikštopaitis, K.; Nemeikaitė-Čėnienė, A.; Vitėnienė, I.; Čėnas, N. Redox properties and prooxidant cytotoxicity of benzofuroxans: a comparison with nitrobenzenes. Chemija. 2009, 20, 109–115. [Google Scholar]
- Jonušis, M.; Šteinys, L.; Bukšnaitienė, R.; Čikotienė, I. Synthesis of Alkoxymethyl Groups Containing Isoxazoles and Chromones. Synthesis, 2017, 49, 1122–1130. [Google Scholar] [CrossRef]
- Šarlauskas, J. Polynitrobenzenes containing alkoxy and alkylenedioxy groups: potential HEMs and precursors of new energetic materials. Cent. Eur. J. Energ. Mater 2010, 7, 313–324. [Google Scholar]
- Takakis, I.M.; Hadjimihalakis, P.M. Influence of the heterocyclic side ring on orientation during nitrations of 1, 2-alkylenedioxy-annelated benzenes and their mononitro derivatives. J. Het. Chem. 1991, 28, 625–634. [Google Scholar] [CrossRef]
- Heertjes, P.M.; Dahmen, E.A.M.F.; Wierda, T.G. The nitroderivatives of 1:2 ethylenedioxybenzene (pyrocate-cholethylene ether) obtained by direct nitration. Rec. trav. chim. 1941, 60, 569–576. [Google Scholar]
- Vogelsanger, B. Chemical stability, compatibility and shelf life of explosives. Chimia 2004, 58, 401–408. [Google Scholar] [CrossRef]
- Dashevskii, V.G.; Struchkov, Y.T.; Akopyan, Z.A. Conformation of overloaded aromatic nitrocompounds. J. Struct. Chem. 1967, 7, 555–561. [Google Scholar] [CrossRef]
- Akopyan, Z.A.; Struchkov, Y.T.; Dashevskii, V.G. Crystal and molecular structure of hexanitrobenzene. J. Struct.Chem. 1966, 7, 385–392. [Google Scholar] [CrossRef]
- Wang, R.; Liu, J.; He, X.; Xie, W.; Zhang, C. Decoding hexanitrobenzene (HNB) and 1, 3, 5-triamino-2, 4,6-trinitrobenzene (TATB) as two distinctive energetic nitrobenzene compounds by machine learning. Phys. Chem. Chem. Phys. 2022, 24, 9875–9884. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, O.T.; Zdilla, M.J. Properties and promise of catenated nitrogen systems as high-energy-density materials. Chem. Rev. 2020, 120, 5682–5744. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Hsu, C. K.; Chang, C.L. A study on the thermal decomposition behaviors of PETN, RDX, HNS and HMX. Thermochim. Acta. 2002, 173–176. [Google Scholar] [CrossRef]
- Kitaigorodsky, A.I. Molecular Crystals and Molecules; Academic Press: New York, 1973; pp. 1–553. ISBN 0124105505. [Google Scholar]
- Linghu, Y.; Zhang, C. Packing coeffcient determining the packing density difference of CHON-containing isomers. Energ. Mater. Front. ISSN 2666-6472. [CrossRef]
- Sućeska, M. Calculation of Detonation Properties of CHNO Explosives. Propellants, Explos., Pyrotech. 1991, 16, 197–202. [Google Scholar] [CrossRef]
- Sućeska, M. Test Methods for Explosives; Springer-Verlag: New York, 1995; pp. 188–200. [Google Scholar]
- Sućeska, M. Evaluation of Detonation Energy from EXPLO 5 Computer Results. Propellants, Explos., Pyrotech. 1999, 24, 280–285. [Google Scholar] [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
