Submitted:
14 March 2024
Posted:
18 March 2024
You are already at the latest version
Abstract
Keywords:
MSC: 11F03; 01A55; 40A30; 42A16
1. Hecke Modular Relation for Generalized Eta-Functions
2. The Rademacher-Apostol Case
3. The Krätzel Case
4. Unification of Rademacher and Dieter Cases
5. The Schoenberg Case
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Rademacher, H. (1973). Topics in analytic number theory, Springer, Berlin.
- Siegel, C. L. (1961). Lectures on advanced analytic number theory, Tata Inst. Bombay.
- Berndt, B. C. and Knopp, M. I. (2000). Hecke’s theory of modular forms and Dirichlet series, World Sci., Singapore etc.
- Bochner, S. (1951). Some properties of modular relations, Ann. of Math. (2) 53, 332–363=Collected Papers of Salomon Bochner, Part II, Amer. Math. Soc., Providence, RI 1991, 665-696.
- Hecke, E. (1936). Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichung, Math. Ann. 112, 664-669=Mathematische Werke, 591-626, Vandenhoeck u. Ruprecht, Göttingen 1959.
- Hecke, E. (1983). Lectures on Dirichlet Series, Modular Functions and Quadratic Forms, ed. by B. Schoenberg in coll. with W. Maak, Vandenhoeck u. Ruprecht, Göttingen (first edition: Dirichlet Series, Planographed Lecture Notes, Princeton IAS, Edwards Brothers, Ann Arbor, 1938).
- Knopp, M. (2000). Hamburger’s Theorem on ζ(s) and the abundance principle for Dirichlet series with functional equations, Number Theory (ed. by R. P. Bambah et al.), 201–216, Hindustan Book Agency, New Delhi.
- Ogg, A. (1969). Modular Forms and Dirichlet Series, Benjamin, New York.
- Riemann, B. (1859). Über die Anzahl der Primzahlen unter einer gegebenen Grösse, Monatsber. Berlin. Akad., 671–680=Collected Works of Bernhard Riemann, ed. by H. Weber, 2nd ed. Dover, New York 1953, 145-153; Anmerkung 154-155.
- Weil, A. (1968). Sur une formule classique, J. Math. Soc. Japan 20, 400-402 = Coll. Papers, III, Springer Verl., 1980, Berlin etc., 198-200.
- Weil, A. (1971). Dirichlet series and automorphic forms, LNM 189 Springer Verl., Berlin-Heidelberg-New York.
- Weil, A. (1979). Remarks on Hecke’s Lemma and its use, Algebraic Number Theory, Intern. Symposium Kyoto 1976, S. Iyanaga (ed.), Jap. Soc. for the Promotion of Science 1977, pp. 267–274= Coll. Papers, III, ??, Springer Verl., Berlin etc. 1979.
- Kanemitsu, S. and Tsukada, H. (2014). Contributions to the theory of zeta-functions: the modular relation supremacy, World Sci., Singapore etc.
- Iseki, S. (1957). The transformation formula for the Dedekind modular function and related functional equation, Duke Math. J. 24, 653-662. [CrossRef]
- Kanemitsu, S. and Tsukada, H. (2007). Vistas of Special Functions, World Scientific, Singapore etc.
- Rademacher, H. (1932). Zur Theorie der Modulfunktionen, J. Reine Angew. Math. 167, 312-336; Collected Papers of H. Rademacher I, 1974, 652-677.
- Apostol, T. M. (1950). Generalized Dedekind sums and the transformation formula of certain Lambert series, Duke Math. J. 17, 147-157. [CrossRef]
- Dieter, U. (1959). Das Verhalten der Kleinschen Funktionen logσg,h(ω1,ω2) gegenüber Modultransformationen und verallgemeinerte Dedekindsche Summen, J. Reine Angew. Math. 201, 37-70.
- Meyer, C. (1957). Über einige Anwendungen Dedekindscher Summen, J. Reine Angew. Math. 198, 143-203.
- Schoenberg, B. (1967). Verhalten der speziellen Integralen 3. Gattung bei Modultransformationen und verallgemeinerte Dedekindsche Summen, Abh. Math. Sem. Univ. Hamburg 30, 1-10. [CrossRef]
- Schoenberg, B. (1974). Elliptic modular functions, Springer Verl., Berlin-Heidelberg.
- Iseki, S. (1961). A proof of a functional equation related to the theory of partitions, Proc. Amer. Math. Soc. 12, 502-505. [CrossRef]
- Apostol, T. M. (1964). A short proof of Shô Iseki’s functional equation, Proc. Amer. Math. Soc. 15, 618-622. [CrossRef]
- Goldstein. L. J. and de la Torre, P. (1974). On the transformation formula of logη(τ), Duke Math. J. 41, 291-297.
- Goldstein. L. J. and de la Torre, P. (1975). On a function analogous to logη(τ), Nagoya Math. J. 59, 169-198.
- Schoenberg, B. (1979). Zusammenhang von Dirichletscher Reihen mit Funktionalgleichung, Integralen 3. Gattung und Thetareihen in der Theorie der Modulfunktionen, Math. Ann., 239, 149-164. [CrossRef]
- Li. R. Y., Kuzumaki, T. and Kanemitu, S. (2024) On Koshlyakov’s transform and Fourier-Bessel expansion, to appear.
- Li. H. Y., Kuzumaki, T. and Kanemitu, S. (2023). On zeta-functions and allied theta-functions, Advances in applied analysis and number theory, World Sci., Singapore, etc., 51-97.
- Mehta, J., Kátai, I. and Kanemitsu, S. (2023). On periodic Dirichlet series and special functions, Chapter 18 of “Advanced mathematical analysis and its applications”, edited by Pradip Debnath, Delfim F. M. Torres, Yeol Je Cho, CRC Press, Boca Raon etc. 309-325.
- Wang, N. -L., Tanigawa, Y. and Kanemitsu, S. (2024). On general Dedekind sums, to appear.
- Milnor, J. (1983). On polylogarithms, Hurwitz zeta-functionsand the Kubert identities, Enseign. Math. (2) 29, 281-322.
- Mikolás, M. (1956). Mellinsche Transformation und Orthogonalität bei ζ(s,u); Verallgemeinerung der Riemannschen Funktionalgleichung von ζ(s), Acta Sci. Math. (Szeged) 17, 143–164.
- Mikolás, M. (1957). On certain sums generating the Dedekind sums and their reciprcity laws, Pacific J. Math. 7, 1167-1178, errata 1733.
- Krätzel, E. (1981). Dedekindsche Funktionen und Summen, I, II Period. Math. Hungar. 12, 113-123, 163-179. [CrossRef]
- Estermann, T. (1930). On the representation of a number as the sum of two products, Proc. London Math. Soc. (2) 31, 123-133. [CrossRef]
- Wang, N. -L., Tanigawa, Y. and Kanemitsu, S. (2024). Generalized eta transformation formulas and Dedekind sums viewed as modular relations, to appear.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).