Submitted:
09 March 2024
Posted:
12 March 2024
You are already at the latest version
Abstract
Keywords:
MSC: 05B15; 05B30; 05C78
1. Introduction
2. Preliminaries
3. Main Results
3.1. Construction of an NMS
3.2. A New Product Construction
3.3. Row-Square Magic Rectangles
3.4. New Classes of Trimagic Squares of Even Orders
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. The Proof of Lemma 10
References
- Chavan, V. C.; Mikkili, S. Hardware implementation of sensor-less matrix shifting reconfiguration method to extract maximum power under various shading conditions. CPSS Trans. Power Electron. Appl. 2023, 8, 384–396. [Google Scholar] [CrossRef]
- Kravchenko, V. F.; Lutsenko, V. I.; Lutsenko, I. V.; Popov, I. V.; Luo, Y.; Mazurenko, A. V. Nonequidistant two-dimensional antenna arrays based on magic squares. J. Meas. Sci. Instrum. 2017, 8, 244–253. [Google Scholar] [CrossRef]
- Rajesh, P.; Saji, K. S. Total Cross Tied-Inverted Triangle View Configuration for PV System Power Enhancement. Intell. Autom. Soft Co. 2022, 33, 1531–1545. [Google Scholar] [CrossRef]
- Etarhouni, M.; Chong, B.; Zhang, L. A novel square algorithm for maximising the output power from a partially shaded photovoltaic array system. Optik 2022, 257, 168870. [Google Scholar] [CrossRef]
- Pachauri, R. K.; Thanikanti, S. B.; Bai, J.; Yadav, V. K.; Aljafari, B.; Ghosh, S.; Alhelou, H. H. Ancient Chinese magic square-based PV array reconfiguration methodology to reduce power loss under partial shading conditions. Energ. Convers. Manage. 2022, 253, 115148. [Google Scholar] [CrossRef]
- Kareem, S. M.; Rahma, A. M. S. An innovative method for enhancing advanced encryption standard algorithm based on magic square of order 6. Bull. Electr. Eng. Inform. 2023, 12, 1684–1692. [Google Scholar] [CrossRef]
- Hassan, M. U.; Alzayed, A.; Al-Awady, A. A.; Iqbal, N.; Akram, M.; Ikram, A. A Novel RGB Image Obfuscation Technique Using Dynamically Generated All Order-4 Magic Squares. IEEE Access 2023, 11, 106299–106314. [Google Scholar] [CrossRef]
- Wang, J.; Liu, L. A novel chaos-based image encryption using magic square scrambling and octree diffusing. Mathematics 2022, 9, 457. [Google Scholar] [CrossRef]
- Hyodo, Y.; Kitabayashi, T. Magic square and Dirac flavor neutrino mass matrix. Int. J. Mod. Phys. A 2020, 35, 2050183. [Google Scholar] [CrossRef]
- Peng, C. C.; Tsai, C. -J.; Chang, T. Y.; Yeh, J.-Y.; Lee, M. -C. Novel heterogeneous grouping method based on magic square. Inform. Sci. 2020, 517, 340–360. [Google Scholar] [CrossRef]
- Sim, K. A.; Wong, K. B. Magic square and arrangement of consecutive integers that avoids k-term arithmetic progressions. Mathematics 2021, 9, 2259. [Google Scholar] [CrossRef]
- Nordgren, R. P. On properties of special magic square matrices. Linear Algebra Appl. 2012, 437, 2009–2025. [Google Scholar] [CrossRef]
- Beck, M.; Zaslavsky, T. An Enumerative Geometry for Magic and Magilatin Labellings. Ann. Comb. 2006, 10, 395–413. [Google Scholar] [CrossRef]
- Trenkler, M. Super-magic complete k-partite hypergraphs. Graph. Combinator. 2001, 17, 171–175. [Google Scholar] [CrossRef]
- Marr, A. Sparse Semi-Magic Squares and Magic Labelings of Directed Graphs. Electron. Notes Discret. Math. 2015, 48, 3–10. [Google Scholar] [CrossRef]
- Gray, I. D.; MacDougall, J. A. Sparse anti-magic squares and vertex-magic labelings of bipartite graphs. Discret. Math. 2006, 306, 2878–2892. [Google Scholar] [CrossRef]
- Stanley, R. P. Magic Labelings of Graphs, Symmetric Magic Squares, Systems of Parameters, and Cohen-Macaulay Rings. Duke Math. J. 1976, 43, 511–531. [Google Scholar] [CrossRef]
- Krishnappa, H. K.; Kothapalli, K.; Venkaiah, V.C. Vertex Magic Total Labelings of Complete Graphs. AKCE Int. J. Graphs Co. 2009, 6, 143–154. [Google Scholar] [CrossRef]
- Ahmed, M. M. Polytopes of Magic Labelings of Graphs and the Faces of the Birkhoff Polytope. Ann. Comb. 2008, 12, 241–269. [Google Scholar] [CrossRef]
- Trenkler, M. A construction of magic cubes. Math. Gaz. 2000, 84, 36–41. [Google Scholar] [CrossRef]
- Trenkler, M. Magic p-dimensional cubes. Acta Arith. 2001, 96, 361–364. [Google Scholar] [CrossRef]
- Derksen, H.; Eggermont, C.; Van den Essen, A. Multimagic squares. Am. Math. Mon. 2007, 114, 703–713. [Google Scholar] [CrossRef]
- Chen, J.; Wu, J.; Wu, D. The existence of irrational most perfect magic squares. J. Combin. Des. 2023, 31, 23–40. [Google Scholar] [CrossRef]
- Liao, F.; Xie, H. On the Construction of Pandiagonal Magic Cubes. Mathematics 2023, 11, 1185. [Google Scholar] [CrossRef]
- Hu, C.; Meng, J.; Pan, F.; Su, M.; Xiong, S. On the Existence of a Normal Trimagic Square of Order 16n. J. Math.-UK, 8377. [Google Scholar] [CrossRef]
- Li, W.; Pan, F.; Chen, G. Construction of normal bimagic squares of order 2u. Acta Math. Appl. Sin.-E. [CrossRef]
- Rani, N.; Mishra, V. Behavior of powers of odd ordered special circulant magic squares. Intern. J. Math. Educ. Sci. Technol. 2022, 53, 1044–1062. [Google Scholar] [CrossRef]
- Dhandapani, P. B.; Leiva, V.; Martin-Barreiro, C. Construction of a repetitive magic square with Ramanujan’s number as its product. Heliyon 2022, e12046. [Google Scholar] [CrossRef]
- Pan, F.; Li, W.; Chen, G.; Xin, B. A complete solution to the existence of normal bimagic squares of even order. Discrete Math. 2021, 344, 1823–1831. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, K.; Lei, J. Large sets of orthogonal arrays and multimagic squares. J. Combin. Des. 2013, 21, 390–403. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Y.; Chen, K. A generalization of product construction of multimagic squares. Adv. Math.(China) 2017, 46, 828–838. [Google Scholar] [CrossRef]
- Abel, R. J.; Colbourn, C. J.; Dinitz, J. H. Mutually orthogonal Latin squares. In The CRC Handbook of Combinatorial Designs; Colbourn, C. J., Dinitz, J. H., Eds.; CRC Press, Boca Raton, FL, 2007; pp. 160–194.
- Li, W.; Wu, D.; Pan, F. A construction for doubly pandiagonal magic squares. Discrete Math. 2013, 312, 479–485. [Google Scholar] [CrossRef]
- Zhang, Y.; Lei, J. Multimagic rectangles based on large sets of orthogonal arrays. Discrete Math. 2013, 313, 1823–1831. [Google Scholar] [CrossRef]
- Chen, K.; Li, W. Existence of normal bimagic squares. Discrete Math. 2012, 312, 3077–3086. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
