Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Tribological and Mechanochemical Properties of Nanoparticle-Filled PTFE Composites under Different Loads

Version 1 : Received: 29 February 2024 / Approved: 29 February 2024 / Online: 29 February 2024 (11:39:17 CET)

A peer-reviewed article of this Preprint also exists.

Lv, W.; Wang, T.; Wang, Q.; Yap, K.K.; Song, F.; Wang, C. Tribological and Mechanochemical Properties of Nanoparticle-Filled Polytetrafluoroethylene Composites under Different Loads. Polymers 2024, 16, 894. Lv, W.; Wang, T.; Wang, Q.; Yap, K.K.; Song, F.; Wang, C. Tribological and Mechanochemical Properties of Nanoparticle-Filled Polytetrafluoroethylene Composites under Different Loads. Polymers 2024, 16, 894.

Abstract

The tribology behavior, tribofilm formation and structure evolution of polytetrafluoroethylene (PTFE) filled with α-Al2O3 and SiO2 nanoparticles during sliding against steel counterparts under different loads were studied. It is found that both composites exhibit good wear resistance across the pressure of 1 MPa to 10 MPa, with the α-Al2O3/PTFE composite demonstrates better performance stability compared to the SiO2/PTFE composite. The high wear resistance is attributed to the formation of tribofilms at the friction interface. For the α-Al2O3/PTFE, an island-like tribofilm is formed with a thickness ranging from 100 to 200 nm, while the tribofilm of the SiO2/PTFE composite is thinner, measuring approximately 50 to 100 nm, and manifest a striped pattern. The chemical composition, both at the surface and subsurface levels, as well as the morphology of the tribofilms were studied using FTIR spectrometry, X-Ray photoelectron spectroscopy (XPS), and FIB-TEM. It is found that the difference in thickness and microstructure of the tribofilms for the two composites is mainly due to the tribochemistry of the nanoparticles. The α-Al2O3 nanoparticle plays a "cohesion" role during the formation of the tribofilm, which facilitates the formation of a thicker, more uniform, and stronger adhered tribofilm on the metallic counterpart, making it more robust against higher shear stress.

Keywords

polytetrafluoroethylene; nanoparticles; load; tribofilm

Subject

Chemistry and Materials Science, Materials Science and Technology

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.