Submitted:
11 December 2023
Posted:
11 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Experiments and Methods
2.1. Two Kinds of Models Used in This Study
2.2. A Physically Feasible Method used for Cirrus Thinning
2.3. Climate Simulation Setup
3. Results
3.1. Impacts on Cloud Properties
3.2. Brightening Effect and Cooling Effect
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.C.; Zhang, K.; Liu, J.F.; Ban-Weiss, G. Revisiting the climate impacts of cool roofs around the globe using an Earth system model. Environ. Res. Lett. 2016, 11, 084014. [CrossRef]
- IPCC. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Eds.; Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA, 2018. [CrossRef]
- Vaughan, N.E.; Gough, C.; Mander, S.; Littleton, E.W.; Welfle, A.; Gernaat, D.E.H.J.; van Vuure, D.P. Evaluating the use of biomass energy with carbon capture and storage in low emission scenarios. Environ. Res. Lett. 2018, 13, 044014. [CrossRef]
- Gruber, S.; Blahak, U.; Haenel, F.; Kottmeier, C.; Leisner, T.; Muskatel, H.; Storelvmo, T.; Vogel, B. A process study on thinning of Arctic winter cirrus clouds with high-resolution ICON-ART simulations. J. Geophys. Res. Atmos. 2019, 124, 5860–5888. [CrossRef]
- Kravitz, B.; MacMartin, D.G.; Visioni, D.; Boucher, O.; Cole, J.N.S.; Haywood, J.; Jones, A.; Lurton, T.; Nabat, P.; Niemeier, U.; Robock, A.; Séférian, R.; Tilmes, S. Comparing different generations of idealized solar geoengineering simulations in the Geoengineering Model Intercomparison Project (GeoMIP). Atmos. Chem. Phys. 2021, 21, 4231–4247. [CrossRef]
- Diamond M.S.; Gettelman, A.; Lebsock M.D.; McComiskey, A.; Russell, L.M.; Wood, R.; Feingold, G. To assess marine cloud brightening's technical feasibility, we need to know what to study—and when to stop. Proc. Natl. Acad. Sci. USA 2022, 119, e2118379119. [CrossRef]
- MacMartin, D.G.; Visioni, D.; Kravitz, B.; Richter, J.H.; Felgenhauer, T.; Lee, W.R.; Morrow, D.R.; Parson, E.A.; Sugiyama, M. Scenarios for modeling solar radiation modification. Proc. Natl. Acad. Sci. USA 2022, 119, e2202230119. [CrossRef]
- Baur, S.; Nauels, A.; Nicholls, Z.; Sanderson, B.M.; Schleussner, C.-F. The deployment length of solar radiation modification: an interplay of mitigation, net-negative emissions and climate uncertainty. Earth Syst. Dynam. 2023, 14, 367–381. [CrossRef]
- Caldeira, K.; Bala, G.; Cao, L. The Science of Geoengineering. Annu. Rev. Earth Planet. Sci. 2013, 41, 231–256. [CrossRef]
- Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Kerminen, V.M.; Kondo, Y.; Liao, H.; Lohmann, U.; et al. Clouds and Aerosols. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth As-sessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA, 2013; pp. 571–658. [CrossRef]
- IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Eds.; Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA, 2014. [CrossRef]
- Irvine, P.J.; Kravitz, B.; Lawrence, M.G.; Muri, H. An overview of the Earth system science of solar geoengineering. Wiley Interdiscip. Rev. Clim. Change 2016, 7, 815–833. [CrossRef]
- Cao, L. Short commentary on CMIP6 Geoengineering Model Intercomparison Project (GeoMIP). Clim. Change Res. 2019, 15, 487–492. [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Eds.; Cambridge University Press: Cambridge, United Kingdom and New York, NY, USA, 2021. [CrossRef]
- Keller, D.P.; Lenton, A.; Scott, V.; Vaughan, N.E.; Bauer, N.; Ji, D.; Jones, C.D.; Kravitz, B.; Muri, H.; Zickfeld, K. The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and experimental protocol for CMIP6. Geosci. Model Dev. 2018, 11, 1133–1160. [CrossRef]
- Minx, J.C.; Lamb, W.F.; Callaghan, M.W.; Fuss, S.; Hilaire, J.; Creutzig, F.; Amann, T.; Beringer, T.; de Oliveira Garcia, W.; Hartmann, J.; Khanna, T.; Lenzi, D.; Luderer, G.; Nemet, G.F.; Rogelj, J.; Smith, P.; Vicente Vicente, J.L.; Wilcox, J.; del Mar Zamora Dominguez, M. Negative emissions—Part 1: research landscape and synthesis. Environ. Res. Lett. 2018, 13, 063001. [CrossRef]
- Rickels, W.; Reith, F.; Keller, D.; Oschlies, A.; Quaas, M.F. Integrated Assessment of Carbon Dioxide Removal. Earth's Future 2018, 6, 565–582. [CrossRef]
- Cao, L. Climate system response to carbon dioxide removal. Clim. Change Res. 2021, 17, 664–670. [CrossRef]
- Alterskjær, K.; Kristjánsson, J.E.; Seland, Ø. Sensitivity to deliberate sea salt seeding of marine clouds—observations and model simulations. Atmos. Chem. Phys. 2012, 12, 2795–2807. [CrossRef]
- Keith, D.W.; MacMartin, D.G. A temporary, moderate and responsive scenario for solar geoengineering. Nat. Clim. Change 2015, 5, 201–206. [CrossRef]
- Jones, A.C.; Hawcroft, M.K.; Haywood, J.M.; Jones, A.; Guo, X.; Moore, J.C. Regional Climate Impacts of Stabilizing Global Warming at 1.5 K Using Solar Geoengineering. Earth's Future 2018, 6, 230–251. [CrossRef]
- Kravitz, B.; Rasch, P.J.; Wang, H.; Robock, A.; Gabriel, C.; Boucher, O.; Cole, J.N.S.; Haywood, J.; Ji, D.; Jones, A.; Lenton, A.; Moore, J.C.; Muri, H.; Niemeier, U.; Phipps, S.; Schmidt, H.; Watanabe, S.; Yang, S.; Yoon, J. The climate effects of increasing ocean albedo: an idealized representation of solar geoengineering. Atmos. Chem. Phys. 2018, 18, 13097–13113. [CrossRef]
- Gasparini, B.; McGraw, Z.; Storelvmo, T.; Lohmann, U. To what extent can cirrus cloud seeding counteract global warming?. Environ. Res. Lett. 2020, 15, 054002. [CrossRef]
- Cao, L. Climate system response to solar radiation modification. Clim. Change Res. 2021, 17, 671–684. [CrossRef]
- Vaughan, N.E.; Lenton, T.M. A review of climate geoengineering proposals. Clim. Change 2011, 109, 745–790. [CrossRef]
- Kravitz, B.; Robock, A.; Tilmes, S.; Boucher, O.; English, J.M.; Irvine, P.J.; Jones, A.; Lawrence, M.G.; MacCracken, M.; Muri, H.; Moore, J.C.; Niemeier, U.; Phipps, S.J.; Sillmann, J.; Storelvmo, T.; Wang, H.; Watanabe, S. The Geoengineering Model Intercomparison Project Phase 6 (GeoMIP6): simulation design and preliminary results. Geosci. Model. Dev. 2015, 8, 3379–3392. [CrossRef]
- Xin, Y. A Brief Review and Outlook of Geoengineering. Adv. Meteor. Sci. Technol. 2016, 60, 30–36.
- Duan, L.; Cao, L.; Bala, G.; Caldeira K. Comparison of the fast and slow climate response to three radiation management geoengineering schemes. J. Geophys. Res. Atmos. 2018, 123, 11980–12001. [CrossRef]
- Lawrence, M.G.; Schäfer, S.; Muri, H.; Scott, V.; Oschlies, A.; Vaughan, N.E.; Boucher, O.; Schmidt, H.; Haywood, J.; Scheffran, J. Evaluating climate geoengineering proposals in the context of the Paris Agreement temperature goals. Nat. Commun. 2018, 9, 3734. [CrossRef]
- Shepherd, J.; Caldeira, K.; Cox, P.; Haigh, J.; Keith, D.; Launder, B.; Mace, G.; MacKerron, G.; Pyle, J.; Raynor, S.; Redgwell, C.; Watson, A. Geoengineering the Climate: Science, governance and uncertainty; The Royal Society Publishing: London, UK, 2009; ISBN 978-0-85403-773-5.
- Fairbrother, M. Geoengineering, moral hazard, and trust in climate science: evidence from a survey experiment in Britain. Clim. Change 2016, 139, 477–489. [CrossRef]
- Lohmann, U.; Gasparini, B. A cirrus cloud climate dial?. Science 2017, 357, 248–249. [CrossRef]
- Heutel, G.; Moreno-Cruz, J.; Shayegh, S. Solar geoengineering, uncertainty, and the price of carbon. J. Environ. Econ. Manage. 2018, 87, 24–41. [CrossRef]
- Pezzoli, P.; Emmerling, J.; Tavoni, M. SRM on the table: the role of geoengineering for the stability and effectiveness of climate coalitions. Clim. Change 2023, 176, 1-21. [CrossRef]
- Naik, V.; Wuebbles, D.; DeLucia, E.; Foley J.A. Influence of Geoengineered Climate on the Terrestrial Biosphere . Environ. Manage. 2003, 32, 373–381. [CrossRef]
- Robock, A.; Marquardt, A.; Kravitz, B.; Stenchikov, G. Benefits, risks, and costs of stratospheric geoengineering. Geophys. Res. Lett. 2009, 36, L19703. [CrossRef]
- Pitari, G.; Aquila, V.; Kravitz, B.; Robock, A.; Watanabe, S.; Cionni, I.; Luca, N.D.; Genova, G.D.; Mancini, E.; Tilmes, S. Stratospheric ozone response to sulfate geoengineering: Results from the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos. 2014, 119, 2629–2653. [CrossRef]
- Kleidon, A.; Kravitz, B.; Renner, M. The hydrological sensitivity to global warming and solar geoengineering derived from thermodynamic constraints. Geophys. Res. Lett. 2015, 42, 138–144. [CrossRef]
- Zarnetske, P.L.; Gurevitch, J.; Franklin, J.; Groffman, P.M.; Harrison, C.S.; Hellmann, J.J.; Hoffman, F.M.; Kothari, S.; Robock, A.; Tilmes, S.; Visioni, D.; Wu, J.; Xia, L.; Yang, C.E. Potential ecological impacts of climate intervention by reflecting sunlight to cool Earth. Proc. Natl. Acad. Sci. USA 2021, 118, e1921854118. [CrossRef]
- Tye, M.R.; Dagon, K.; Molina, M.J.; Richter, J.H.; Visioni, D.; Kravitz, B.; Tilmes, S. Indices of extremes: geographic patterns of change in extremes and associated vegetation impacts under climate intervention. Earth Syst. Dynam. 2022, 13, 1233–1257. [CrossRef]
- Jones, A.C.; Haywood, J.M.; Dunstone, N.; Emanuel, K.; Hawcroft, M.K.; Hodges, K.I.; Jones, A. Impacts of hemispheric solar geoengineering on tropical cyclone frequency. Nat. Commun. 2017, 8, 1382. [CrossRef]
- Kristjánsson, J.E.; Muri, H.; Schmidt, H. The hydrological cycle response to cirrus cloud thinning. Geophys. Res. Lett. 2015, 42, 10807–10815. [CrossRef]
- Liu, J.; Shi, X. Estimating the potential cooling effect of cirrus thinning achieved via the seeding approach. Atmos. Chem. Phys. 2021, 21, 10609–10624. [CrossRef]
- Pongratz, J.; Lobell, D.B.; Cao, L.; Caldeira, K. Crop yields in a geoengineered climate. Nat. Clim. Chang. 2012, 2, 101–105. [CrossRef]
- Xia, L.; Robock, A.; Cole, J.; Curry, C.L.; Ji, D.; Jones, A.; Kravitz, B.; Moore, J.C.; Muri, H.; Niemeier, U.; Singh, B.; Tilmes, S.; Watanabe, S.; Yoon J. Solar radiation management impacts on agriculture in China: a case study in the Geoengineering Model Intercomparison Project (GeoMIP). J. Geophys. Res. Atmos. 2014, 119, 8695–8711. [CrossRef]
- Parkes, B.; Challinor, A.; Nicklin, K. Crop failure rates in a geoengineered climate: impact of climate change and marine cloud brightening. Environ. Res. Lett. 2015, 10, 084003. [CrossRef]
- Zhan, P.; Zhu, W.Q.; Zhang, T.Y.; Cui, X.F.; Li, N. Impacts of sulfate geoengineering on rice yield in China: Results from a multimodel ensemble. Earth's Future 2019, 7, 395–410. [CrossRef]
- Fan, Y.; Tjiputra, J.F.; Muri, H.; Lombardozzi, D.L.; Park, C.; Wu, S.; Keith, D. Solar geoengineering can alleviate climate change pressures on crop yields. Nat. Food 2021, 2, 373–381. [CrossRef]
- Kravitz, B. Effects of climate engineering on agriculture. Nat. Food 2021, 2, 320–321. [CrossRef]
- Proctor, J. Atmospheric opacity has a nonlinear effect on global crop yields. Nat. Food 2021, 2, 166–173. [CrossRef]
- Wanser, K.; Doherty, S.J.; Hurrell, J.W.; Wong, A. Near-term climate risks and solar radiation modification: a roadmap approach for physical sciences research. Clim. Change 2022, 174, 23. [CrossRef]
- Cassidy, M.; Sandberg, A.; Mani, L. The ethics of volcano geoengineering. Earth's Future 2023, 11, e2023EF003714. [CrossRef]
- Kortetmäki, T.; Oksanen, M. Right to Food and Geoengineering. J. Agric. Environ. Ethics 2023, 36, 1–17. [CrossRef]
- McDonald, M. Geoengineering, climate change and ecological security. Env. Polit. 2023, 32, 565–585. [CrossRef]
- Berry, E.; Mace, G.G. Cloud properties and radiative effects of the Asian summer monsoon derived from A-Train data. J. Geophys. Res. Atmos. 2014, 119, 9492–9508. [CrossRef]
- Hong, Y.; Liu, G.; Li, J.F. Assessing the Radiative Effects of Global Ice Clouds Based on CloudSat and CALIPSO Measurements. J. Clim. 2016, 29, 7651–7674. [CrossRef]
- Matus, A.V.; L'Ecuyer, T.S. The role of cloud phase in Earth's radiation budget. J. Geophys. Res. Atmos. 2017, 122, 2559–2578. [CrossRef]
- Storelvmo, T.; Herger, N. Cirrus cloud susceptibility to the injection of ice nuclei in the upper troposphere. J. Geophys. Res. Atmos. 2014, 119, 2375–2389. [CrossRef]
- Gasparini, B.; Münch, S.; Poncet, L.; Feldmann, M.; Lohmann, U. Is increasing ice crystal sedimentation velocity in geoengineering simulations a good proxy for cirrus cloud seeding?. Atmos. Chem. Phys. 2017, 17, 4871–4885. [CrossRef]
- Ji, D.; Fang, S.; Curry, C.L.; Kashimura, H.; Watanabe, S.; Cole, J.N.S.; Lenton, A.; Muri, H.; Kravitz, B.; Moore, J.C. Extreme temperature and precipitation response to solar dimming and stratospheric aerosol geoengineering. Atmos. Chem. Phys. 2018, 18, 10133–10156. [CrossRef]
- Liu, J. Cooling the earth and Brighten the surface by cirrus thinning geoengineering. Presented at the GeoMIP Meeting, Online, June 2020.
- Duan, L.; Cao, L.; Bala, G; Caldeira K. A model-based investigation of terrestrial plant carbon uptake response to four radiation modification approaches. J. Geophys. Res. Atmos. 2020, 125, e2019JD031883. [CrossRef]
- Mercado, L.; Bellouin, N.; Sitch, S.; Boucher, O.; Huntingford, C.; Wild, M.; Cox, P.M. Impact of changes in diffuse radiation on the global land carbon sink. Nature 2009, 458, 1014–1017. [CrossRef]
- Wild, M.; Roesch, A.; Ammann, C. Global dimming and brightening - evidence and agricultural implications. CABI Rev. 2012, 7, 1–7. [CrossRef]
- Yang, H.Y.; Dobbie, S.; Ramirez-Villegas, J.; Feng, K.; Challinor, A. J.; Chen, B.; Gao, Y.; Lee, L.; Yin, Y.; Sun, L.X.; Watson, J.; Koehler, A.; Fan, T.T.; Ghosh, S. Potential negative consequences of geoengineering on crop production: A study of Indian groundnut. Geophys. Res. Lett. 2016, 43, 11786–11795. [CrossRef]
- Proctor, J.; Hsiang, S.; Burney, J.; Burke M.; Schlenker W. Estimating global agricultural effects of geoengineering using volcanic eruptions. Nature 2018, 560, 480–483. [CrossRef]
- Meng, Q.; Liu, B.; Yang, H.; Chen, X. Solar dimming decreased maize yield potential on the North China Plain. Food Energy Secur. 2020, 9, e235. [CrossRef]
- Pruppacher, H.; Klett, J. Microphysics of Clouds and Precipitation; Atmospheric and Oceanographic Sciences Library, Vol. 18; Springer, Dordrecht, 2010, doi:.10.1007/978-0-306-48100-0.
- Shi, X.; Liu, X. Effect of cloud-scale vertical velocity on the contribution of homogeneous nucleation to cirrus formation and radiative forcing. Geophys. Res. Lett. 2016, 43, 6588–6595. [CrossRef]
- Neale, R.B.; Gettelman, A.; Park, S.; Chen, C.-C.; Lauritzen, P.H.; Williamson, D.L.; Conley, A.J.; Kinnison, D.; Marsh, D.; Smith, A.K.; Vitt, F.M.; Garcia, R.; Lamarque, J.-F.; Mills, M.J.; Tilmes, S.; Morrison, H.; Cameron-Smith, P.; Collins, W.D.; Iacono, M.J.; Easter, R.C.; Liu, X.; Ghan, S.J.; Rasch, P.J.; Taylor, M.A. Description of the NCAR Community Atmosphere Model (CAM 5.0); NCAR/TN-486+STR, National Center for Atmospheric Research: Boulder, Co, USA, 2012. [CrossRef]
- Morrison, H.; Gettelman, A. A New Two-Moment Bulk Stratiform Cloud Microphysics Scheme in the Community Atmosphere Model, Version 3 (CAM3). Part I: Description and Numerical Tests. J. Clim. 2008, 21, 3642–3659. [CrossRef]
- Liu, X.; Penner, J.E. Ice nucleation parameterization for global models. Meteorol. Z. 2005, 14, 499–514. [CrossRef]
- Barahona, D.; Nenes, A. Parameterizing the competition between homogeneous and heterogeneous freezing in ice cloud formation – polydisperse ice nuclei. Atmos. Chem. Phys. 2009, 9, 5933–5948. [CrossRef]
- Shi, X.; Liu, X.; Zhang, K. Effects of pre-existing ice crystals on cirrus clouds and comparison between different ice nucleation parameterizations with the Community Atmosphere Model (CAM5), Atmos. Chem. Phys. 2015, 15, 1503–1520. [CrossRef]
- Shi, X.; Liu, X. Sensitivity study of anthropogenic aerosol indirect forcing through cirrus clouds with CAM5 using three ice nucleation parameterizations. J. Meteorol. Res. 2018, 32, 693–706. [CrossRef]
- Lohmann, U.; Spichtinger, P.; Jess, S.; Peter, T.; Smit, H. Cirrus cloud formation and ice supersaturated regions in a global climate model. Environ. Res. Lett. 2008, 3, 045022. [CrossRef]
- Kärcher, B.; Lohmann, U. A parameterization of cirrus cloud formation: Homogenous freezing of supercooled aerosols. J. Geophys. Res. 2002, 107, 4010. [CrossRef]
- Storelvmo, T.; Kristjansson, J.E.; Muri, H.; Pfeffer, M.; Barahona, D.; Nenes, A. Cirrus cloud seeding has potential to cool climate. Geophys. Res. Lett. 2013, 40, 178–182. [CrossRef]
- Hoose, C.; Möhler, O. Heterogeneous ice nucleation on atmospheric aerosols: a review of results from laboratory experiments. Atmos. Chem. Phys. 2012, 12, 9817-9854. [CrossRef]
- Gasparini, B.; Lohmann, U. Why cirrus cloud seeding cannot substantially cool the planet. J. Geophys. Res. Atmos. 2016, 121, 4877–4893. [CrossRef]
- Mitchell, D.L.; Finnegan, W. Modification of cirrus clouds to reduce global warming. Environ. Res. Lett. 2009, 4, 045102. [CrossRef]
- Rapp, A.D.; Kummerow, C.D.; Fowler, L. Interactions between warm rain clouds and atmospheric preconditioning for deep convection in the tropics. J. Geophys. Res. Atmos. 2011, 116, D23210. [CrossRef]
- Muench, S.; Lohmann, U. Developing a cloud scheme with prognostic cloud fraction and two moment microphysics for ECHAM-HAM. J. Adv. Model. Earth Syst. 2020, 12, e2019MS001824. [CrossRef]
- Cao, L.; Duan, L.; Bala, G.; Caldeira, K. Simultaneous stabilization of global temperature and precipitation through cocktail geoengineering. Geophys. Res. Lett. 2017, 44, 7429–7437. [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
