Submitted:
01 December 2023
Posted:
04 December 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Results
2.1. Phenotypic Variation, Distribution and Heritability Estimates of Flowering Traits
2.2. Correlation between the Flowering Traits
2.3. Genotyping and SNP Identification
2.4. Population Structure and Kinship
2.5. Linkage Disequilibrium Estimation
2.6. Marker-Trait Association Mapping
2.7. Identification of Candidate Genes
3. Discussion
3.1. Variation in Phenotypic Traits Related to Flowering
3.2. Correlation between the Flowering Traits
3.3. Population Structure and Kinship
3.4. Linkage Disequilibrium
3.5. Marker–Trait Association Mapping
3.6. Putative Candidate Genes Linked to Marker Loci for Flowering Traits
4. Conclusions
5. Materials and Methods
5.1. Plant Material and Field Trials
5.2. Flowering Traits Evaluated
5.3. Genomic DNA Extraction and Genotyping
5.4. SNP Calling and Annotation
5.5. Statistical Analyses
5.6. Population Structure and Kinship
5.7. Linkage Disequilibrium Estimation
5.8. Marker-Trait Association Mapping
5.9. Identification of Putative Candidate Genes
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaur, K.; Ahluwalia, P. Cassava as Potential Crop for the Food and Fermentation Industry: A review. Int. J. Food Ferment. Technol. 2017, 7. [Google Scholar] [CrossRef]
- Nanbol, K.K.; Namo, O.A.T. The contribution of root and tuber crops to food security: A review. J. Agric. Sci. Technol. B 2019, 9, 221–233. [Google Scholar]
- Li, S.; Cui, Y.; Zhou, Y.; Luo, Z.; Liu, J.; Zhao, M. The industrial applications of cassava: current status, opportunities and prospects. J. Sci. Food Agric. 2017, 97, 2282–2290. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, H.; Hershey, C.; Iglesias, C.; Zhang, X. Fifty years of a public cassava breeding program: evolution of breeding objectives, methods, and decision-making processes. Theor. Appl. Genet. 2021, 134, 2335–2353. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, H.; Chareinsuk, R. Excellence in Cassava Breeding: Perspectives for the Future. Crop Breeding, Genetics and Genomics, 2020. [Google Scholar]
- Bandeira, E. , et al., Reproductive barriers in cassava: Factors and implications for genetic improvement. PLoS ONE 2021, 16, e0260576. [Google Scholar]
- Cock, J.H. and D.J. Connor, Chapter 19 - Cassava. In Crop Physiology Case Histories for Major Crops; Sadras, V.O., Calderini, D.F., Eds.; Academic Press, 2021; pp. 588–633. [Google Scholar]
- Alves, A.A.C. Cassava botany and phyiology. In Cassava: Biology, Production and Utilization; Hillocks, R.J., Thresh, J.M., Bellotti, A.C., Eds.; 2002; pp. 67–89. [Google Scholar]
- Ceballos, H.; Kulakow, P.; Hershey, C. Cassava Breeding: Current Status, Bottlenecks and the Potential of Biotechnology Tools. Trop. Plant Biol. 2012, 5, 73–87. [Google Scholar] [CrossRef]
- Perera, P.I. , et al., Comparative morphology, biology and histology of reproductive development in three lines of Manihot esculenta Crantz (Euphorbiaceae: Crotonoideae). AoB Plants 2013, 5, pls046. [Google Scholar] [CrossRef]
- Souza, L.S.; Alves, A.A.C.; de Oliveira, E.J. Phenological diversity of flowering and fruiting in cassava germplasm. Sci. Hortic. 2020, 265, 109253. [Google Scholar] [CrossRef]
- Ceballos, H.; Kawuki, R.S.; Gracen, V.E.; Yencho, G.C.; Hershey, C.H. Conventional breeding, marker-assisted selection, genomic selection and inbreeding in clonally propagated crops: a case study for cassava. Theor. Appl. Genet. 2015, 128, 1647–1667. [Google Scholar] [CrossRef] [PubMed]
- McSteen, P. and O. Leyser, Shoot Branching, in Annual Reviews. Plant Biology. 2005, Annual Reviews. 353–374.
- Gaarslev, N.; Swinnen, G.; Soyk, S. Meristem transitions and plant architecture—learning from domestication for crop breeding. Plant Physiol. 2021, 187, 1045–1056. [Google Scholar] [CrossRef]
- Sun, L.; Nie, T.; Chen, Y.; Yin, Z. From Floral Induction to Blooming: The Molecular Mysteries of Flowering in Woody Plants. Int. J. Mol. Sci. 2022, 23, 10959. [Google Scholar] [CrossRef]
- Bendahmane, M.; Dubois, A.; Raymond, O.; Le Bris, M. Genetics and genomics of flower initiation and development in roses. J. Exp. Bot. 2013, 64, 847–857. [Google Scholar] [CrossRef]
- Krishnamurthy, K.V. and B. Bahadur, Genetics of Flower Development, in Plant Biology and Biotechnology, B.B.e. al., Editor. 2015, Springer India: India. 385–407.
- Mallik, M. Flowering Control Mechanisms in Plants and Its Importance in Crop Production and Breeding. Int. J. Pure Appl. Biosci. 2018, 6, 1033–1038. [Google Scholar] [CrossRef]
- Tokunaga, H., et al., Field transcriptome analysis reveals a molecular mechanism for cassava flowering in a mountainous environment in SE Asia. Plant Molecular Biology. 2020.
- Hyde, P.T. and T.L. Setter, Long-day photoperiod and cool temperature induce flowering in cassava: Expression of signaling genes. Front. Plant Sci. 2022, 13, 973206. [Google Scholar] [CrossRef] [PubMed]
- Adeyemo, O.S.; Hyde, P.T.; Setter, T.L. Identification of FT family genes that respond to photoperiod, temperature and genotype in relation to flowering in cassava (Manihot esculenta, Crantz). Plant Reprod. 2018, 32, 181–191. [Google Scholar] [CrossRef]
- Bull, S.E.; Alder, A.; Barsan, C.; Kohler, M.; Hennig, L.; Gruissem, W.; Vanderschuren, H. FLOWERING LOCUS T Triggers Early and Fertile Flowering in Glasshouse Cassava (Manihot esculenta Crantz). Plants 2017, 6, 22. [Google Scholar] [CrossRef]
- Hasan, N.; Choudhary, S.; Naaz, N.; Sharma, N.; Laskar, R.A. Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. J. Genet. Eng. Biotechnol. 2021, 19, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.E., S. Song, and A.H. Schnell, Model-based linkage analysis of a quantitative trait. Statistical Human Genetics: Methods and Protocols. 2017; 283–310.
- Xu, Y. , et al., Quantitative Trait Locus Mapping and Identification of Candidate Genes Controlling Flowering Time in Brassica napus L. Front. Plant Sci. 2020, 11, 626205. [Google Scholar] [CrossRef]
- Sraphet, S. , et al., Quantitative trait loci underlying root yield and starch content in an F1 derived cassava population (Manihot esculenta Crantz). The Journal of Agricultural Science 2016, 155, 569–581. [Google Scholar] [CrossRef]
- Hmwe, N.H.; Sraphet, S.; Srisawad, N.; Smith, D.; Triwitayakorn, K. Identification of QTL Underlying Plant Height and First Branch Height of Cassava. Philipp. J. Sci. 2022, 151. [Google Scholar] [CrossRef]
- Tappiban, P.; Smith, D.R.; Triwitayakorn, K.; Bao, J. Recent understanding of starch biosynthesis in cassava for quality improvement: A review. Trends in Food Science & Technology 2019, 83, 167–180. [Google Scholar]
- Garcia-Oliveira, A.L.; Kimata, B.; Kasele, S.; Kapinga, F.; Masumba, E.; Mkamilo, G.; Sichalwe, C.; Bredeson, J.V.; Lyons, J.B.; Shah, T.; et al. Genetic analysis and QTL mapping for multiple biotic stress resistance in cassava. PLoS ONE 2020, 15, e0236674. [Google Scholar] [CrossRef]
- Challa, S. and N.R.R. Neelapu, Genome-Wide Association Studies (GWAS) for Abiotic Stress Tolerance in Plants, in Biochemical, Physiological and Molecular Avenues for Combating Abiotic Stress Tolerance in Plants. 2018; 135–150.
- Visscher, P.M.; Wray, N.R.; Zhang, Q.; Sklar, P.; McCarthy, M.I.; Brown, M.A.; Yang, J. 10 Years of GWAS Discovery: Biology, Function, and Translation. Am. J. Hum. Genet. 2017, 101, 5–22. [Google Scholar] [CrossRef] [PubMed]
- Alseekh, S.; Kostova, D.; Bulut, M.; Fernie, A.R. Genome-wide association studies: assessing trait characteristics in model and crop plants. Cell. Mol. Life Sci. 2021, 78, 5743–5754. [Google Scholar] [CrossRef]
- Uffelmann, E. , et al., Genome-wide association studies. Nature Reviews Methods Primers 2021, 1. [Google Scholar] [CrossRef]
- Togninalli, M.; Seren, .; Meng, D.; Fitz, J.; Nordborg, M.; Weigel, D.; Borgwardt, K.; Korte, A.; Grimm, D.G. The AraGWAS Catalog: a curated and standardized Arabidopsis thaliana GWAS catalog. Nucleic Acids Res. 2018, 46, D1150–D1156. [CrossRef]
- Sasaki, E.; Köcher, T.; Filiault, D.L.; Nordborg, M. Revisiting a GWAS peak in Arabidopsis thaliana reveals possible confounding by genetic heterogeneity. Heredity 2021, 127, 245–252. [Google Scholar] [CrossRef]
- Yano, K.; Morinaka, Y.; Wang, F.; Huang, P.; Takehara, S.; Hirai, T.; Ito, A.; Koketsu, E.; Kawamura, M.; Kotake, K.; et al. GWAS with principal component analysis identifies a gene comprehensively controlling rice architecture. Proc. Natl. Acad. Sci. 2019, 116, 21262–21267. [Google Scholar] [CrossRef]
- Ruanjaichon, V.; Khammona, K.; Thunnom, B.; Suriharn, K.; Kerdsri, C.; Aesomnuk, W.; Yongsuwan, A.; Chaomueang, N.; Thammapichai, P.; Arikit, S.; et al. Identification of Gene Associated with Sweetness in Corn (Zea mays L.) by Genome-Wide Association Study (GWAS) and Development of a Functional SNP Marker for Predicting Sweet Corn. Plants 2021, 10, 1239. [Google Scholar] [CrossRef] [PubMed]
- Tomkowiak, A.; Bocianowski, J.; Wolko, .; Adamczyk, J.; Mikołajczyk, S.; Kowalczewski, P.. Identification of Markers Associated with Yield Traits and Morphological Features in Maize (Zea mays L.). Plants 2019, 8, 330. [CrossRef] [PubMed]
- Zhou, H.; Xiao, X.; Asjad, A.; Han, D.; Zheng, W.; Xiao, G.; Huang, Y.; Zhou, Q. Integration of GWAS and transcriptome analyses to identify SNPs and candidate genes for aluminum tolerance in rapeseed (Brassica napus L.). BMC Plant Biol. 2022, 22, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, V.; Gupta, S.; Gahlaut, V.; Muthamilarasan, M.; Bandyopadhyay, T.; Ramchiary, N.; Prasad, M. Genome-Wide Association Study of Major Agronomic Traits in Foxtail Millet (Setaria italica L.) Using ddRAD Sequencing. Sci. Rep. 2019, 9, 5020. [Google Scholar] [CrossRef] [PubMed]
- Carmo, C.D.D.; e Sousa, M.B.; Brito, A.C.; de Oliveira, E.J. Genome-wide association studies for waxy starch in cassava. Euphytica 2020, 216, 1–17. [Google Scholar] [CrossRef]
- Rabbi, I.Y.; Udoh, L.I.; Wolfe, M.; Parkes, E.Y.; Gedil, M.A.; Dixon, A.; Ramu, P.; Jannink, J.; Kulakow, P. Genome-Wide Association Mapping of Correlated Traits in Cassava: Dry Matter and Total Carotenoid Content. Plant Genome 2017, 10. [Google Scholar] [CrossRef] [PubMed]
- Ikeogu, U.N. , et al. Genetic Correlation, Genome-Wide Association and Genomic Prediction of Portable NIRS Predicted Carotenoids in Cassava Roots. Front. Plant Sci. 2019, 10, 1570. [Google Scholar] [CrossRef] [PubMed]
- Esuma, W.; Herselman, L.; Labuschagne, M.T.; Ramu, P.; Lu, F.; Baguma, Y.; Buckler, E.S.; Kawuki, R.S. Genome-wide association mapping of provitamin A carotenoid content in cassava. Euphytica 2016, 212, 97–110. [Google Scholar] [CrossRef]
- Wolfe, M.D.; Rabbi, I.Y.; Egesi, C.; Hamblin, M.; Kawuki, R.; Kulakow, P.; Lozano, R.; Del Carpio, D.P.; Ramu, P.; Jannink, J.-L. Genome-Wide Association and Prediction Reveals Genetic Architecture of Cassava Mosaic Disease Resistance and Prospects for Rapid Genetic Improvement. Plant Genome 2016, 9, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Nandudu, L.; Kawuki, R.; Ogbonna, A.; Kanaabi, M.; Jannink, J.-L. Genetic dissection of cassava brown streak disease in a genomic selection population. Front. Plant Sci. 2023, 13, 5627. [Google Scholar] [CrossRef]
- Kayondo, S.I.; Del Carpio, D.P.; Lozano, R.; Ozimati, A.; Wolfe, M.; Baguma, Y.; Gracen, V.; Offei, S.; Ferguson, M.; Kawuki, R.; et al. Genome-wide association mapping and genomic prediction for CBSD resistance in Manihot esculenta. Sci. Rep. 2018, 8, 1549. [Google Scholar] [CrossRef]
- Silva, P.P.d.S.; e Sousa, M.B.; de Oliveira, E.J.; Morgante, C.V.; de Oliveira, C.R.S.; Vieira, S.L.; Borel, J.C. Genome-wide association study of drought tolerance in cassava. Euphytica 2021, 217, 1–26. [Google Scholar] [CrossRef]
- Diack, O.; Kanfany, G.; Gueye, M.C.; Sy, O.; Fofana, A.; Tall, H.; Serba, D.D.; Zekraoui, L.; Berthouly-Salazar, C.; Vigouroux, Y.; et al. GWAS unveils features between early- and late-flowering pearl millets. BMC Genom. 2020, 21, 777. [Google Scholar] [CrossRef]
- Yuan, Y.; Cairns, J.E.; Babu, R.; Gowda, M.; Makumbi, D.; Magorokosho, C.; Zhang, A.; Liu, Y.; Wang, N.; Hao, Z.; et al. Genome-Wide Association Mapping and Genomic Prediction Analyses Reveal the Genetic Architecture of Grain Yield and Flowering Time Under Drought and Heat Stress Conditions in Maize. Front. Plant Sci. 2019, 9, 1919. [Google Scholar] [CrossRef]
- Nadeem, M.A.; Habyarimana, E.; Karaköy, T.; Baloch, F.S. Genetic dissection of days to flowering via genome-wide association studies in Turkish common bean germplasm. Physiol. Mol. Biol. Plants 2021, 27, 1609–1622. [Google Scholar] [CrossRef] [PubMed]
- Raggi, L.; Caproni, L.; Carboni, A.; Negri, V. Genome-Wide Association Study Reveals Candidate Genes for Flowering Time Variation in Common Bean (Phaseolus vulgaris L.). Front. Plant Sci. 2019, 10, 962. [Google Scholar] [CrossRef]
- Sabag, I.; Morota, G.; Peleg, Z. Genome-wide association analysis uncovers the genetic architecture of tradeoff between flowering date and yield components in sesame. BMC Plant Biol. 2021, 21, 549. [Google Scholar] [CrossRef] [PubMed]
- Xu, L. , et al. Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Res. 2016, 23, 43–52. [Google Scholar] [PubMed]
- Akhatar, J.; Goyal, A.; Kaur, N.; Atri, C.; Mittal, M.; Singh, M.P.; Kaur, R.; Rialch, I.; Banga, S.S. Genome wide association analyses to understand genetic basis of flowering and plant height under three levels of nitrogen application in Brassica juncea (L.) Czern & Coss. Sci. Rep. 2021, 11, 4278. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Song, Q.; Cregan, P.B.; Nelson, R.L.; Wang, X.; Wu, J.; Jiang, G.-L. Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm. BMC Genom. 2015, 16, 217. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, X.; Lu, C.; Ye, J.; Zou, M.; Lu, K.; Feng, S.; Pei, J.; Liu, C.; Zhou, X.; et al. Genome-Wide Association Studies of 11 Agronomic Traits in Cassava (Manihot esculenta Crantz). Front. Plant Sci. 2018, 9, 503. [Google Scholar] [CrossRef] [PubMed]
- Phan, H.A.; Iacuone, S.; Li, S.F.; Parish, R.W. The MYB80 Transcription Factor Is Required for Pollen Development and the Regulation of Tapetal Programmed Cell Death inArabidopsis thaliana. Plant Cell 2011, 23, 2209–2224. [Google Scholar] [CrossRef]
- Jiang, D. , et al. Arabidopsis relatives of the human lysine-specific Demethylase1 repress the expression of FWA and FLOWERING LOCUS C and thus promote the floral transition. Plant Cell 2007, 19, 2975–2987. [Google Scholar] [CrossRef]
- Burko, Y.; Geva, Y.; Refael-Cohen, A.; Shleizer-Burko, S.; Shani, E.; Berger, Y.; Halon, E.; Chuck, G.; Moshelion, M.; Ori, N. From Organelle to Organ: ZRIZI MATE-Type Transporter is an Organelle Transporter that Enhances Organ Initiation. Plant Cell Physiol. 2011, 52, 518–527. [Google Scholar] [CrossRef] [PubMed]
- Xia, C.; Wang, Y.; Li, W.; Chen, Y.; Deng, Y.; Zhang, X.; Chen, L.; Ye, D. The Arabidopsis eukaryotic translation initiation factor 3, subunit F (AteIF3f), is required for pollen germination and embryogenesis. Plant J. 2010, 63, 189–202. [Google Scholar] [CrossRef] [PubMed]
- Ren, D.; Rao, Y.; Yu, H.; Xu, Q.; Cui, Y.; Xia, S.; Yu, X.; Liu, H.; Hu, H.; Xue, D.; et al. MORE FLORET1 Encodes a MYB Transcription Factor That Regulates Spikelet Development in Rice. Plant Physiol. 2020, 184, 251–265. [Google Scholar] [CrossRef] [PubMed]
- Edstam, M.M.; Edqvist, J. Involvement of GPI-anchored lipid transfer proteins in the development of seed coats and pollen inArabidopsis thaliana. Physiol. Plant. 2014, 152, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Lebel-Hardenack, S. , et al. Conserved expression of a TASSELSEED2 homolog in the tapetum of the dioecious Silene latifolia and Arabidopsis thaliana. Plant J. 1997, 12, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Guan, X.; Xu, Y.; Wang, Y. Characterization of novel gene expression related to glyoxal oxidase by agro-infiltration of the leaves of accession Baihe-35-1 of Vitis pseudoreticulata involved in production of H2O2 for resistance to Erysiphe necator. Protoplasma 2013, 250, 765–777. [Google Scholar] [CrossRef]
- Wang, R. , et al. A subgroup of MATE transporter genes regulates hypocotyl cell elongation in Arabidopsis. J Exp Bot. 2015, 66, 6327–6343. [Google Scholar] [CrossRef]
- Taneva, K., V. Bozhanova, and I. Petrova. Variability, heritability and genetic advance of some grain quality traits and grain yield in durum wheat genotypes. Bulgarian Journal of Agricultural Science 2019, 25, 288–295. [Google Scholar]
- Young, A.I. Solving the missing heritability problem. PLOS Genet. 2019, 15, e1008222. [Google Scholar] [CrossRef]
- Ndukauba, J. , et al. Variability in Egusi-Melon Genotypes (Citrullus lanatus (Thumb) Matsum and Nakai) in Derived Savannah. International Journal of Plant Research 2015, 5, 19–26. [Google Scholar]
- Schmidt, P.; Hartung, J.; Bennewitz, J.; Piepho, H.-P. Heritability in Plant Breeding on a Genotype-Difference Basis. Genetics 2019, 212, 991–1008. [Google Scholar] [CrossRef]
- Favour, E.; Emeka, N.; Chiedozie, E.; Bunmi, O.; Emmanuel, O. Genetic variability, heritability and variance components of some yield and yield related traits in second backcross population (BC2) of cassava. Afr. J. Plant Sci. 2017, 11, 185–189. [Google Scholar] [CrossRef]
- Rodrmguez, E.P.B.; Morante, N.; Salazar, S.; Hyde, P.T.; Setter, T.L.; Kulakow, P.; Aparicio, J.S.; Zhang, X. Flower-inducing technology facilitates speed breeding in cassava. Front. Plant Sci. 2023, 14, 1172056. [Google Scholar] [CrossRef] [PubMed]
- Aquilino, L.; Pariyo, A.; Baguma, Y.; Edema, R.; Gibson, P.; Bisikwa, J. Genotypes by environment effect on flowering and seed set in cassava, Manihot esculenta Crantz in Uganda. J. Food, Nutr. Agric. 2021, 26–37. [Google Scholar] [CrossRef]
- Ren, D.; Cai, X.; Lin, Q.; Ye, H.; Teng, J.; Li, J.; Ding, X.; Zhang, Z. Impact of linkage disequilibrium heterogeneity along the genome on genomic prediction and heritability estimation. Genet. Sel. Evol. 2022, 54, 47. [Google Scholar] [CrossRef] [PubMed]
- Leelawijitkul, S. , et al. Correlation Between Relative Gene Expression Patterns of Two Flowering locus T (MeFT1 and MeFT2) in Cassava Leaf and Flowering Traits Under Different Flowering Induction Conditions. Pak J Biol Sci. 2022, 25, 369–379. [Google Scholar] [CrossRef] [PubMed]
- Pineda, M.; Morante, N.; Salazar, S.; Cuásquer, J.; Hyde, P.T.; Setter, T.L.; Ceballos, H. Induction of Earlier Flowering in Cassava through Extended Photoperiod. Agronomy 2020, 10, 1273. [Google Scholar] [CrossRef]
- Ochoa, A.; Storey, J.D. Estimating FST and kinship for arbitrary population structures. PLOS Genet. 2021, 17, e1009241. [Google Scholar] [CrossRef]
- Meisner, J.; Albrechtsen, A. Inferring Population Structure and Admixture Proportions in Low-Depth NGS Data. Genetics 2018, 210, 719–731. [Google Scholar] [CrossRef]
- Li, H.; Ralph, P.L. Local PCA Shows How the Effect of Population Structure Differs Along the Genome. Genetics 2018, 211, 289–304. [Google Scholar] [CrossRef] [PubMed]
- Bangarwa, S.K. , et al. Association Mapping in Crops Plants. International Journal of Current Microbiology and Applied Sciences 2020, 9, 1313–1325. [Google Scholar] [CrossRef]
- Vos, P.G.; Paulo, M.J.; Voorrips, R.E.; Visser, R.G.F.; van Eck, H.J.; van Eeuwijk, F.A. Evaluation of LD decay and various LD-decay estimators in simulated and SNP-array data of tetraploid potato. Theor. Appl. Genet. 2017, 130, 123–135. [Google Scholar] [CrossRef]
- de Albuquerque, H.Y.G. and C.D. do Carmo, Genetic diversity of Manihot esculenta Crantz germplasm based on SNP markers. Annals of Applied Biology 2018, 1–14. [Google Scholar]
- Santos, C.S.D. , et al. Genome-wide association study of cassava starch paste properties. PLoS ONE 2022, 17, e0262888. [Google Scholar] [CrossRef]
- Rabbi, I.Y.; Kayondo, S.I.; Bauchet, G.; Yusuf, M.; Aghogho, C.I.; Ogunpaimo, K.; Uwugiaren, R.; Smith, I.A.; Peteti, P.; Agbona, A.; et al. Genome-wide association analysis reveals new insights into the genetic architecture of defensive, agro-morphological and quality-related traits in cassava. Plant Mol. Biol. 2020, 109, 195–213. [Google Scholar] [CrossRef] [PubMed]
- Simko, I.; Haynes, K.G.; Jones, R.W. Assessment of Linkage Disequilibrium in Potato Genome With Single Nucleotide Polymorphism Markers. Genetics 2006, 173, 2237–2245. [Google Scholar] [CrossRef]
- D’hoop, B.B.; Paulo, M.J.; Kowitwanich, K.; Sengers, M.; Visser, R.G.F.; van Eck, H.J.; van Eeuwijk, F.A. Population structure and linkage disequilibrium unravelled in tetraploid potato. Theor. Appl. Genet. 2010, 121, 1151–1170. [Google Scholar] [CrossRef]
- Braulio, J. and S. Cloutier. Association Mapping in Plant Genomes. In Genetic Diversity in Plants; p. 2012.
- Mulugeta, B.; Tesfaye, K.; Ortiz, R.; Johansson, E.; Hailesilassie, T.; Hammenhag, C.; Hailu, F.; Geleta, M. Marker-trait association analyses revealed major novel QTLs for grain yield and related traits in durum wheat. Front. Plant Sci. 2023, 13, 1009244. [Google Scholar] [CrossRef]
- Wang, B.; Smith, S.M.; Li, J. Genetic Regulation of Shoot Architecture. Annu. Rev. Plant Biol. 2018, 69, 437–468. [Google Scholar] [CrossRef]
- Greb, T. , et al. Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation. Genes Dev. 2003, 17, 1175–1187. [Google Scholar] [CrossRef]
- Shao, G.; Lu, Z.; Xiong, J.; Wang, B.; Jing, Y.; Meng, X.; Liu, G.; Ma, H.; Liang, Y.; Chen, F.; et al. Tiller Bud Formation Regulators MOC1 and MOC3 Cooperatively Promote Tiller Bud Outgrowth by Activating FON1 Expression in Rice. Mol. Plant 2019, 12, 1090–1102. [Google Scholar] [CrossRef]
- Shim, S. , et al. GmBRC1 is a Candidate Gene for Branching in Soybean (Glycine max (L.) Merrill). Int J Mol Sci. 2019, 20. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, L.; Liu, D.; Ma, S.; Dai, Y.; Zhang, X.; Wang, Y.; Hu, T.; Xiao, M.; Zhou, Y.; et al. Identification and Expression of the Multidrug and Toxic Compound Extrusion (MATE) Gene Family in Capsicum annuum and Solanum tuberosum. Plants 2020, 9, 1448. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, X.; Lu, C.; Zeng, X.; Li, Y.; Fu, D.; Wu, G. Non-specific lipid transfer proteins in plants: presenting new advances and an integrated functional analysis. J. Exp. Bot. 2015, 66, 5663–5681. [Google Scholar] [CrossRef]
- Ozimati, A.; Kawuki, R.; Esuma, W.; Kayondo, I.S.; Wolfe, M.; Lozano, R.; Rabbi, I.; Kulakow, P.; Jannink, J.-L. Training Population Optimization for Prediction of Cassava Brown Streak Disease Resistance in West African Clones. G3 Genes|Genomes|Genetics 2018, 8, 3903–3913. [Google Scholar] [CrossRef] [PubMed]
- Ozimati, A.; Kawuki, R.; Esuma, W.; Kayondo, S.I.; Pariyo, A.; Wolfe, M.; Jannink, J.-L. Genetic Variation and Trait Correlations in an East African Cassava Breeding Population for Genomic Selection. Crop. Sci. 2019, 59, 460–473. [Google Scholar] [CrossRef]
- Rife, T.W.; Poland, J.A. Field Book: An Open-Source Application for Field Data Collection on Android. Crop. Sci. 2014, 54, 1624–1627. [Google Scholar] [CrossRef]
- R-Core-Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Lloyd-Smith, J.O. Maximum Likelihood Estimation of the Negative Binomial Dispersion Parameter for Highly Overdispersed Data, with Applications to Infectious Diseases. PLOS ONE 2007, 2, e180. [Google Scholar] [CrossRef] [PubMed]
- Towers, S. Negative Binomial Likelihood Fits for Overdispersed Count Data. 2018. [Google Scholar]
- Alliance of Genome Resources, C. Alliance of Genome Resources Portal: unified model organism research platform. Nucleic Acids Res. 2020, 48, D650–D658. [Google Scholar] [CrossRef] [PubMed]






| Variables | Branching | Branch-type | Branching levels (number) | Nodes (number) | Stem height (cm) | Pistillates (number) | Staminates (number) |
|---|---|---|---|---|---|---|---|
| Observations (n) | 1565 | 1,565 | 1,565 | 1,547 | 1,562 | 801 | 801 |
| Mean | 0.93 | 2.19 | 4.86 | 36.90 | 63.06 | 2.09 | 34.63 |
| Skewedness | - | + | - | + | + | + | + |
| SEM | 0.01 | 0.02 | 0.05 | 0.51 | 0.85 | 0.30 | 8.51 |
| CI (0.95) | 0.01 | 0.04 | 0.11 | 1.01 | 1.67 | 0.59 | 16.72 |
| Variance | 0.06 | 0.51 | 4.60 | 407.04 | 1119.56 | 39.00 | 31506.04 |
| SD | 0.25 | 0.71 | 2.15 | 20.18 | 33.46 | 6.25 | 177.50 |
| CV (%) | 26.87 | 32.72 | 44.16 | 54.66 | 53.08 | 2.98 | 5.13 |
| Heritability, H2 | 0.34 | 0.53 | 0.38 | 0.42 | 0.60 | 0.83 | 0.00 |
| SNP heritability, h2 | 0.25 | 0.00 | 0.19 | 0.01 | 0.35 | - | - |
| Significance | * | *** | *** | *** | * | * | *** |
| Variable | Sums of squares | Mean squares | F value | Significance | ||||
|---|---|---|---|---|---|---|---|---|
| Acc | Loc | Acc | Loc | Acc | Loc | Acc | Loc | |
| Branching | 57.143 | 0.634 | 0.12841 | 0.63371 | 3.533 | 17.4353 | *** | *** |
| Branch type | 435.27 | 0.96 | 0.9781 | 0.9603 | 3.2537 | 3.1945 | *** | ns |
| Branching levels | 5021.7 | 367.3 | 11.28 | 367.26 | 9.733 | 316.7597 | *** | *** |
| Nodes (at 1st branch) | 280458 | 16954 | 630.2 | 16954 | 2.4511 | 65.9356 | *** | *** |
| Stem height (1st branch) (cm) | 755806 | 4734 | 1698 | 4734 | 2.2902 | 6.3829 | *** | * |
| Trait | No. of MTA | Chromosome | Associated SNP marker ID |
|---|---|---|---|
| Branching | 15 | 5 (01) | S5_29309724 |
| 8 (02) | S8_38134897; S8_39184412 | ||
| 11 (01) | S11_32333764 | ||
| 15 (01) | S15_11747301 | ||
| 16 (03) | S16_28288554; S16_28711444; S16_29508150 | ||
| 18 (07) | S18_263746; S18_597957; S18_1002380; S18_1489472; S18_1562744; S18_1832353; S18_2456168 | ||
| Branch type | 08 | 5 (01) | S5_29309724 |
| 8 (01) | S8_39184412 | ||
| 14 (01) | S14_1230231 | ||
| 15 (01) | S15_11747301 | ||
| 18 (04) | S18_1002380; S18_1489472; S18_1562744; S18_1832353 | ||
| Branching levels | 14 | 5 (01) | S5_29309724 |
| 8 (02) | S8_38134897; S8_39184412 | ||
| 9 (02) | S9_31290323; S9_31489987 | ||
| 11 (01) | S11_3127381 | ||
| 14 (01) | S14_1230231 | ||
| 15 (01) | S15_11747301 | ||
| 18 (06) | S18_597957; S18_1002380; S18_1489472; S18_1562744; S18_1832353; S18_2456168 | ||
| Nodes at 1st branch | 16 | 3 (01) | S3_21330906 |
| 5 (02) | S5_22566689; S5_29309724 | ||
| 8 (01) | S8_39184412 | ||
| 9 (01) | S9_8276994 | ||
| 11 (01) | S11_3127381 | ||
| 14 (06) | S14_964612; S14_1209616; S14_1230231; S14_1653289; S14_2247549; S14_3759369 | ||
| 15 (01) | S15_11747301 | ||
| 18 (03) | S18_1002380; S18_1562744; S18_1832353 | ||
| Stem height at 1st branch | - | - | - |
| SNP ID | Chromosome | No. of associated genes | Associated traits |
|---|---|---|---|
| S3_21330906 | 3 | 06 | Nodes at 1st branch |
| S5_22566689 | 5 | 04 | Nodes at 1st branch |
| S5_29309724 | 5 | 05 | Branching; Branch type; Branching levels; Nodes at 1st branch |
| S15_11747301 | 15 | 12 | Branching; Branch type; Branching levels; Nodes at 1st branch |
| S18_1832353 | 18 | 10 | Branching; Branch type; Branching levels |
| Trait | Associated SNP | Chr. No. | P.value | MAF | R2 | SNP Effect | PVE (%) | Putative candidate gene ID (Phytozome v13; Manihot 7.1) | Gene functional annotation (according to NCBI) |
|---|---|---|---|---|---|---|---|---|---|
| Nodes at 1st branch | S3_21330906 | 3 | 1.45 x10-7 | 0.017 | 0.106 | 0.82 | 12.94 | Manes.03G102000.1 | dol-P-Man:Man(6)GlcNAc(2)-PP-Dol alpha-1,2-mannosyltransferase |
| Manes.03G102100.1 | olee1-like protein | ||||||||
| Manes.03G101900.3 | phosphoenolpyruvate carboxylase | ||||||||
| Manes.03G102600.3 | release factor glutamine methyltransferase | ||||||||
| Manes.03G102400.1 | TPR repeat-containing thioredoxin TTL1 | ||||||||
| Manes.03G102200.1 | ubiquitin-conjugating enzyme E2 36 | ||||||||
| S5_22566689 | 5 | 5.75 x10-8 | 0.010 | 0.113 | -1.07 | 4.85 | Manes.05G131430.1 | mogroside IE synthase | |
| Manes.05G131410.1 Manes.05G131420.1 | mogroside IE synthase-like | ||||||||
| Manes.05G131440.1 | probably inactive leucine-rich repeat receptor-like protein kinase At5g48380 | ||||||||
| Branching; Branch type; Branching levels |
S18_1832353 | 18 | 1.15 x10-9 | 0.017 | 0.177 | -1.26 | 5.95 | Manes.18G016700.1 | aldehyde oxidase GLOX |
| Manes.18G016200.2 | cytochrome P450 83B1 | ||||||||
| Manes.18G016500.2 | histone H3.3 | ||||||||
| Manes.18G016725.1 Manes.18G016800.2 | lysine-specific histone demethylase 1 homolog 3 | ||||||||
| Manes.18G016372.1 | protein IQ-DOMAIN 32 | ||||||||
| Manes.18G016212.1 | protein RCC2 | ||||||||
| Manes.18G016775.1 | vicilin-like seed storage protein At2g28490 | ||||||||
| Branch type; Branching levels; Nodes at 1st branch |
S5_29309724 | 5 | 1.15 x10-9 | 0.010 | 0.147 | 1.36 | 26.86 | Manes.05G186700.1 | protein DETOXIFICATION 48 |
| Branching; Branch type; Branching levels; Nodes at 1st branch |
S5_29309724 | 5 | 1.57 x10-7 | 0.010 | 0.147 | 1.36 | 26.86 | Manes.05G186500.1 | receptor-like protein kinase 7 |
| Manes.05G186300.4 | reticulon-4-interacting protein 1 homolog, mitochondrial | ||||||||
| Manes.05G186600.1 | sucrose transport protein SUC4 | ||||||||
| Manes.05G186400.1 | xylulose kinase 2 | ||||||||
| S15_11747301 | 15 | 1.40 x10-7 | 0.014 | 0.141 | -1.14 | 11.48 | Manes.15G141100.1 Manes.15G141200.1 | endonuclease V | |
| Manes.15G140500.1 | eukaryotic translation initiation factor 3 subunit I | ||||||||
| Manes.15G140900.1 | myb family transcription factor MOF1 | ||||||||
| Manes.15G140700.1 | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 7-like | ||||||||
| Manes.15G140300.1 | non-specific lipid-transfer protein 4.1 | ||||||||
| Manes.15G141500.1 | protein CHROMATIN REMODELING 19 | ||||||||
| Manes.15G141300.1 Manes.15G141400.3 | protein indeterminate-domain 5, chloroplastic | ||||||||
| Manes.15G140400.1 | protein NRT1/ PTR FAMILY 8.3 | ||||||||
| Manes.15G140600.1 | short-chain dehydrogenase reductase ATA1 | ||||||||
| Manes.15G141700.1 | transcription factor bHLH111 | ||||||||
| S18_1832353 | 18 | 1.15 x10-9 | 0.017 | 0.177 | -1.26 | 5.95 | Manes.18G016750.1 Manes.18G017000.2 |
V-type proton ATPase 16 kDa proteolipid subunit |
| Trait | SNP | Ch | Gene ID | Description | Function | Reference species | References |
|---|---|---|---|---|---|---|---|
| Branch, Branch1_No, Branch_Levels | S18_1832353 | 18 | Manes.18G016700.1 | aldehyde oxidase GLOX | Catalyzes the oxidation of aldehydes to the corresponding carboxylate by coupling the reaction to the reduction of dioxygen to hydrogen peroxide; involved in anther development and play a role in tapetum and pollen development |
Arabidopsis thaliana Vitis pseudoreticulata (Chinese wild grapevine) |
[58,65] |
| Manes.18G016725.1; Manes.18G016800.2 | lysine-specific histone demethylase 1 homolog 3 | Reduces the levels of histone H3 'Lys-4' methylation in chromatin; promotion of floral transition. | Arabidopsis thaliana | [59] | |||
| S5_29309724 | 5 | Manes.05G186700.1 | protein DETOXIFICATION 48 | Functions as a multidrug and toxin extrusion transporter. Contributes to iron homeostasis during stress responses and senescence; Could be involved in specifying the lateral organ initiation rate; May act as a negative regulator of hypocotyl cell elongation in the light | Arabidopsis thaliana | [60,66] | |
| S15_11747301 | 15 | Manes.15G140500.1 | eukaryotic translation initiation factor 3 subunit I | Component of the eukaryotic translation initiation factor 3 (eIF-3) complex, involved in protein synthesis of a specialized repertoire of mRNAs and, together with other initiation factors, stimulates binding of mRNA and methionyl-tRNAi to the 40S ribosome. Regulates negatively translation during flower development | Arabidopsis thaliana | [61] | |
| Manes.15G140900.1 | myb family transcription factor MOF1 | Transcriptional repressor that plays a role in the regulation of organ identity and spikelet meristem determinacy. Interacts with the TPR corepressors to possibly repress the expression of downstream target genes in Rice | Oryza sativa subsp. japonica (Rice) | [62] | |||
| Manes.15G140300.1 | non-specific lipid-transfer protein 4.1 | Plant non-specific lipid-transfer proteins transfer phospholipids as well as galactolipids across membranes. May play a role in wax or cutin deposition in the cell walls of expanding epidermal cells and certain secretory tissues. Lipid transfer protein involved in seed and ovule maturation and development, probably by regulating the fatty acids homeostasis during suberin and sporopollenin biosynthesis or deposition. | Hordeum vulgare (Barley); Arabidopsis thaliana | [63] | |||
| Manes.15G140600.1 | short-chain dehydrogenase reductase ATA1 | May play a role in tapetum development. | Arabidopsis thaliana | [64] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
