Zhang, J.; Wang, Y.; Zhang, T.; Yang, K.; Zhang, J.; Wang, X. A Study on Refraction Error Compensation Method for Underwater Spinning Laser Scanning Three-Dimensional Imaging. Sensors2024, 24, 343.
Zhang, J.; Wang, Y.; Zhang, T.; Yang, K.; Zhang, J.; Wang, X. A Study on Refraction Error Compensation Method for Underwater Spinning Laser Scanning Three-Dimensional Imaging. Sensors 2024, 24, 343.
Zhang, J.; Wang, Y.; Zhang, T.; Yang, K.; Zhang, J.; Wang, X. A Study on Refraction Error Compensation Method for Underwater Spinning Laser Scanning Three-Dimensional Imaging. Sensors2024, 24, 343.
Zhang, J.; Wang, Y.; Zhang, T.; Yang, K.; Zhang, J.; Wang, X. A Study on Refraction Error Compensation Method for Underwater Spinning Laser Scanning Three-Dimensional Imaging. Sensors 2024, 24, 343.
Abstract
Laser scanning 3D imaging technology, because it can get accurate three-dimensional surface data, has been widely used in the search for wrecks and rescue operations, underwater resource development, and other fields. At present, the conventional underwater rotating laser scanning imaging system maintains a relatively fixed light window. However, in low-light situations underwater, the rotation of the scanning device causes some degree of water fluctuation, which warps the light strip data that the system sensor receives about the object's surface. To solve the problem, this research studies an underwater 3D scanning and imaging system that makes use of a fixed-light window and a spinning laser (FWLS). A refraction error compensation algorithm is investigated that is based on the fundamentals of linear laser scanning imaging and the dynamic refraction mathematical model is established by the motion of the imaging device. During the imaging process, the incident angle between the laser and the light window varies due to the scanning mode of the system. The experimental results show that the reconstruction radius error is reduced by 60% (from 2.5 mm to about 1 mm) when the measurement data for a standard sphere with a radius of 20 mm are compensated. Moreover, the compensated point cloud data exhibits a higher degree of correspondence with the model of the standard spherical point cloud. This study has a specific reference value for the refractive error analysis of an underwater laser scanning imaging system, and it provides certain research ideas for the subsequent refractive error analysis of various scanning imaging modalities.
Keywords
underwater 3D imaging; self-rotating; line laser scanning; refraction error compensation algorithm; fixed light window and laser spinning(FWLS)
Subject
Engineering, Marine Engineering
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.