Submitted:
12 November 2023
Posted:
13 November 2023
Read the latest preprint version here
Abstract
Keywords:
1. Introduction
1.1. Historical Context of Galapagos Biodiversity
1.2. Recognition of threats to Galápagos ecosystems
1.3. Impetus for the current review
2. Threats to Galápagos Biodiversity
2.1. Introduced species
2.1.1. Invasive plants
2.1.2. Invasive invertebrates
2.1.3. Invasive vertebrates
2.1.4. Invasive marine species
2.2. Infectious diseases
2.2.1. Viral pathogens of importance to the Galápagos Islands
2.2.2. Bacterial pathogens of importance to the Galápagos Islands
2.2.3. Parasitic diseases of importance to the Galápagos Islands
2.2.4. Emerging pathogens of One Health importance for the Galápagos Islands
2.2.4.1. Avian influenza
2.2.4.2. Toxoplasma gondii and intestinal parasites
2.2.4.3. Vector-borne pathogens
2.2.4.4. Mycoplasma spp.
2.2.4.5. Novel reptile adenoviruses and herpesviruses
2.2.5. Future infectious disease risks
2.2.5.1. West Nile Virus and other mosquito-transmitted arboviruses
2.2.5.2. Coxiella burnetii
2.2.5.3. Mycobacteria
2.2.5.4. Other pathogens of pinnipeds
2.2.5.5. Livestock-transmitted zoonoses
2.3. Antimicrobial resistance
3. Regulations and Surveillance
3.1. Institutions with a role in building the “One Health” strategy for the Galápagos Islands
| Biosecurity Strategy | Health Strategy | Priority Invasive Species Management Strategy |
| C1: Prevention C2: Early Detection C3: Rapid Response |
C1: Baseline of diseases C2: Phyto-zoo-sanitary Epidemiological Surveillance C3: Health of domestic and feral animals |
C1: Integral Management C2: Innovation |
| Transversal Strategy of the Information Management System for Invasive Species in Galápagos. | Transversal Strategy for Institutional Strengthening for the Management of Invasive Species | Transversal Strategy for Communication, Environmental Education and Participation for the Management of Invasive Species |
| C1: Technological Development C2: Baseline C3: Follow-up C4: Research C5: Prioritization |
C1: Coordination C2: Financing C3: Training C4: Legal Framework |
C1: Communication C2: Education C3: Participation |
3.2. Current ABG activities and avenues for regulatory improvement
4. Foreword to Part II
Supplementary Materials
Author Contributions
Conflicts of Interest
References
- Charles Darwin Foundation. (2023). Galápagos Species Checklist. https://www.darwinfoundation.org/en/datazone/checklist [Accessed 28 Jan, 2023].
- Tye, A., Snell, H. L., Peck, S. B., Adsersen, H. (2002). “Outstanding terrestrial features of the Galápagos archipelago,” in A biodiversity vision for the Galápagos Islands. (Puerto Ayora, Galápagos: Charles Darwin Foundation and World Wildlife Fund), pages 12-23.
- Arbogast, B. S., Drovetski, S. V., Curry, R. L., Boag, P. T., Seutin, G., Grant, P. R., et al. (2006). The origin and diversification of Galapagos mockingbirds. Evolution. 60(2):370-82. PMID: 16610327. [CrossRef]
- Smith, G. T. C. (1979). “Looking Back on Twenty Years of the Charles Darwin Foundation.” Charles Darwin Foundation. Noticias De Galapagos. 30:5-13.
- Townsend, C. H. (1925). The Galápagos tortoises in their relation to the whaling industry: A study of old logbooks. Zoologica. 4:55-135. [CrossRef]
- MacFarland, C. G., Villa, J., Toro, B. (1974). The Galápagos Giant Tortoises (Geochelone elephantopus) Part I: Status of the Surviving Populations. Biological Conservation. 6(2):118-133. [CrossRef]
- Dumbacher, J. P., and West, B. (2010). Collecting the Galápagos and the Pacific: How Rollo Howard Beck Shaped our Understanding of Evolution. Proceedings of the California Academy of Sciences. 4(61) Suppl. II, No.13. pp211-243.
- Gifford, E. W. (1908). The rehabilitation of the California Academy of Sciences. The Condor. 10:95–96.
- Tonnis, B., Grant, P. R., Grant, B. R., Petren, K. (2005). Habitat selection and ecological speciation in Galápagos warbler finches (Certhidea olivacea and Certhidea fusca). Proc Biol Sci. 22;272(1565):819-26. [CrossRef]
- Adame, F. (2021). Meaningful collaborations can end “helicopter research.” Nature Career Columns. [Accessed 8 June, 2023]. [CrossRef]
- Minasny, B., Fiantis, D., Mulyanto, B., Sulaeman, Y., Widyatmanti, W. (2020). Global soil science research collaboration in the 21st century: Time to end helicopter research. Geoderma. 373:114299. [CrossRef]
- Chin, A., Baje, L., Donaldson, T., Gerhardt, K., Jabado, R. W., Kyne, P. M., et al. (2019). The scientist abroad: Maximizing research impact and effectiveness when working as a visiting scientist. Biological Conservation. 238:108231.
- Barnett, B. D., Rudd, R. L. (1983). Feral dogs of the Galápagos Islands: impact and control. Int. J. Stud. Anim. Prob. 4, 44–58. [CrossRef]
- Barnett, B. D. (1985a). El gusano del corazon del perro (Dirofilaria immitis) en las Galápagos. Biblioteca Charles Darwin.
- Bensted-Smith, R. (2002). A Biodiversity Vision for the Galapagos Islands: Based on an International Workshop of Conservation Biologists in Galapagos in May 1999. Puerto Ayora, Galapagos: Charles Darwin Foundation.
- Snell, H. L., Powell, G., Tye, A., Bensted-Smith, R., Bustamante, R. H., Branch, G. M. (2002). “Approach to projecting the future of Galápagos biodiversity,” in A biodiversity vision for the Galápagos Islands. (Puerto Ayora, Galápagos: Charles Darwin Foundation and World Wildlife Fund).
- Dirección del Parque Nacional Galápagos. (2014). “Plan de Manejo de las Áreas Protegidas de Galápagos para el Buen Vivir.” Puerto Ayora, Galápagos, Ecuador.
- UNESCO. (2006). “World Heritage Committee: Thirtieth session.” https://whc.unesco.org/en/sessions/30COM/documents/[Accessed 24 March, 2023], P 70-71.
- UNESCO. (2007). “World Heritage Committee: Thirty-first session.” https://whc.unesco.org/en/sessions/31COM/documents/[Accessed 24 March, 2023], P 68-69.
- UNESCO. (2010). “World Heritage Committee: Thirty-fourth session.” https://whc.unesco.org/en/sessions/34COM/documents/[Accessed 24 March, 2023], P 34-35.
- Bensted-Smith, R., Powell, G., Dinerstein, E. (2002). “Planning for the ecoregion,” in A biodiversity vision for the Galápagos Islands. (Puerto Ayora, Galápagos: Charles Darwin Foundation and World Wildlife Fund), pages 1-5.
- Rogg, H., Buddenhagen C., Causton, C. (2005). “Experiences and limitations with pest risk analysis in the Galápagos Islands.” In: Identification of risks and management of invasive alien species using the IPPC framework. Proceedings of the workshop on invasive alien species and the International Plant Protection Convention, Braunschweig, Germany, 22-26 September 2003. Rome, Italy, FAO. https://www.fao.org/3/y5968e/y5968e0m.htm [Accessed 10 September, 2023].
- Grant, P., Grant, B., Petren, K., Keller, L. (2005). Extinction behind our backs: the possible fate of one of the Darwin’s finch species on Isla Floreana, Galapagos. Biological Conservation 122: 499–503.
- O’Connor, J., Sulloway, F., Kleindorfer, S. (2010). Avian population survey in the Floreana highlands: is Darwin’s Medium Tree Finch declining in remnant patches of Scalesia forest? Bird Conservation International 20: 1–11. [CrossRef]
- Dvorak, M., Nemeth, E., Wendelin, B., Herrera, P., Mosquera, D., Anchundia, D., et al. (2017). Conservation Status of Landbirds on Floreana: The Smallest Inhabited Galápagos Island. Journal of Field Ornithology. 88(2):132–45. [CrossRef]
- Dvorak, M., Fessl, B., Nemeth, E., Kleindorfer, S., Tebbich, S. (2011). Distribution and abundance of Darwin’s finches and other land birds on Santa Cruz Island, Galapagos: evidence for declining populations. Oryx 46: 1–9. [CrossRef]
- Riofrío-Lazo, M., Arreguín-Sánchez, F., Páez-Rosas, D. (2017). Population Abundance of the Endangered Galapagos Sea Lion Zalophus wollebaeki in the Southeastern Galapagos Archipelago. PLoS One. 12(1):e0168829. [CrossRef]
- Denkinger, J., Quiroga, D., Murillo, JC. (2014). “Assessing human–wildlife conflicts and benefits of Galápagos sea lions on San Cristobal Island, Galápagos,” in The Galápagos Marine Reserve 2014 (pp. 285-305). Springer, Cham. [CrossRef]
- Denkinger, J., Gordillo, L., Montero-Serra, I., Murillo, J. C., Guevara, N., Hirschfeld, M., Fietz, K., Rubianes, F., Dan, M. (2015). Urban life of Galápagos sea lions (Zalophus wollebaeki) on San Cristobal Island, Ecuador: colony trends and threats. Journal of Sea Research. 1;105:10-4. [CrossRef]
- One Health High-Level Expert Panel (OHHLEP); Adisasmito, W. B., Almuhairi, S., Behravesh, C. B., Bilivogui, P., Bukachi, S. A. et al. (2022). One Health: A new definition for a sustainable and healthy future. PLoS Pathogens. 18(6):e1010537. [CrossRef]
- Fauci, A. S. (2006). Emerging and re-emerging infectious diseases: influenza as a prototype of the host-pathogen balancing act. Cell. 124(4):665-70. [CrossRef]
- Stephen, C., Wilcox, A., Sine, S., Provencher, J. (2023). A reimagined One Health framework for wildlife conservation. Research Directions: One Health, 1, E12. [CrossRef]
- Tounta, D. D., Panagiotis, T. T., Tesseromatis, C. (2022). Human Activities and Zoonotic Epidemics: A Two-Way Relationship. The Case of the COVID-19 Pandemic. Global Sustainability 5 (January): e19. [CrossRef]
- Watkins, G., Cruz, F. (2007). Galapagos at Risk: A Socioeconomic Analysis of the Situation in the Archipelago. Puerto Ayora, Province of Galapagos, Ecuador, Charles Darwin Foundation.
- Toral-Granda, M. V., Causton, C. E., Jäger, H., Trueman, M., Izurieta, J. C., Araujo, E., et al. (2017). Alien species pathways to the Galápagos Islands, Ecuador. PLoS One. 12(9):e0184379. [CrossRef]
- Pizzitutti, F., Walsh, S. J., Rindfuss, R. R., Gunter, R., Quiroga, D., Tippett, R., et al. (2016). Scenario planning for tourism management: a participatory and system dynamics model applied to the Galapagos Islands of Ecuador. Journal of Sustainable Tourism. 25(8):1117-1137. [CrossRef]
- Guézou, A., Trueman, M., Buddenhagen, C. E., Chamorro, S., Guerrero, A. M., Pozo, P. et al. (2010). An extensive alien plant inventory from the inhabited areas of Galápagos. PLoS ONE. 5:1-8. [CrossRef]
- Tye, A. (2006). Can we infer island introduction and naturalization rates from inventory data? Evidence from introduced plants in Galápagos. Biol Invasions. 8:201-215. [CrossRef]
- Blackburn, T. M., Bellard, C., Ricciardi, A. (2019). Alien versus native species as drivers of recent extinctions. Frontiers in Ecology and the Environment. 17(4):203-207. [CrossRef]
- Rentería, J. L., Gardener, M. R., Panetta, F. D., Atkinson, R., Crawley, M. J. (2012). Possible impacts of the invasive plant Rubus niveus on the native vegetation of the Scalesia forest in the Galapagos islands. PLoS One. (10):e48106. [CrossRef]
- Calderón Alvarez, C., Causton, C. E., Hoddle, M. S., Hoddle, C., Van Driesche, R., Stanek III, E. (2012). Monitoring the effects of Rodolia cardinalis on Icerya purchasi populations on the Galapagos Islands. BioControl 57:167-179. [CrossRef]
- Rentería, J. L., Ellison, C. (2004). Potential biological control of Lantana camara in the Galapagos using the rust Puccinia lantanae. SIDA, Contributions to Botany. 21(2):1009-1017.
- Thomas, S. E., Evans, H. C., Cortat, G., Koutsidou, C., Day, M. D., & Ellison, C. A. (2021). Assessment of the microcyclic rust Puccinia lantanae as a classical biological control agent of the pantropical weed Lantana camara. Biological Control, 160, 104688. [CrossRef]
- Causton, C. E., Peck, S. B., Sinclair, B. J., Roque-Albelo, L., Hodgson, C. J., Landry, B. (2006). Alien insects: threats and implications for conservation of Galápagos Islands. Ann. Entomol. Soc. Am. 99, 121–143. [CrossRef]
- Bataille, A., Cunningham, A. A., Cedeno, V., Cruz, M., Eastwood, G., Fonseca, D. M., et al. (2009a). Evidence for regular ongoing introductions of mosquito disease vectors into the Galápagos Islands. Proc. R. Soc. Lond. Biol. 276, 3769–3775.
- Bataille, A., Cunningham, A. A., Cedeno, V., Patino, L., Constantinou, A., Kramer, L. D., et al. (2009b). Natural colonization and adaptation of a mosquito species in Galápagos and its implications for disease threats to endemic wildlife. Proc. Natl. Acad. Sci. 106, 10230–10235. [CrossRef]
- Whiteman, N. K., Goodman, S. J., Sinclair, B. J., Walsh, T., Cunningham, A. A., Kramer, L. D., et al. (2005). Establishment of the avian disease vector Culex quinquefasciatus SAY, 1823 (Diptera: Culicidae) on the Galápagos Islands, Ecuador. Ibis. 147, 844–847. [CrossRef]
- Sinclair, B. J. (2017). “CDF checklist of Galápagos flies,” in Charles Darwin Foundation Galápagos Species Checklist, eds. F. Bungartz, H. Herrera, P. Jaramillo, N. Tirado, G. Jiménez-Uzcátegui, D. Ruiz, A. Guézou, F. Ziemmeck. Charles Darwin Foundation, Puerto Ayora, Galápagos, 45.
- Kilpatrick, A. M., Daszak, P., Goodman, S. J., Rogg, H., Kramer, L. D., Cedeño, V. et al. (2006). Predicting pathogen introduction: West Nile virus spread to Galápagos. Conserv Biol. 20(4):1224-31. [CrossRef]
- Sardelis, M. R., Turell, M. J., Dohm, D. J., O’Guinn, M. L. (2001). Vector competence of selected North American Culex and Coquillettidia mosquitoes for West Nile virus. Emerg. Infect. Dis. 7: 1018D1022. [CrossRef]
- Barnett, B.D. (1985b). Impact of domestic dog populations in the galápagos: prevalence and transmission of canine heartworm. In: Dogs of the Galápagos Islands: Evolution, Ecology, Impact and Control. University of California, Davis Doctoral dissertation. (Retrieved from University Microfilms International Dissertation Abstracts database. Accession No. 852195).
- Hendrix, C., Brunner, C., Bellamy, L. (1986). Natural transmission of Dirofilaria immitis by Aedes aegypti. J. Am. Mosq. Control Assoc. 2, 48–51.
- Van Riper, C., van Riper, S. C., Goff, M. L., Laird, M. C. (1986). The epizootiology and ecological significance of malaria on the birds of Hawaii. Ecol. Monogr. 56: 327Ð344. [CrossRef]
- Harvey-Samuel, T., Ant, T., Sutton, J. Niebuhr, C. N., Asigau, S., Parker, P. et al. (2021). Culex quinquefasciatus: status as a threat to island avifauna and options for genetic control. CABI Agric Biosci 2, 9. [CrossRef]
- Nishida, G. M., Evenhus, N. L. (2000). “Arthropod pests of conservation significance in the Pacific: a preliminary assessment of selected groups,” in Invasive species in the Pacific: a technical review and draft regional strategy, ed. G. Sherley. South Pacific Regional Environment Programme, Samoa, 115D142.
- Miller, G. D., Hofkin, B. V., Snell, H., Hahn, A., Miller, R. D. (2001). Avian malaria and Marek’s disease: potential threats to Galápagos penguins Spheniscus mendiculus. Marine Ornithology. 29:43-46.
- Palmer, J. L., McCutchan, T. F., Vargas, F. H., Deem, S. L., Cruz, M., Hartman, D. A., et al. (2013). Seroprevalence of malarial antibodies in Galapagos penguins (Spheniscus mendiculus). J Parasitol. 99(5):770-6. [CrossRef]
- Levin, I. I., Zwiers, P., Deem, S. L., Geest, E. A., Higashiguchi, J. M., Iezhova, T. A., et al. (2013). Multiple lineages of Avian malaria parasites (Plasmodium) in the Galapagos Islands and evidence for arrival via migratory birds. Conserv Biol. 27(6):1366-77. [CrossRef]
- Fessl, B., Heimpel, G. E., Causton, C. E. (2018). “Chapter 9: Invasion of an Avian Nest Parasite, Philornis downsi, to the Galapagos Islands: Colonization History, Adaptations to Novel Ecosystems, and Conservation Challenges,” in Disease Ecology, Social and Ecological Interactions in the Galapagos Islands, ed. P.G. Parker. [CrossRef]
- Causton C., Cunninghame F., Tapia W. (2013). “Management of the avian parasite Philornis downsi in the Galapagos Islands: A collaborative and strategic action plan,” in Galapagos Report 2011-2012. GNPS, GCREG, CDF and GC. Puerto Ayora, Galapagos, Ecuador, 167-173.
- Butterwort, V., Dansby, H., Zink, F. A., Tembrock, L. R., Gilligan, T. M., Godoy, A., et al. (2022). A DNA extraction method for insects from sticky traps: targeting a low abundance pest, Phthorimaea absoluta (Lepidoptera: Gelechiidae) in mixed species communities. Journal of Economic Entomology. 115(3):844-851. [CrossRef]
- Mee, P. T., Wong, S., Brown, K., Lynch, S. E. (2021). Quantitative PCR assay for the detection of Aedes vigilax on mosquito trap collections containing large numbers of morphologically similar species and phylogenetic analysis of specimens collected in Victoria, Australia. Parasites & Vectors. 14(434). [CrossRef]
- Hadfield, T. L., Turell, M., Dempsey, M. P., David, J., Park, E. J. (2001). Detection of West Nile virus in mosquitoes by RT-PCR. Mol Cell Probes. 15(3):147-50. [CrossRef]
- Ali, E. O. M., Babalghith, A. O., Bahathig, A. O. S., Dafalla, O. M., Al-Maghamsi, I. W., Mustafa, N. E. A. G., et al. (2022). Detection of Dengue Virus From Aedes aegypti (Diptera, Culicidae) in Field-Caught Samples From Makkah Al-Mokarramah, Kingdom of Saudi Arabia, Using RT-PCR. Front Public Health. 10:850851. [CrossRef]
- Carrion, V., Donlan, C. J., Campbell, K., Lavoie, C., Cruz, F. (2007). Feral donkey (Equus asinus) eradications in the Galápagos. Biodiversity and Conservation. 16:437-445. [CrossRef]
- Ballesteros-Mejia, L., Angulo, E., Diagne, C., Cooke, B., Nuñez M. A., Courchamp, F. (2021). Economic costs of biological invasions in Ecuador: the importance of the Galapagos Islands. NeoBiota, 67: 375–400. [CrossRef]
- Bush, M. B., Conrad, S., Restrepo, A., Thompson, D. M., Lofverstrom, M., Conroy, J. L. (2022). Human-induced ecological cascades: extinction, restoration, and rewilding in the Galápagos highlands. 119(24):e2203752119. [CrossRef]
- deVries, T., Black, J. (1983). Of Men, Goats, & Guava—Problems Caused by Introduced Species in the Galápagos. Noticias de Galápagos. 38.
- Cruz, F., Carrion, V., Campbell, K. J., Lavoie, C., Donlan, C. J. (2009) Bio-economics of large-scale eradication of feral goats from Santiago Island, Galápagos. Journal of Wildlife Management 73: 191–200. [CrossRef]
- Cruz, F., Donlan, C. J., Campbell, K., Carrion, V. (2005). Conservation action in the Galápagos: feral pig (Sus scrofa) eradication from Santiago Island. Biol Conserv 121:473–478. [CrossRef]
- Carrion, V., Donlan, C. J., Campbell, K. J., Lavoie, C., Cruz, F. (2011). Archipelago-wide island restoration in the Galápagos Islands: Reducing Costs of Invasive Mammal Eradication Programs and reinvasion risk. PLoS ONE. 6(5):18835. [CrossRef]
- Phillips, R. B., Cooke, B. D., Carrión, V., Snell, H. L. (2012a). Eradication of rock pigeons, Columba livia, from the Galápagos Islands. Biological Conservation. 147(1):264-269. [CrossRef]
- Phillips, R. B., Cooke, B. D., Campbell, K., Carrion, V., Marquez, C., Snell, H. L. (2012b). Eradicating feral cats to protect Galapagos land iguanas: methods and strategies. Pacific Conservation Biology. 11(4):257-267. [CrossRef]
- Causton, C. E., Sevilla, C. R., Porter, S. D. (2005). Eradication of the Little Fire Ant, Wasmannia Auropunctata (Hymenoptera: Formicidae), from Marchena Island, Galápagos: On the Edge of Success? The Florida Entomologist. 88 (2):159–68. [CrossRef]
- Barnett, B. D. (1986). “Eradication and control of feral and free-ranging dogs in the Galápagos Islands,” in Proc. 12th Vertebr. Pest C., ed. T. Salmon. University of California, Davis, pp. 358–368.
- Reponen, S. E., Brown, S. K., Barnett, B. D., Sacks, B. N. (2014). Genetic and morphometric evidence on a Galápagos Island exposes founder effects and diversification in the first-known (truly) feral western dog population. Mol Ecol. 23(2):269-83. [CrossRef]
- Kruuk, H., and Snell., H. (1981). Prey selection by feral dogs from a population of marine iguanas (Amblyrhynchus cristatus). J Appl Ecol. 18:197-204. [CrossRef]
- Jimenez, I. A., Vega Mariño, P. A., Stapleton, G. S., Prieto, J. B., Bowman, D. D. (2020). Canine vector-borne disease in domestic dogs on Isla Santa Cruz, Galápagos. Vet Parasitol Reg Stud Reports. 19:100373. [CrossRef]
- Diaz, N. M., Mendez, G. S., Grijalva, C. J., Walden, H. S., Cruz, M., Aragon, E., et al. (2016). Dog overpopulation and burden of exposure to canine distemper virus and other pathogens on Santa Cruz Island, Galapagos. Prev Vet Med. 123:128-137. [CrossRef]
- Gingrich, E. N., Scorza, A. V., Clifford, E. L., Olea-Popelka, F. J., Lappin, M. R. (2010). Intestinal parasites of dogs on the Galapagos Islands. Vet Parasitol. 169(3-4):404-7. [CrossRef]
- Hernandez, J. A., Yoak, A. J., Walden, H. S., Thompson, N., Zuniga, D., Criollo, R., Duque, V., Cruz, M. (2020). Dog overpopulation on Santa Cruz Island, Galapagos 2018. Conservation Science and Practice. e201. [CrossRef]
- Cooke, S. C., Haskell, L. E., van Rees, C. B., Fessl, B. (2019). A review of the introduced smooth-billed ani Crotophaga ani in Galápagos. Biol Conserv. 229:38-49. [CrossRef]
- Connett, L., Guézou, A., Herrera, H. W., Carrión, V., Parker, P. G., Deem, S. L. (2016). Gizzard contents of the smooth-billed ani Crotophaga ani in Santa Cruz, Galápagos Islands, Ecuador. Galápagos Res 68:43-48.
- Cooke, S. C., Anchundia, D., Caton, E., Haskell, L. E., Jäger, H., Kalki, Y., et al. (2020). Endemic species predation by the introduced smooth-billed ani in Galápagos. Biol Invasions 22:2113–2120. [CrossRef]
- Keith, I., Dawson, T. P., Collins, K. J., Campbell, M. L. (2016). Marine invasive species: establishing pathways, their presence and potential threats in the Galapagos Marine Reserve, Pacific Conservation Biology, 22 (4), 377-385. [CrossRef]
- Carlton, J. T., Keith I., Ruiz, G. M. (2019). Assessing marine bioinvasions in the Galápagos Islands: Implications for conservation biology and marine protected areas. Aquatic Invasions 14(1), 1-20. [CrossRef]
- Charles Darwin Foundation. (2023). “2022 Impact Report.” 52nd General Assembly of the Charles Darwin Foundation. https://www.darwinfoundation.org/en/publications/annual-report/impact-report-2022 [Accessed 1 July 2023].
- Keith, I., Bensted-Smith, W., Banks, S., Suarez, J., Riegl, B. (2022). Caulerpa chemnitzia in Darwin threatening Galapagos coral reefs. PLoS One. 17(8):e0272581. [CrossRef]
- Baert, L. (1994). Notes on the Status of Terrestrial Arthropods in Galápagos. Noticias de Galápagos. 15-21.
- Edgar, G. J., Banks, S., Fariña, J. M., Calvopiña, M., Martínez, C. (2004) Regional biogeography of shallow reef fish and macro-invertebrate communities in the Galápagos archipelago. Journal of Biogeography. 31(7):1107-1124. [CrossRef]
- Levy, J. K., Crawford, P. C., Lappin, M. R., Dubovi, E. J., Levy, M. G., Alleman, R., et al. (2008). Infectious diseases of dogs and cats on Isabela Island, Galapagos. J Vet Intern Med 22:60–65. [CrossRef]
- Vega-Mariño, P., Olson, J., Howitt, B., Criollo, R., Figueroa, L., Orlando, S. A. et al. (2023). A recent distemper virus outbreak in the growing canine populations of Galapagos Islands: a persistent threat for the endangered Galapagos Sea Lion. Front Vet Sci. 10:1154625. [CrossRef]
- Puente-Rodríguez, D., Bos, A. P. B., Koerkamp, P. W. G. G. (2019). Rethinking livestock production systems on the Galápagos Islands: Organizing knowledge-practice interfaces through reflexive interactive design. Environmental Science & Policy. 101:166-174.
- Gottdenker, N. L., Walsh, T., Vargas, H., Merkel, J., Jiménez, G. U., Miller, R. E., et al. (2005). Assessing the risks of introduced chickens and their pathogens to native birds in the Galápagos Archipelago. Biol Conserv. 126(3):429-439. [CrossRef]
- Whitehead, A. B. R., Butcher, G. D., Walden, H. S., Duque, V., Cruz, M., Hernandez, J. A. (2018). Burden of exposure to infectious bursal disease virus, infectious bronchitis virus, Newcastle disease virus, Mycoplasma gallisepticum, and intestinal parasites in introduced broiler chickens on the Galapagos. PLoS One. 13(9):e0203658. [CrossRef]
- Wikelski, M., Foufopoulos, J., Vargas, H., Snell, H. (2004) Galápagos Birds and Diseases: Invasive Pathogens as Threats for Island Species. Ecology and Society 9(1): 5. http://www.ecologyandsociety.org/vol9/iss1/art5/[Accessed 5 May, 2023].
- Martinez-Gutierrez, M., Ruiz-Saenz, J. (2016). Diversity of susceptible hosts in canine distemper virus infection: a systematic review and data synthesis. BMC Vet Res. 12:78. [CrossRef]
- Beineke, A., Baumgärtner, W., Wohlsein, P. (2015). Cross-species transmission of canine distemper virus-an update. One Health. 1:49-59. [CrossRef]
- Williams, E. S., Thome, E. T., Appel, M. J. G., Belitsky, D. W. (1988). Canine Distemper in black-footed ferrets (Mustela nigripes) from Wyoming. Journal of Wildlife Diseases. 24(3):385-398. [CrossRef]
- Gilbert, M., Sulikhan, N., Uphyrkina, O., Goncharuk, M., Kerley, L., Castro, E. H., et al. (2020). Distemper, extinction, and vaccination of the Amur tiger. Proc Natl Acad Sci USA. 117(50):31954-31962. [CrossRef]
- van de Bildt, M. W., Kuiken, T., Visee, A. M., Lema, S., Fitzjohn, T. R., Osterhaus, A. D. (2002). Distemper outbreak and its effect on African wild dog conservation. Emerg Infect Dis. 8(2):211-3. [CrossRef]
- Denkinger, J., Guevara, N., Ayala, S., Murillo, J. C., Hirschfeld, M., Montero-Serra, I., et al. (2017). Pup mortality and evidence for pathogen exposure in Galapagos sea lions (Zalophus wollebaeki) on San Cristobal Island, Galapagos, Ecuador. J Wildl Dis. 53(3):491-498. [CrossRef]
- Kennedy, J. M., Earle, J. A. P., Omar, S., Abdullah, H., Nielsen, O., Roelke-Parker, M. E., et al. (2019). Canine and Phocine Distemper Viruses: Global Spread and Genetic Basis of Jumping Species Barriers. Viruses. 11(10):944. [CrossRef]
- Bengtson, J. L., Boveng, P., Franzen, U., Have, P., Heidejorgensen, M-P., Harkönen, T. J. (1991). Antibodies to canine distemper virus in Antarctic seals. Marine Mammal Science 7, 85-87. [CrossRef]
- Duignan, P. J., Van Bressem, M. F., Baker, J. D., Barbieri, M., Colegrove, K. M., De Guise, S., et al. (2014). Phocine distemper virus: current knowledge and future directions. Viruses. 6(12):5093-134. [CrossRef]
- Härkönen, T., Dietz, R., Reijnders, P., Teilmann, J., Harding, K., Hall, A., et al. (2006). The 1988 and 2002 phocine distemper virus epidemics in European harbour seals. Dis Aquat Organ. 68(2):115-30. [CrossRef]
- Earle, J. A. P., Melia, M. M., Doherty, N. V., Nielsen, O., Cosby, S. L. (2006). Phocine distemper virus in seals, east coast, United States, Emerg. Infect. Dis. 17:215–220. [CrossRef]
- Goldstein, T., Mazet, J. A., Gill, V. A., Doroff, A. M., Burek, K. A., Hammond, J. A. (2009). Phocine distemper virus in Northern sea otters in the Pacific Ocean, 690 Alaska, USA. Emerg. Infect. Dis. 15:925–927. [CrossRef]
- VanWormer, E., Mazet, J. A. K., Hall, A., Gill, V. A., Boveng, P. L., London, J. M., et al. (2019). Viral emergence in marine mammals in the North Pacific may be linked to Arctic sea ice reduction. Sci Rep. 9(1):15569. [CrossRef]
- Stanton, J. B., Brown, C. C., Poet, S., Lipscomb, T. P., Saliki, J., Frasca, S. Jr. (2004). Retrospective differentiation of canine distemper virus and phocine distemper virus in phocids. J Wildl Dis. 40(1):53-9. [CrossRef]
- Soos, C., Padilla, L., Iglesias, A., Gottdenker, N., Bédon, M. C., Rios, A., et al. (2008). Comparison of pathogens in broiler and backyard chickens on the Galápagos Islands: implications for transmission to wildlife. The Auk. 125(2):445-455. [CrossRef]
- Deem, S. L., Cruz, M. B., Higashiguchi, J. M., Parker, G. P. (2012a). Diseases of poultry and endemic birds in Galapagos: implications for the reintroduction of native species. Anim Conserv. 15:73–82. [CrossRef]
- Ayala, A. J., Yabsley, M. J., Hernandez, S. M. (2020). A Review of Pathogen Transmission at the Backyard Chicken-Wild Bird Interface. Front Vet Sci. 7:539925. [CrossRef]
- Travis, E. K., Vargas, F. H., Merkel, J., Gottdenker, N., Miller, R. E., Parker, P. G. (2006a). Hematology, serum chemistry, and serology of Galápagos penguins (Spheniscus mendiculus) in the Galápagos Islands, Ecuador. J Wildl Dis. 42(3):625-32. [CrossRef]
- Travis, E. K., Vargas, F. H., Merkel, J., Gottdenker, N., Miller, R. E., Parker, P. G. (2006b). Hematology, plasma chemistry, and serology of the flightless cormorant (Phalacrocorax harrisi) in the Galapagos Islands, Ecuador. J Wildl Dis. 42(1):133-41. [CrossRef]
- Padilla, L. R., Huyvaert, K. P., Merkel, J., Miller, R. E., Parker, P. G. (2003). Hematology, plasma chemistry, serology, and Chlamydophila status of the waved albatross (Phoebastria irrorata) on the Galapagos Islands. J Zoo Wildl Med. 34(3):278-83. [CrossRef]
- Deem, S. L., Parker, P. G., Cruz, M. B., Merkel, J., Hoeck, P. E. A. (2011). Comparison of blood values and health status of Floreana Mockingbirds (Mimus trifasciatus) on the islands of Champion and Gardner-by-Floreana, Galápagos Islands. J Wildl Dis. 47: 94–106. [CrossRef]
- Parker, P. G., Buckles, E. L., Farrington, H., Petren, K., Whiteman, N. K., Ricklefs, R. E., et al. (2011). 110 years of Avipoxvirus in the Galapagos Islands. PLoS One. 6(1):e15989. [CrossRef]
- Tompkins, E. M., Anderson, D. J., Pabilonia, K. L., Huyvaert, K. P. (2017). Avian Pox Discovered in the Critically Endangered Waved Albatross (Phoebastria irrorata) from the Galápagos Islands, Ecuador. J Wildl Dis. 53(4):891-895. [CrossRef]
- McNew, S. M., Loyola, D. C., Yepez, J., Andreadis, C., Gotanda, K., Saulsberry, A., et al. (2022). Transcriptomic responses of Galápagos finches to avian poxvirus infection. Mol Ecol. 31(21):5552-5567. [CrossRef]
- Lloyd-Smith, J. O., Greig, D. J., Hietala, S. Ghneim, G. S., Palmer, L., St. Leger, J., et al. (2007). Cyclical changes in seroprevalence of leptospirosis in California sea lions: endemic and epidemic disease in one host species?. BMC Infect Dis. 7,125. [CrossRef]
- Sepúlveda, M. A., Seguel, M., Alvarado-Rybak, M., Verdugo, C., Muñoz-Zanzi, C., Tamayo, R. 2015. Postmortem findings in four south American sea lions (Otaria byronia) from an urban colony in Valdivia, Chile. J Wildl Dis. 51(1):279-82. [CrossRef]
- Katz, H., Schelotto, F., Bakker, D., Castro-Ramos, M., Gutiérrez-Expósito, D., Panzera, Y., et al. (2022). Survey of selected pathogens in free-ranging pinnipeds in Uruguay. Dis Aquat Organ. 150:69-83. [CrossRef]
- Calvopiña, M., Vásconez, E., Coral-Almeida, M., Romero-Alvarez, D., Garcia-Bereguiain, M. A., Orlando, A. (2022). Leptospirosis: Morbidity, mortality, and spatial distribution of hospitalized cases in Ecuador. A nationwide study 2000-2020. PLoS Negl Trop Dis. 16(5):e0010430. [CrossRef]
- Ley, D. H., Hawley, D. M., Geary, S. J., Dhondt, A. A. (2016). House finch (Haemorhous mexicanus) conjunctivitis, Mycoplasma spp. Isolated from north American wild birds, 1994-2015. J Wildlife Dis. 52:669–73. [CrossRef]
- Delaney, N. F., Balenger, S., Bonneaud, C., Marx, C. J., Hill, G. E., Ferguson-Noel N, et al. (2012). Ultrafast evolution and loss of CRISPRs following a host shift in a novel wildlife pathogen, Mycoplasma gallisepticum. PLoS Genet. 8:e1002511. [CrossRef]
- Sawicka, A., Durkalec, M., Tomczyk, G., Kursa O. (2020). Occurrence of Mycoplasma gallisepticum in wild birds: A systematic review and meta-analysis. PLoS One. 15(4):e0231545. [CrossRef]
- Padilla, L. R., Santiago-Alarcon, D., Merkel, J., Miller, R. E., Parker, P. G. (2004). Survey for Haemoproteus spp., Trichomonas gallinae, Chlamydophila psittaci, and Salmonella spp. in Galapagos Islands columbiformes. J Zoo Wildl Med. 35(1):60-4. [CrossRef]
- Aaziz, R., Vinueza, R. L., Vorimore, F., Schnee, C., Jiménez-Uzcátegui G., Zanella, G., et al. (2023). Avian Chlamydia abortus Strains Detected in Galápagos Waved Albatross (Phoebastria irrorata). J Wildl Dis. 59(1):143-148. [CrossRef]
- Szymańska-Czerwińska, M., Mitura, A., Niemczuk, K., Zaręba, K., Jodełko, A., Pluta, A., et al. (2017). Dissemination and genetic diversity of chlamydial agents in Polish wildfowl: isolation and molecular characterisation of avian Chlamydia abortus strains. PLoS ONE. 12:e0174599. [CrossRef]
- Gregory, T. M., Livingston, I., Hawkins, E. C., Loyola, A., Cave, A., Vaden, S. L., et al. (2023). Dirofilaria immitis identified in Galapagos sea lions (Zalophus wollebaeki): a wildlife health and conservation concern. J Wildl Dis. 59(3):487-494. [CrossRef]
- Alho, A. M., Marcelino, I., Colella, V., Flanagan, C., Silva, N., Correia, J. J., et al. (2017). Dirofilaria immitis in pinnipeds and a new host record. Parasit Vectors. 10(1):142. [CrossRef]
- Sano, Y., Aoki, M., Takahashi, H., Miura, M., Komatsu, M., Abe, Y., et al. (2005). The first record of Dirofilaria immitis infection in a Humboldt penguin, Spheniscus humboldti. J Parasitol. 91(5):1235-7. [CrossRef]
- Kaplan, B. S., and Webby, R. J. (2013). The avian and mammalian host range of highly pathogenic avian H5N1 influenza. Virus Res. 178(1):3-11. [CrossRef]
- Puryear, W., Sawatzki, K., Hill, N., Foss, A., Stone, J. J., Doughty, L., et al. (2023). Highly Pathogenic Avian Influenza A(H5N1) Virus Outbreak in New England Seals, United States. Emerging Infectious Diseases. 2023;29(4):786-791. [CrossRef]
- Leguia, M., Garcia-Glaessner, A., Muñoz-Saavedra, B., Juarez, D., Barrera, P., Calvo-Mac, C., et al. (2023). Highly pathogenic avian influenza A (H5N1) in marine mammals and seabirds in Peru. Nature Communications. 14:5489. [CrossRef]
- Bruno, A., Alfaro-Núñez, A., de Mora, D., Armas, R., Olmedo, M., Garcés, J., et al. (2023). Phylogenetic analysis reveals that the H5N1 avian influenza A outbreak in poultry in Ecuador in November 2022 is associated with the highly pathogenic clade 2.3.4.4b. Int J Infect Dis. 133:27-30. [CrossRef]
- Gobierno del Ecuador. (2023) “Comunicado Oficial: Activación de protocolos ante possible afectación de aves en Galápagos.” Ministerio del Ambiente, Agua y Transición Ecológica. Parque Nacional Galápagos. [Accessed 18 September, 2023].
- Stokstad, E. (2023). “Deadly Avian Flu Reaches Galápagos Islands.” Science. https://www.science.org/content/article/deadly-avian-flu-reaches-galapagos-islands [Accessed 20 October, 2023].
- VanWormer, E., Miller, M. A., Conrad, P. A., Grigg, M. E., Rejmanek, D., Carpenter, T. E., et al. (2014). Using molecular epidemiology to track Toxoplasma gondii from terrestrial carnivores to marine hosts: implications for public health and conservation. PLoS Negl Trop Dis. 8(5):e2852. [CrossRef]
- Shapiro, K., Bahia-Oliveira, L., Dixon, B., Dumètre, A., de Wit, L. A., VanWormer, E., et al. (2019). Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food. Food Waterborne Parasitol. 15:e00049. [CrossRef]
- Dubey, J. P., Zarnke, R., Thomas, N. J., Wong, S. K., Van Bonn, W., Davis, J., et al. (2003b). Toxoplasma gondii, Neospora caninum, Sarcocystis neurona, and Sarcocystis canis-like infections in marine mammals. Vet. Parasitol. 116, 275–296. [CrossRef]
- VanWormer, E., Conrad, P. A., Miller, M. A., Melli, A. C., Carpenter, T. E., Mazet, J. A. (2013). Toxoplasma gondii, source to sea: higher contribution of domestic felids to terrestrial parasite loading despite lower infection prevalence. Ecohealth. 10(3):277-89. [CrossRef]
- Deem, S. L., Rivera-Parra, J. L., Parker, P. G. (2012b). Health evaluation of Galapagos Hawks (Buteo galapagoensis) on Santiago Island, Galapagos. J Wildl Dis. 48(1):39-46. [CrossRef]
- 145. Deem SL, Merkel J, Ballweber L, Vargas FH, Cruz MB, Parker PG. (2010). Exposure to Toxoplasma gondii in Galapagos Penguins (Spheniscus mendiculus) and flightless cormorants (Phalacrocorax harrisi) in the Galapagos Islands, Ecuador. J Wildl Dis. 46(3):1005-11. [CrossRef] [PubMed]
- Migaki, G., Allen, J. F., Casey, H. W. (1977). Toxoplasmosis in a California sea lion (Zalophus californianus). Am J Vet Res. 38(1):135-6. [PubMed]
- Carlson-Bremer, D., Colegrove, K. M., Gulland, F. M., Conrad, P. A., Mazet, J. A., Johnson, C. K. (2015). Epidemiology and pathology of Toxoplasma gondii in free-ranging California sea lions (Zalophus californianus). J Wildl Dis. 51(2):362-73. [CrossRef]
- Michael, S. A., Howe, L., Chilvers, B. L., Morel, P., Roe, W. D. (2016). Seroprevalence of Toxoplasma gondii in mainland and sub-Antarctic New Zealand sea lion (Phocarctos hookeri) populations. N Z Vet J. 64(5):293-7. [CrossRef]
- Alvarado-Esquivel, C., Sánchez-Okrucky, R., Dubey, J. P. (2012). Serological evidence of Toxoplasma gondii infection in captive marine mammals in Mexico. Vet Parasitol. 184(2-4):321-4. [CrossRef]
- Seguel, M., Gottdenker, N. (2017). The diversity and impact of hookworm infections in wildlife. Int J Parasitol Parasites Wildl. 6(3):177-194. [CrossRef]
- Herbert, A. (2014). Caracterización Molecular, Morfológica y Ultra Estructural Del Nematodo Hematófago Uncinaria Sp. en el Lobo Marino de Galapagos. BSc Thesis Univ. Queretaro, Queretaro, Mexico. P 71.
- Ryan, S. J., Lippi, C. A., Nightingale, R., Hamerlinck, G., Borbor-Cordova, M. J., Cruz, B. M., et al. (2019). Socio-ecological factors associated with dengue risk and Aedes aegypti presence in the Galápagos Islands, Ecuador. Int J Environ Res Public Health. 16(5):682. [CrossRef]
- Silva, L. A., Dermody, T. S. (2017). Chikungunya virus: epidemiology, replication, disease mechanisms, and prospective intervention strategies. J Clin Invest. 127(3):737-749. [CrossRef]
- Bueno, M. G., Martinez, N., Abdalla, L., Duarte Dos Santos, C. N., Chame, M. (2016). Animals in the Zika Virus Life Cycle: What to Expect from Megadiverse Latin American Countries. PLoS Negl Trop Dis. 10(12):e0005073. [CrossRef]
- Gwee, S. X. W., St. John, A. L., Gray, G. C., Pang, J. (2021). Animals as potential reservoirs for dengue transmission: A systematic review. One Health. 12:100216. [CrossRef]
- Bosco-Lauth, A. M., Nemeth, N. M., Kohler, D. J., Bowen, R. A. (2016). Viremia in North American Mammals and Birds After Experimental Infection with Chikungunya Viruses. Am J Trop Med Hyg. 94(3):504-6. [CrossRef]
- Fagre, A. C., and Kading, R. C. (2019). Can Bats Serve as Reservoirs for Arboviruses? Viruses. 11(3):215. [CrossRef]
- Weinberg, M., and Yovel, Y. (2022). Revising the paradigm: Are bats really pathogen reservoirs or do they possess an efficient immune system? iScience. 25(8):104782. [CrossRef]
- Key, G., and Sangoquiza, M. (2008). Activity Patterns and Distribution of Galapagos Bats. Galapagos Research. 65:20-24. http://hdl.handle.net/1834/35978.
- McCracken, G. F., Hayes, J. P., Cevallos, J., Guffey, S. Z., Carlos Romero, F. (1997) Observations on the distribution, ecology, and behaviour of bats on the Galápagos Islands. Journal of Zoology. 243(4):757-770. [CrossRef]
- Wyss, J. H. (2000) Screwworm eradication in the Americas. Ann N Y Acad Sci. 916:186-93. [CrossRef]
- Morick, D., Osinga, N., Gruys, E., Harrus, S. (2009). Identification of a Bartonella species in the harbor seal (Phoca vitulina) and in seal lice (Echinophtirius horridus). Vector Borne Zoonotic Dis. 9(6):751-3. [CrossRef]
- Greig, D. J., Gulland, F. M., Kreuder, C. (2005). A decade of live California sea lion (Zalophus californianus) strandings along the central California coast: Causes and trends, 1991–2000. Aquat Mamm 31:11–22. [CrossRef]
- Sarzosa, M. S., Duignan, P., DeRango, E. J., Field, C., Ríos, C., Sanchez, S., et al. (2021). Occurrence of Mycoplasmas in Galapagos Sea Lions (Zalophus wollebaeki) and their Association with Other Respiratory Pathogens. J Wildl Dis. 57(3):623-627. [CrossRef]
- Nieto-Claudin, A., Esperón, F., Apakupakul, K., Peña, I., Deem, S. L. (2022a). Health assessments uncover novel viral sequences in five species of Galapagos tortoises. Transbound Emerg Dis. 69(4):e1079-e1089. [CrossRef]
- Sejvar, J. J. (2003). West Nile virus: an historical overview. Ochsner J. 5(3):6-10. PMID: 21765761.
- Eastwood, G., Goodman, S. J., Hilgert, N., Cruz, M., Kramer, L. D., Cunningham, A. A. (2014). Using avian surveillance in Ecuador to assess the imminence of West Nile virus incursion to Galápagos. Ecohealth. 11(1):53-62. [CrossRef]
- Coello-Peralta, R., González-González, M., Martínez-Cepeda, G. (2019). West Nile Virus in Ecuador. Journal MVZ Cordoba. 24(1):7151-7156.
- Kilpatrick, A. M., Daszak, P., Goodman, S. J., Rogg, H., Kramer, L. D., Cedeño, V., Cunningham, A. A. (2006). Predicting pathogen introduction: West Nile virus spread to Galáipagos. Conserv Biol. 20(4):1224-31. [CrossRef]
- Eastwood, G., Kramer, L. D., Goodman, S. J., Cunningham, A. A. (2011). West Nile virus vector competency of Culex quinquefasciatus mosquitoes in the Galapagos Islands. Am J Trop Med Hyg. 85(3):426-33. [CrossRef]
- Eastwood, G., Cunningham, A. A., Kramer, L. D., Goodman, S. J. (2019). The vector ecology of introduced Culex quinquefasciatus populations, and implications for future risk of West Nile virus emergence in the Galápagos archipelago. Med Vet Entomol. 33(1):44-55. [CrossRef]
- Eastwood, G., Goodman, S. J., Cunningham, A. A., Kramer, L. D. (2013). Aedes taeniorhynchus vectorial capacity informs a pre-emptive Assessment of West Nile Virus establishment in Galápagos. Sci Rep. 3,1519. [CrossRef]
- McLean, R. G. (2006). West Nile Virus in North American Birds. Ornithological Monographs, 60, 44–64. [CrossRef]
- Go, Y. Y., Balasuriya, U. B., Lee, C. K. (2014). Zoonotic encephalitides caused by arboviruses: transmission and epidemiology of alphaviruses and flaviviruses. Clin Exp Vaccine Res. 3(1):58-77. [CrossRef]
- Mackenzie, J. S., Childs, J. E., Field, H. E., Wang, L. F., Breed, A. C. (2016). The Role of Bats as Reservoir Hosts of Emerging Neuroviruses. Neurotropic Viral Infections. Apr 8:403–54. [CrossRef]
- Welch, D. (2016). “Coxiella burnetii.” In: Sentinel Level Clinical Laboratory Guidelines for Suspected Agents of Bioterrorism and Emerging Infectious Diseases. American Society for Microbiology. https://www.asm.org/Articles/Policy/Laboratory-Response-Network-LRN-Sentinel-Level-C [Accessed 10 September 2023].
- Kagawa, F. T., Wehner, J. H., Mohindra V. (2003). Q fever as a biological weapon. Semin Respir Infect. 18(3):183-95.
- Bauer, B. U., Schoneberg, C., Herms, T. L., Runge, M., Ganter, M. (2022). Surveillance of Coxiella burnetii Shedding in Three Naturally Infected Dairy Goat Herds after Vaccination, Focusing on Bulk Tank Milk and Dust Swabs. Vet Sci. 9(3):102. [CrossRef]
- Bwatota, S. F., Shirima, G. M., Hernandez-Castro, L. E., Bronsvoort, B. M. dC., Wheelhouse, N., Mengele, I. J., Motto, S. K., Komwihangilo, D. M., Lyatuu, E., Cook, E. A. J. (2022). Seroprevalence and Risk Factors for Q fever (Coxiella burnetii) Exposure in Smallholder Dairy Cattle in Tanzania, Veterinary Sciences, 9, 12, (662). [CrossRef]
- El-Mahallawy, H., Lu, G., Kelly, P., Xu, D., Li, Y., Fan, W., Wang, C. (2015). Q fever in China: A systematic review, 1989–2013. Epidemiology & Infection, 143(4), 673-681. [CrossRef]
- Epelboin, L., De Souza Ribeiro Mioni, M., Couesnon, A. et al. (2023). Coxiella burnetii Infection in Livestock, Pets, Wildlife, and Ticks in Latin America and the Caribbean: a Comprehensive Review of the Literature. Curr Trop Med Rep 10, 94–13. [CrossRef]
- Georgiev, M., Afonso, A., Neubauer, H., Needham, H., Thiery, R., Rodolakis, A., Roest, H., Stark, K., Stegeman, J., Vellema, P., van der Hoek, W., More, S. (2013). Q fever in humans and farm animals in four European countries, 1982 to 2010. Euro Surveill. 18(8):20407.
- Kim, S. G., Kim, E. H., Lafferty, C. J., Dubovi, E. (2005). Coxiella burnetii in bulk tank milk samples, United States. Emerg Infect Dis. 11(4):619-21. [CrossRef]
- Carbonero, A., Guzmán, L. T., Montaño, K., Torralbo, A., Arenas-Montes, A., Saa, L. R. (2015). Coxiella burnetii seroprevalence and associated risk factors in dairy and mixed cattle farms from Ecuador. Prev Vet Med. 118(4):427-35. [CrossRef]
- Changoluisa, D., Rivera-Olivero, I.A., Echeverria, G. et al. (2019). Serology for Neosporosis, Q fever and Brucellosis to assess the cause of abortion in two dairy cattle herds in Ecuador. BMC Vet Res 15, 194. [CrossRef]
- Echeverría, G., Reyna-Bello, A., Minda-Aluisa, E., Celi-Erazo, M., Olmedo, L., García, H. A., Garcia-Bereguiain, M. A., de Waard, J. H., UNU/BIOLAC network for infectious cattle diseases. (2019). Serological evidence of Coxiella burnetii infection in cattle and farm workers: is Q fever an underreported zoonotic disease in Ecuador? Infect Drug Resist. 12:701-706. [CrossRef]
- Chalan M. and Omar, D. (2021). Seroprevalencia y factores de riesgo asociados a Fiebre Q Coxiella burnetii en bovinos en las Islas Galápagos Ecuador. http://dspace.utpl.edu.ec/jspui/handle/20.500.11962/27785 [Accessed 10 September, 2023].
- Rojas, M. I., Barragán, V., Trueba, G., Hornstra, H., Pearson, T., Keim, P. (2013). Detección de Coxiella burnetii en leche de bovinos domésticos del Ecuador. Avances. 5(1):B5-B9. [CrossRef]
- Gardner, B. R., Stenos, J., Hufschmid, J., Arnould, J. P. Y., McIntosh, R. R., Tadepalli, M., et al. (2022) An Old Pathogen in a New Environment–Implications of Coxiella burnetii in Australian Fur Seals (Arctocephalus pusillus doriferus). Front. Mar. Sci. 9:809075. [CrossRef]
- Brosch, R., Gordon, S. V., Marmiesse, M., Brodin, P., Buchrieser, C., Eiglmeier, et al. (2002). A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci USA. 99(6):3684-9. [CrossRef]
- Bos, K. I., Harkins, K. M., Herbig, A., Coscolla, M., Weber, N., Comas, I., et al. (2014). Pre-Columbian mycobacterial genomes reveal seals as a source of New World human tuberculosis. Nature 514, 494–497. [CrossRef]
- Forshaw, D., and Phelps, G. R. (1991). Tuberculosis in a captive colony of pinnipeds. J Wildl Dis. 27(2):288-95. [CrossRef]
- Barnett, J. E., Booth, P., Brewer, J. I., Chanter, J., Cooper, T., Crawshaw, T., et al. (2013). Mycobacterium bovis infection in a grey seal pup (Halichoerus grypus). Vet Rec. 173(7):168. [CrossRef]
- Macedo, R., Isidro, J., Gomes, M. C., Botelho, A., Albuquerque, T., Sogorb, A., et al. (2020). Animal-to-human transmission of Mycobacterium pinnipedii. Eur Respir J. 56(6):2000371. [CrossRef]
- Garzon-Chavez, D., Garcia-Bereguiain, M.A., Mora-Pinargote, C., Granda-Pardo, J. C., Leon-Benitez, M., Franco-Sotomayor, G., et al. (2020). Population structure and genetic diversity of Mycobacterium tuberculosis in Ecuador. Sci. Rep. 10, 6237. [CrossRef]
- Goldstein, T., Colegrove, K. M., Hanson, M., Gulland, F. M. (2011). Isolation of a novel adenovirus from California sea lions Zalophus californianus. Dis Aquat Organ. 94(3):243-8. [CrossRef]
- Gulland, F. M. D., Hall, A. J., Ylitalo, G. M., Colegrove, K. M., Norris, T., Duignan, P. J., et al. (2020). Persistent contaminants and Herpesvirus OtHV1 are positively associated with Cancer in wild California Sea Lions (Zalophus californianus). Front. Mar. Sci. 7:602565. [CrossRef]
- Smith, A. W., and Boyt, P. M. (1990). Caliciviruses of ocean origin: a review. J. Zoo Wildl. Med. 21(1):3-23. [CrossRef]
- Haulena, M., Gulland, F. M., Lawrence, J. A., Fauquier, D. A., Jang, S., Aldridge, et al. (2006). Lesions associated with a novel Mycoplasma sp. in California sea lions (Zalophus californianus) undergoing rehabilitation. J Wildl Dis. 42(1):40-5. [CrossRef]
- Volokhov, D. V., Norris, T., Rios, C., Davidson, M. K., Messick, J. B., Gulland, F. M., Chizhikov, V. E. (2011). Novel hemotrophic mycoplasma identified in naturally infected California sea lions (Zalophus californianus). Vet Microbiol. 149(1-2):262-8. [CrossRef]
- McDaniel, C. J., Cardwell, D. M., Moeller, R. B. Jr, Gray, G. C. (2014). Humans and cattle: a review of bovine zoonoses. Vector Borne Zoonotic Dis. 14(1):1-19. [CrossRef]
- Gioia, G., Vinueza, R. L., Cruz, M., Jay, M., Corde, Y., Marsot, M., Zanella, G. (2018). Estimating the probability of freedom from bovine brucellosis in the Galapagos Islands. Epidemiol Infect. 147:e9. [CrossRef]
- Nnadi, N. E., and Carter, D. A. (2021). Climate change and the emergence of fungal pathogens. PLoS Pathog. 17(4):e1009503. [CrossRef]
- Rosenberg, J. F., Haulena, M., Hoang, L. M., Morshed, M., Zabek, E., Raverty, S. A. (2016). Cryptococcus gattii Type VGIIa Infection in Harbor Seals (Phoca vitulina) in British Columbia, Canada. J Wildl Dis. 52(3):677-81. [CrossRef]
- Fenton, H., Daoust, P. Y., Forzán, M. J., Vanderstichel, R. V., Ford, J. K. B., Spaven, L., et al. (2017). Causes of mortality of harbor porpoises Phocoena phocoena along the Atlantic and Pacific coasts of Canada. Dis Aquat Organ. 122(3):171-183. [CrossRef]
- Huckabone, S. E., Gulland, F. M., Johnson, S. M., Colegrove, K. M., Dodd, E. M., Pappagianis, D., et al. (2015). Coccidioidomycosis and other systemic mycoses of marine mammals stranding along the central California, USA coast: 1998-2012. J. Wildl. Dis. 51(2):295-308. [CrossRef]
- Venn-Watson, S., Daniels, R., Smith, C. (2012). Thirty year retrospective evaluation of pneumonia in a bottlenose dolphin Tursiops truncatus population. Dis Aquat Organ. 99(3):237-42.
- Brito Devoto, T., Toscanini, M. A., Hermida Alava, K., Etchecopaz, A. N., Pola, S. J., Martorell, M. M., et al. (2022). Exploring fungal diversity in Antarctic wildlife: isolation and molecular identification of culturable fungi from penguins and pinnipeds. N Z Vet J. 70(5):263-272. [CrossRef]
- Ajello, L., and Padhye, A. (1974). Keratinophilic fungi of the Galapagos Islands. Mykosen. 17(10):239-43. [CrossRef]
- Schoenborn, A. A., Yannarell, S. M., MacVicar, C. T., Barriga-Medina, N. N., Bonham, K. S., Leon-Reyes, A., et al. (2023). Microclimate is a strong predictor of the native and invasive plant-associated soil microbiome on San Cristóbal Island, Galápagos archipelago. Environ Microbiol. Epub ahead of pri. [CrossRef]
- Nelder, M. P., McCreadie, J. W., Coscarón, C., Brockhouse, C. L. (2004). First report of a trichomycete fungus (Zygomycota: Trichomycetes) inhabiting larvae of Simulium ochraceum sensu lato Walker (Diptera: Simuliidae) from the Galapagos Islands. J. Invertebr. Pathol. 87(1):39-44. [CrossRef]
- James, S. A., Carvajal-Barriga, E. J., Barahona, P. P., Nueno-Palop, C., Cross, K., Bond, C. J., et al. (2015). Kazachstania yasuniensis sp. nov., an ascomycetous yeast species found in mainland Ecuador and on the Galápagos. Int J Syst Evol Microbiol. 65(Pt 4):1304-1309. [CrossRef]
- Freitas, L. F. D., Carvajal-Barriga, E. J., Barahona, P. P., Lachance, M. A., Rosa, C. A. (2013). Kodamaea transpacifica f.a., sp. nov., a yeast species isolated from ephemeral flowers and insects in the Galapagos Islands and Malaysia: further evidence for ancient human transpacific contacts. Int J Syst Evol Microbiol. 63(Pt 11):4324-4329. [CrossRef]
- Guamán-Burneo, M. C., Dussán, K. J., Cadete, R. M., Cheab, M. A. M., Portero, P., Carvajal-Barriga, E. J., et al. (2015). Xylitol production by yeasts isolated from rotting wood in the Galápagos Islands, Ecuador, and description of Cyberlindnera galapagoensis f.a., sp. nov. Antonie Van Leeuwenhoek. 108(4):919-31. [CrossRef]
- Carvajal Barriga, E. J., Barahona, P. P., Tufiño, C., Bastidas, B., Guamán-Burneo, C., Freitas, L., et al. (2014). An Overview of the Yeast Biodiversity in the Galápagos Islands and Other Ecuadorian Regions. InTech. [CrossRef]
- Sutton, D. A., Marín, Y., Thompson, E. H., Wickes, B. L., Fu, J., García, D., et al. (2013). Isolation and characterization of a new fungal genus and species, Aphanoascella galapagosensis, from carapace keratitis of a Galapagos tortoise (Chelonoidis nigra microphyes). Med Mycol. 51(2):113-20. [CrossRef]
- Christman, J. E., Alexander, A. B., Donnelly, K. A., Ossiboff, R. J., Stacy, N. I., Richardson, R. L., et al. (2020). Clinical manifestation and molecular characterization of a novel member of the Nannizziopsiaceae in a pulmonary granuloma from a Galapagos Tortoise (Chelonoidis nigra). Front Vet Sci. 7:24. [CrossRef]
- Centers for Disease Control and Prevention. (2013). Antibiotic Resistance Threats in the United States, 2013. https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf [Accessed 9 May, 2023].
- Food and Drug Administration. (2017). Veterinary Feed Directive. https://www.fda.gov/animal-veterinary/development-approval-process/veterinary-feed-directive-vfd [Accessed 9 May, 2023].
- Dadgostar, P. (2019). Antimicrobial Resistance: Implications and Costs. Infect Drug Resist. 12:3903-3910. [CrossRef]
- Centers for Disease Control and Prevention. (2022). COVID-19: U.S. Impact on Antimicrobial Resistance, Special Report 2022. Atlanta, GA: U.S. Department of Health and Human Services. https://www.cdc.gov/drugresistance/covid19.html [Accessed 9 May, 2023].
- Thaller, M. C., Migliore, L., Marquez, C., Tapia, W., Cedeño, V., Rossolini, G. M., et al. (2010). Tracking acquired antibiotic resistance in commensal bacteria of Galápagos land iguanas: no man, no resistance. PLoS One. 5(2):e8989. [CrossRef]
- Wheeler, E., Hong, P. Y., Bedon, L. C., Mackie, R. I. (2012). Carriage of antibiotic-resistant enteric bacteria varies among sites in Galapagos reptiles. J. Wildl. Dis. 48(1):56-67. [CrossRef]
- Nieto-Claudin, A., Deem, S. L., Rodríguez, C., Cano, S., Moity, N., Cabrera, F., et al. (2021b). Antimicrobial resistance in Galapagos tortoises as an indicator of the growing human footprint. Environ Pollut. 284:117453. [CrossRef]
- Overbey, K. N., Hatcher, S. M., Stewart, J. R. (2015). Water quality and antibiotic resistance at beaches of the Galápagos Islands. Front. Environ. Sci. 3. [CrossRef]
- Gobierno del Ecuador. (2022a). Instituto Nacional de Investigación en Salud Pública-INSPI-Dr. Leopoldo Izquieta Pérez: Misión-Visión-Objetivos. http://www.investigacionsalud.gob.ec/mision-vision-objetivos/[Accessed 9 May, 2023].
- Gobierno del Ecuador. (2022b). AGROCALIDAD: Misión y visión. https://www.agrocalidad.gob.ec/mision-vision/[Accessed 9 May, 2023].
- Gobierno del Ecuador. (2022c). ARCSA: Misivón,visión y valores https://www.controlsanitario.gob.ec/valores/[Accessed 9 May, 2023].
- Brewington, L., Rosero, O., Bigue, M., & Cervantes, K. (2012). The quarantine chain: establishing an effective biosecurity system to prevent the introduction of invasive species into the Galápagos Islands. Wildaid, San Francisco. https://wildaid.org/wp-content/uploads/2017/09/QuarantineChain.pdf [Accessed 10 September, 2023].
- Espinosa, M., & Cedeño, M. (2022). Plan estratégico isntitucional de la Agencia de regulación y control del Bioseguridad y Cuarente de Galápagos 2019-2022 L. https://www.fao.org/faolex/results/details/es/c/LEX-FAOC197011/[Accessed 9 May, 2023].
- Gobierno del Ecuador. (2022d). ABG: Vigilancia Sanitaria. https://bioseguridadgalapagos.gob.ec/vigilancia-zoosanitaria/[Accessed 9 May, 2023].
- UNESCO. (2023a). Periodic Reporting. https://whc.unesco.org/en/periodicreporting. [Accessed 20 October, 2023].
- UNESCO. (2023b). State of conservation reports. https://whc.unesco.org/en/soc/4511. [Accessed 20 October, 2023].
- Caccone, A., Cayot, L. J., Gibbs, J. P., Tapia, W. (2017). Chelonoidis chathamensis. The IUCN Red List of Threatened Species. doi: 10.2305/IUCN.UK.2017 3.RLTS.T9019A82688009.en [Accessed on 10 June, 2023]. [CrossRef]
- IUCN. (2022). The IUCN Red List of Threatened Species. Version 2022-2. https://www.iucnredlist.org [Accessed on 8 May, 2023].
- Anchundia, D., Huyvaert, K. P., Anderson, D. J. (2014). Chronic lack of breeding by Galápagos Blue-footed Boobies and associated population decline. Avian Conservation and Ecology 9(1):6. [CrossRef]
- BirdLife International. (2021). Sula nebouxii. The IUCN Red List of Threatened Species. [CrossRef]
- ABG. (2013). “Subproductos y derivados de origen vegetal y animal reglamentados para su ingreso a la provincial de Galápagos.” https://bioseguridadgalapagos.gob.ec/lista-de-productos/[Accessed 18 September, 2023].
- Agencia de Regulación y Control de la Bioseguridad y Cuarentena para Galápagos. (2021). Informe de Gestión 2020: Rendición de Cuentas. 26. https://bioseguridadgalapagos.gob.ec/wp-content/uploads/2021/06/Informe-de-Gestión-2020-vs-final.pdf/[Accessed 9 May, 2023].
- Brodie, J. F., Mohd-Azlan, J., Chen, C., Wearn, O. R., Deith, M. C. M., et al. (2023). Landscape-scale benefits of protected areas for tropical biodiversity. Nature. (620):807-812. [CrossRef]

| Taxon | Endemic | Native | Migrant | Vagrant | Introduced | Other | Total |
| Birds | 47 (22%) | 27 (13%) | 31 (15%) | 65 (31%) | 12 (6%) | 30 (14%) | 212 |
| Extinct | 1 | 1 | |||||
| Critically endangered | 4 | 4 | |||||
| Endangered | 5 | 0 | 1 | 6 | |||
| Vulnerable | 15 | 7 | 0 | 3 | 25 | ||
| Near Threatened | 5 | 3 | 0 | 11 | 1 | 20 | |
| Least Concern | 16 | 14 | 31 | 49 | 9 | 119 | |
| Terrestrial mammals | 9 (38%) | 0 | 0 | 0 | 15 (63%) | 0 | 24 |
| Extinct | 3 | 3 | |||||
| Critically endangered | |||||||
| Endangered | |||||||
| Vulnerable | 5 | 5 | |||||
| Near Threatened | |||||||
| Least Concern | 3 | 3 | |||||
| Marine mammals | 2 (7%) | 2 (7%) | 13 (46%) | 11 (39%) | 0 | 2 (7%) | 28 |
| Extinct | |||||||
| Critically endangered | |||||||
| Endangered | 2 | 2 | 1 | 5 | |||
| Vulnerable | 1 | 1 | |||||
| Near Threatened | |||||||
| Least Concern | 6 | 5 | 11 | ||||
| Reptiles | 37 (9%) | 2 (4%) | 4 (8%) | 0 | 5 (10%) | 4 (8%) | 52 |
| Extinct | 2 | 2 | |||||
| Critically endangered | 7 | 1 | 8 | ||||
| Endangered | 3 | 1 | 4 | ||||
| Vulnerable | 7 | 1 | 2 | 9 | |||
| Near Threatened | 10 | 10 | |||||
| Least Concern | 6 | 1 | 5 | 12 | |||
| Fish | 65 (12%) | 396 (75%) | 0 | 52 (10%) | 1 (<1%) | 14 (3%) | 528 |
| Extinct | |||||||
| Critically endangered | |||||||
| Endangered | 1 | 1 | |||||
| Vulnerable | 3 | 8 | 11 | ||||
| Near Threatened | 10 | 1 | 11 | ||||
| Least Concern | 1 | 16 | 17 | ||||
| Amphibians | 0 | 0 | 0 | 0 | 1 (50%) | 1 (50%) | 2 |
| Causes of natural change | Causes of anthropogenic change |
| Climate change and weather | Invasive species |
| Volcanism | Introduction of infectious diseases |
| Ecological succession | Extractive use of natural resources |
| Competition | Habitat alteration |
| Predation | |
| Dispersal |
| Scientific name | Common name | First Described | Approximate Year of Extinction | Threats/Likely Drivers of Extinction | References |
| Sicyos vollosus | Darwin’s Galápagos gourd | 1835 | 1835 | Grazed to extinction or target of a cucumber virus | CDF Species Checklist Sebastian et al., 2010 |
| Delilia inelegans | N/A | 1835 | 1835 | Unknown; possibly competition by invasive plants or grazed to extinction | CDF Species Checklist Delprete, 1995 |
| Chelonoidis niger | Floreana giant tortoise | 1827 | 1850 | Human exploitation (whalers/mariners) Impacts of introduced species (donkeys, dogs, pigs, black rats, mice, cats, cattle, goats) |
van Dijk et al., 2017 CDF Species Checklist |
| Gomphrena rigida | Galápagos amaranth | 1835 | 1906 | Unknown; possibly competition by invasive plants or grazed to extinction | CDF Species Checklist Lawesson, 1987 |
| Megaoryzomys curioi | Galápagos giant rat | 1964 | 1930 | Unknown; possibly competition, predation, or disease from introduced species (pigs, dogs, black rats, cats) | CDF Species Checklist Weksler & Tirira, 2019 Lange, 2015 |
| Nesoryzomys darwini | Darwin’s Galápagos mouse | 1906 | 1930 | Competition and disease introduction by introduced black rats Predation by feral cats |
Tirira & Weksler, 2019a CDF Species Checklist Dowler et al., 2000 |
| Nesoryzomys indefessus | Indefatigable Galápagos mouse | 1898 | 1934 | Competition and disease introduction by introduced black rats, Norway rats, and house mice Predation by feral cats |
CDF Species Checklist Dowler et al., 2000 Tirira & Weksler, 2019b |
| Pyrocephalus dubius | San Cristóbal Vermilion Flycatcher | 1839 | 1987 | Competition and predation by introduced rats Introduction of avian pox virus Invasive bot fly Philornis downsi |
CDF Species Checklist Carmi et al., 2016 Vargas, 1996 BirdLife International, 2017 |
| Chelonoidis abingdonii | Pinta giant tortoise | 1877 | 2012 | Human exploitation (whalers/mariners) Resource competition and habitat destruction by introduced species (goats) |
Snow, 1964 Cayot et al., 2022 CDF Species Checklist |
| Pathogen | Primary Animal Reservoir (s) | Zoonotic Potential | Documented in Galápagos? | Wildlife at risk | Risk Level | References |
| Avian influenza | Poultry Wild birds |
Yes | Yes | Birds Pinnipeds |
3 | Kaplan & Webby, 2013 Puryear et al., 2023 Leguia et al., 2023 Bruno et al., 2023 |
| Canine distemper virus | Dog | No | Yes | Pinnipeds | 3 | Levy et al., 2008 Diaz et al., 2016 Denkinger at al., 2017 Vega-Mariño et al., 2023 |
| West Nile Virus | Birds | Yes | No | Birds | 3 | Sejvar, 2003 Coello-Peralta et al., 2019 Kilpatrick et al., 2006 Eastwood et al., 2011 McLean, 2006 |
| Coxiella burnetii | Cattle, goats, sheep | Yes | No | Fur seals | 2 | Chalan and Omar, 2021 Gardner et al., 2022 Rojas et al., 2013 |
| Dengue virus | NHP | Yes | Yes | Unlikely | 2 | Gwee et al., 2021 |
| Chikungunya virus | Rodents NHP |
Yes | Yes | Unlikely | 2 | Bosco-Lauth et al., 2016 |
| Dirofilaria immitis | Dog | Yes | Yes | Pinnipeds Galápagos penguins |
2 | Levy et al., 2008 Barnett and Rudd, 1983 Barnett, 1985 Culda et al., 2022 Jimenez et al., 2020 |
| Leptospira interrogans | Rat, Dog, Cattle, Swine | Yes | Yes | Pinnipeds | 2 | Denkinger et al., 2017 Sepúlveda et al., 2015 |
| Phocine Distemper Virus | Seals | No | No | Pinnipeds | 2 | Duignan et al., 2014 Härkönen et al., 2006 Earle et al., 2006 Kennedy et al., 2019 Goldstein et al., 2009 |
| Mycobacterium tuberculosis | Humans | Yes | Yes | Pinnipeds | 2 | Forshaw & Phelps, 1991 Katz et al., 2022 Garzon-Chavez et al., 2020 |
| Mycoplasma gallisepticum | Poultry Passerines Columbiformes |
No | Passerines Galápagos doves |
2 | Soos et al., 2008 Deem et al., 2011 |
|
| Plasmodium spp. (avian malaria) | Birds | No | Birds | 2 | Levin et al., 2009 Levin et al., 2013 Palmer et al., 2013 |
|
| Newcastle Disease Virus (avian paramyxovirus I) | Poultry Waterfowl Other birds |
No | Birds | 2 | Soos et al., 2008 Whitehead et al., 2018 Deem et al., 2011 |
|
| Cryptococcus gattii | N/A | Yes | No | Pinnipeds Galápagos penguins |
2 | Rosenberg et al., 2016 Fenton et al., 2017 Huckabone et al., 2015 Venn-Watson et al., 2014 Brito Devoto et al., 2022 |
| Infectious Bronchitis Virus | Chicken Pigeons (sporadic) |
No | Yes | Galápagos doves | 2 | Soos et al., 2008 Whitehead et al., 2018 Deem et al., 2011 Barr et al., 1988 |
| Infectious Bursal Disease Virus | Poultry Waterfowl |
No | Yes | Flightless cormorant Lava gull |
2 | Soos et al., 2008 Whitehead et al., 2018 Deem et al., 2011 |
| Toxoplasma gondii | Cats | Yes | Yes | Pinnipeds Birds |
2 | Levy et al., 2008 Deem et al., 2012b Deem et al., 2010 |
| Marek’s Disease Virus | Poultry | No | Yes | Unlikely | 1 | Soos et al., 2008 Deem et al., 2012a Gottdenker et al., 2005 Wikelski et al., 2004 |
| Zika virus | NHP | Yes | Yes | Unlikely | 1 | Bueno et al., 2016 |
| Ancylostoma caninum | Dog | Yes | Yes | Unlikely |
1 | Gingrich et al., 2010 Diaz et al., 2016 |
| Toxocara canis | Dog | Yes | Yes | Unlikely | 1 | Gingrich et al., 2010 Diaz et al., 2016 |
| Bartonella spp. | Cats Dogs |
Yes | Yes | Pinnipeds | 1 | Levy et al., 2008 Morick et al., 2009 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).