Submitted:
07 November 2023
Posted:
08 November 2023
You are already at the latest version
Abstract
Keywords:
MSC: 34A07; 54A40
1. Introduction
2. Preliminaries
- P is a normal set, i.e., ∃ ∈ such that AP () = 1 (hence, BP () = 0).
- P (0) and (1) are bounded sets in .
- AP: → [0, 1] is upper semi-continuous: ∀ k ∈ [0, 1], the set { : ∈ , AP () < k} is open.
- BP: → [0, 1] is lower semi-continuous: ∀ t ∈ [0, 1], the set { : ∈ , BP () > k} is open.
- The membership function AP is quasi-concave:
- The non-membership function BP is quasi-convex:
- (i)
- P+ Q = D ⇔ D(α) = P(α) + Q(α) and D*(β) = P* (β) + Q*(β).
- (ii)
- c(P) = D ⇔ D(α) = cP(α) and D*(β) = cP*(β)
- Hukuhara difference of P and Q, if it exists is given by
-
Generalized Hukuhara difference of P and Q, if it exists is given byP GH Q = R ⇔ P = Q + R or Q = P + (−1) R.
| i) | |
| ii) | |
| iii) | |
| iv) | |
| i) | |
| ii) | |
| iii) | |
| iv) | |
3. Proposed Definitions
| i) | |
| ii) | |
| iii) | |
| iv) | |
- i)
- is upper IF – differentiable and .
- ii)
- (u) (u), for all .
4. Intuitionistic fuzzy Cauchy problem
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zadeh, L. A. Fuzzy sets. Information and Control, 1965, 8(3), pp. 338–353. 17. [CrossRef]
- Atanassov, K. T. Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 1986, 20 (1), pp. 87–96. [CrossRef]
- Goguen, J. A. L-fuzzy sets. Journal of Mathematical Analysis and Applications, 1967, 18(1), pp. 145–174. [CrossRef]
- Lin, J., and Zhang, Q. Note on aggregating crisp values into intuitionistic fuzzy number. Applied Mathematical Modelling, 2016, 40 (23–24), pp. 10800–10808. [CrossRef]
- Wasques, V. F., Esmi, E., Barros, L. C., & Bede, B. Comparison Between Numerical Solutions of Fuzzy Initial Value Problems via Interactive and Standard Arithmetics. In Advances in Intelligent Systems and Computing, 2019, 1000, pp. 704-715. [CrossRef]
- Atanassov, K. T. More on intuitionistic fuzzy sets. Fuzzy Sets and Systems, 1989, 33(1), 37–45. [CrossRef]
- Atanassov, K. T. Remarks on the intuitionistic fuzzy sets. Fuzzy Sets and Systems, 1992, 51(1), 117–118. [CrossRef]
- Atanassov, K. T. Operators over interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, 1994, 64 (2), 159–174. [CrossRef]
- Azam, M.; Ali Khan, M. S.; and Yang, S. A Decision-Making Approach for the Evaluation of Information Security Management under Complex Intuitionistic Fuzzy Set Environment. Journal of Mathematics, 2022. [CrossRef]
- Mukherjee, A., & Mukherjee, A. Interval-Valued Intuitionistic Fuzzy Soft Rough Approximation Operators and Their Applications in Decision Making Problem. Annals of Data Science, 2022, 9, pp. 611-625. [CrossRef]
- Xie, D.; Xiao, F.; and Pedrycz, W. Information Quality for Intuitionistic Fuzzy Values with Its Application in Decision Making. Engineering Applications of Artificial Intelligence, 2022, 109. [CrossRef]
- De, S. K.; Biswas, R.; and Roy, A. R. An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets and Systems, 2001, 117(2), pp. 209–213. [CrossRef]
- Szmidt, E. and Kacprzyk, J. Medical diagnostic reasoning using a similarity measure for intuitionistic fuzzy set. NIFS 2004, 10 (4), pp. 61-69.
- Garg, H.; Vimala, J.; Rajareega, S.; Preethi, D.; and Perez-Dominguez, L. Complex intuitionistic fuzzy soft SWARA-COPRAS approach: An application of ERP software selection. AIMS Mathematics, 2022, 7(4), pp. 5895–5909. [CrossRef]
- Adamu, I. M. Application of intuitionistic fuzzy sets to environmental management. Notes on Intuitionistic Fuzzy Sets, 2021, 27(3), pp. 40–50. [CrossRef]
- Ghosh, S.; Roy, S. K.; Ebrahimnejad, A. and Verdegay, J. L. Multi-objective fully intuitionistic fuzzy fixed-charge solid transportation problem. Complex and Intelligent Systems, 2021, 7(2), pp. 1009–1023. [CrossRef]
- Susanto, H. P.; Sutarti, T.; and Hafidah, A. S. Generating Fuzzy Interval Data and Its Application to Find the Relation between Math Anxiety with Self Efficacy Using Correlations Analysis. In Journal of Physics: Conference Series 2019, 1254. [CrossRef]
- Yu-Ting Cheng, Chih-Ching Yang. The Application of Fuzzy Correlation Coefficient with Fuzzy Interval Data. International Journal of Innovative Management, Information & Production, 2014, 5(3), pp. 65-71.
- Diamond, P. Time-dependent differential inclusions, cocycle attractors and fuzzy differential equations. IEEE Trans. Fuzzy Syst., 1999,7, pp. 734-740. [CrossRef]
- Masuo HUKUHARA, P. Integration des Applicaitons Mesurables dont la Valeur est un Compact Convexe. Funkcialaj Ekvacioj, 1967, 10, pp. 205–223.
- Buckley, J. J. & Feuring, T. Fuzzy differential equations. Fuzzy Sets and Systems, 2000, 110, pp. 43-54. [CrossRef]
- Akn, O., & Baye g, S. System of intuitionistic fuzzy differential equations with intuitionistic fuzzy initial values. Notes on Intuitionistic Fuzzy Sets, 2018. [CrossRef]
- Diamond, P. & Kloeden, P. Metric Spaces of Fuzzy Sets. World Scientific Publishing, MA, 1994.
- Puri, L. M. and Ralescu, D. Differentials of fuzzy functions, Journal of Mathematical Analysis and Applications, 1983, 91(2), 552–558. [CrossRef]
- Diamond, P. Stability and periodicity in fuzzy differential equation. IEEE Transactions on Fuzzy Systems, 2000, 8, pp. 583–590. [CrossRef]
- Bede, B., and Gal, S. G. Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations. Fuzzy Sets and Systems, 2005, 151(3), 581–599. [CrossRef]
- Stefanini, L. A generalization of Hukuhara difference and division for interval and fuzzy arithmetic. Fuzzy Sets and Systems, 2010, 161(11), pp. 1564–1584. [CrossRef]
- Bede, B., and Stefanini, L. Generalized differentiability of fuzzy-valued functions. Fuzzy Sets and Systems, 2013, 230, pp. 119–141. [CrossRef]
- Chalco-Cano, Y.; Rufián-Lizana, A.; Román-Flores, H. and Jiménez-Gamero, M. D. Calculus for interval-valued functions using generalized Hukuhara derivative and applications. Fuzzy Sets and Systems, 2013, 219, pp. 49–67. [CrossRef]
- Mondal, S. P. and Roy, T. K. First order non homogeneous ordinary differential equation with initial value as triangular intuitionistic fuzzy number. Journal of Uncertain Systems, 2015, 9(4), pp. 274–285. [CrossRef]
- Stefanini, L. and Bede, B. Generalized fuzzy differentiability with LU-parametric representation. Fuzzy Sets and Systems, 2014, 257, pp. 184–203. [CrossRef]
- Akın, Ö. And Bayeğ, S. Intuitionistic fuzzy initial value problems: An application. Hacettepe Journal of Mathematics and Statistics, 2017, 48(6), pp. 1682–1694.
- Akın, Ö. And Bayeğ, S. Some results on the fundamental concepts of fuzzy set theory in intuitionistic fuzzy environment by using α and β cuts. Filomat, 2019, 33(10), pp. 3123–3148. [CrossRef]
- Gregori, V., Morillas, S., & Sapena, A. Examples of fuzzy metrics and applications. Fuzzy Sets and Systems, 2011, 170(1), pp. 95-111. [CrossRef]
- Ralevi´c, N., & Paunovi´c, M. Applications of the fuzzy metrics in image denoising and segmentation. Tehnicki Vjesnik, 2021 28(3), pp. 819-826. [CrossRef]
- Park, J. H. Intuitionistic fuzzy metric spaces. Chaos, Solitons and Fractals, 2004, 22(5), (2004), pp. 1039-1046. [CrossRef]
- George, A., & Veeramani, P. On some results in fuzzy metric spaces. Fuzzy Sets and Systems, 1994, 64(3), pp. 395-399. [CrossRef]
- Gregori, V., Romaguera, S., & Veeramani, P. A note on intuitionistic fuzzy metric spaces. Chaos, Solitons and Fractals, 2006, 28(4), pp. 902-905. [CrossRef]
- Yadav, N., Tripathi, P. K., & Maurya, S. L. Fixed-point theorems in intuitionistic fuzzy metric space. Journal of Mathematical and Computational Science, 2021, 11(2), pp. 1305-1311.
- P. K. Tripathi, S. L. Maurya, N. Yadav. Coincidences and Common Fixed-Point Theorems in Intuitionistic Fuzzy Metric Space. Glob. J. Pure Appl. Math., 2017, 13, pp. 1035-1047.
- C. Alaca, D. Turkoglu, C. Yildiz. Fixed points in intuitionistic fuzzy metric spaces. Chaos Solitons Fractals, 2006, 29, pp. 1073-1078. [CrossRef]
- V. Lakshmikantham, J.J. Nieto. Differential equations in metric spaces: an introduction and an application to fuzzy differential equations. Dynamics of Continuous Discrete and Impulsive Systems. Series A: Math. Anal, 2003, 10, pp. 991-1000.
- Ben Amma, Bouchra and Melliani, Said and Chadli, Lalla. The Cauchy problem for intuitionistic fuzzy differential equations. Notes on Intuitionistic Fuzzy Sets, 2018, 24, pp. 37-47. [CrossRef]
- A. Khastan and R. Rodrguez-Lpez and M. Shahidi. New differentiability concepts for set-valued functions and applications to set differential equations. Information Sciences, 2021, 575, pp. 355-378. [CrossRef]
- A. Khastan and R. Rodrguez-Lpez and M. Shahid. New metric-based derivatives for fuzzy functions and some of their properties. Fuzzy Sets and Systems, 2022, 436, pp. 32-54. [CrossRef]
- A.P. Calderon & A. Zygmund. Local properties of solutions of elliptic partial differential equations. Studia Math., 1961, 20, pp. 171-225. [CrossRef]
- Shao, Y., Li, Y., & Gong, Z. On Lr-norm-based derivatives and fuzzy Henstock-Kurzweil integrals with an application. Alexandria Engineering Journal, 2023. [CrossRef]
- Ettoussi, R., Melliani, S., & Chadli, L. S. Differential equation with intuitionistic fuzzy parameters. Notes on Intuitionistic Fuzzy Sets, 2017, 23(4), pp. 46-61. [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
