Submitted:
27 October 2023
Posted:
27 October 2023
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Materials and Methods
2.1. Prototype Design and Manufacturing
2.2. Coping Retention Test for Varied Surface Roughness

2.3. Maximum Tightening Torque for Lateral Screw Retained

2.4. Coping Retention Test for Varied Tightening Torque

2.4. Statistical Analysis
3. Results
3.1. Coping Retention Based on Varied Surface Roughness
3.1. Hand Tightening Torque
3.2. Coping Retention Based on Tightening Torque

4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
| Gender | Age | Height (cm) | Weight (kg) | Average Tightening Torque (Nmm) |
| Male | 25 | 169 | 55 | 109.33 |
| Male | 25 | 185 | 81 | 34.67 |
| Male | 26 | 180 | 82 | 75.00 |
| Male | 26 | 183 | 68 | 92.33 |
| Male | 26 | 170 | 100 | 71.00 |
| Male | 26 | 165 | 65 | 86.67 |
| Male | 26 | 171 | 64 | 50.00 |
| Male | 27 | 177 | 78 | 56.00 |
| Male | 28 | 173 | 66 | 53.00 |
| Male | 28 | 165 | 77 | 46.00 |
| Male | 29 | 178 | 85 | 101.67 |
| Male | 29 | 173 | 85 | 58.67 |
| Male | 30 | 180 | 92 | 61.00 |
| Male | 30 | 168 | 76 | 70.67 |
| Male | 30 | 168 | 70 | 67.33 |
| Male | 30 | 175 | 95 | 69.00 |
| Male | 31 | 168 | 72 | 88.67 |
| Male | 31 | 168 | 63 | 49.67 |
| Male | 31 | 167 | 82 | 118.00 |
| Male | 32 | 158 | 61 | 112.67 |
| Male | 32 | 168 | 84 | 55.00 |
| Male | 35 | 170 | 90 | 105.00 |
| Male | 35 | 186 | 100 | 90.67 |
| Male | 35 | 180 | 75 | 120.67 |
| Male | 36 | 198 | 112 | 70.33 |
| Male | 36 | 169 | 70 | 44.33 |
| Female | 26 | 148 | 45 | 55.67 |
| Female | 27 | 165 | 53 | 37.67 |
| Female | 27 | 163 | 49 | 71.00 |
| Female | 28 | 164 | 66 | 35.67 |
| Female | 29 | 164 | 48 | 52.00 |
| Female | 29 | 159 | 60 | 63.00 |
| Female | 30 | 162 | 58 | 87.33 |
| Female | 30 | 155 | 54 | 81.00 |
| Female | 30 | 155 | 50 | 73.67 |
| Female | 30 | 167 | 75 | 77.00 |
| Female | 30 | 167 | 78 | 36.67 |
| Female | 31 | 155 | 52 | 39.00 |
| Female | 34 | 158 | 70 | 50.00 |
| Female | 36 | 165 | 48 | 59.67 |
| Female | 36 | 165 | 58 | 50.67 |
| Female | 36 | 158 | 52 | 76.67 |
| Female | 36 | 173 | 90 | 100.33 |
| Female | 37 | 170 | 56 | 89.33 |
| Female | 38 | 153 | 60 | 66.33 |
| Female | 40 | 156 | 67 | 54.00 |
| Female | 42 | 158 | 62 | 64.67 |
References
- B. Pjetursson, A. Asgeirsson, M. Zwahlen, and I. Sailer, “Improvements in Implant Dentistry over the Last Decade: Comparison of Survival and Complication Rates in Older and Newer Publications,” Int. J. Oral Maxillofac. Implants, vol. 29, no. Supplement, 2014. [CrossRef]
- R. Resnik, Misch’s Contemporary Implant Dentistry, 4th ed. El Sevier, 2019.
- R. Reda et al., “A Systematic Review of Cementation Techniques to Minimize Cement Excess in Cement-Retained Implant Restorations,” Methods Protoc., vol. 5, no. 1, 2022. [CrossRef]
- Makke, A. Homsi, M. Guzaiz, and A. Almalki, “Survey of Screw-Retained versus Cement-Retained Implant Restorations in Saudi Arabia,” Int. J. Dent., vol. 2017, 2017. [CrossRef]
- R. Caricasulo, L. Malchiodi, P. Ghensi, G. Fantozzi, and A. Cucchi, “The influence of implant-abutment connection to peri-implant bone loss: A systematic review and meta-analysis,” Clinical Implant Dentistry and Related Research, vol. 20, no. 4. 2018. [CrossRef]
- J. C. Kim, J. Lee, S. Kim, K. T. Koo, H. Y. Kim, and I. S. L. Yeo, “Influence of implant-abutment connection structure on peri-implant bone level in a second molar: A 1-year randomized controlled trial,” J. Adv. Prosthodont., vol. 11, no. 3, 2019. [CrossRef]
- E. E. Link-Bindo, J. Soltys, D. Donatelli, and R. Cavanaugh, “Common Prosthetic Implant Complications in Fixed Restorations,” Compend. Contin. Educ. Dent., vol. 37, no. 7, 2016.
- J. G. Wittneben, T. Joda, H. P. Weber, and U. Brägger, “Screw retained vs. cement retained implant-supported fixed dental prosthesis,” Periodontol. 2000, vol. 73, no. 1, pp. 141–151, 2017. [CrossRef]
- S. Ma and A. Fenton, “Screw- Versus Cement-Retained Implant Prostheses: A Systematic Review of Prosthodontic Maintenance and Complications,” Int. J. Prosthodont., vol. 28, no. 2, pp. 127–145, 2015. [CrossRef]
- V. Veselinović et al., “Application of Semipermanent Cements and Conventional Cement with Modified Cementing Technique in Dental Implantology,” Acta Stomatol. Croat., vol. 55, no. 4, pp. 367–379, 2021. [CrossRef]
- N. El-Helbawy, A. El-Hatery, and M. Ahmed, “Comparison of Oxygen Plasma Treatment and Sandblasting of Titanium Implant-Abutment Surface on Bond Strength and Surface Topography,” Int. J. Oral Maxillofac. Implants, pp. 555–562, 2016. [CrossRef]
- M. Kurt, T. Külünk, Ç. Ural, Ş. Külünk, Ş. Danişman, and S. Savaş, “The effect of different surface treatments on cement-retained implant-supported restorations,” J. Oral Implantol., vol. 39, no. 1, pp. 44–51, 2013. [CrossRef]
- L. G. R. Drummond, R. M. H. Segundo, H. M. S. Oshima, and R. S. A. Shinkai, “The effect of surface texture on the retention of single implant-supported crowns cemented on wide-platform abutments,” Rev. Odonto Cienc., vol. 32, no. 4, pp. 169–173, 2017. [CrossRef]
- K. M. Tan, R. Masri, C. F. Driscoll, P. Limkangwalmongkol, and E. Romberg, “Effect of axial wall modification on the retention of cement-retained, implant-supported crowns,” J. Prosthet. Dent., vol. 107, no. 2, pp. 80–85, 2012. [CrossRef]
- R. Derafshi, A. H. Ahangari, K. Torabi, and M. Farzin, “Evaluation of the Effect of Axial Wall Modification and Coping Design on the Retention of Cement-retained Implant-supported Crowns.,” J. Dent. Res. Dent. Clin. Dent. Prospects, vol. 9, no. 1, pp. 35–9, 2015, [Online]. Available: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4417491&tool=pmcentrez&rendertype=abstract.
- M. Farzin, K. Torabi, A. H. Ahangari, and R. Derafshi, “Effect of abutment modification and cement type on retention of cement-retained implant supported crowns.,” J. Dent. (Tehran)., vol. 11, no. 3, 2014.
- C. Wadhwani, T. Hess, A. Piñeyro, and K.-H. Chung, “Effects of Abutment and Screw Access Channel Modification on Dislodgement of Cement-Retained Implant-Supported Restorations,” Int. J. Prosthodont., vol. 26, no. 1, pp. 54–56, 2013. [CrossRef]
- Lewinstein, L. Block, Z. Lehr, Z. Ormianer, and S. Matalon, “An in vitro assessment of circumferential grooves on the retention of cement-retained implant-supported crowns,” J. Prosthet. Dent., vol. 106, no. 6, pp. 367–372, 2011. [CrossRef]
- R. Biyani, M. Ali, D. Belles, and J. M. Powers, “Effect of metal extension of crown in the screw access channel of a posterior implant abutment on the retention of cement retained prosthesis,” J. Oral Implantol., vol. 41, no. 5, pp. 537–541, 2015. [CrossRef]
- M. Bresciano, G. Schierano, C. Manzella, A. Screti, C. Bignardi, and G. Preti, “Retention of luting agents on implant abutments of different height and taper,” Clin. Oral Implants Res., vol. 16, no. 5, pp. 594–598, 2005. [CrossRef]
- F. Nematollahi, E. Beyabanaki, and M. Alikhasi, “Cement Selection for Cement-Retained Implant-Supported Prostheses: A Literature Review,” J. Prosthodont., vol. 25, no. 7, pp. 599–606, 2016. [CrossRef]
- T. Linkevicius, A. Puisys, E. Vindasiute, L. Linkeviciene, and P. Apse, “Does residual cement around implant-supported restorations cause peri-implant disease? A retrospective case analysis,” Clin. Oral Implants Res., vol. 24, no. 11, pp. 1179–1184, 2013. [CrossRef]
- Scarano, F. Inchingolo, S. Scogna, L. Leo, A. Greco Lucchina, and L. Mavriqi, “Peri-implant disease caused by residual cement around implant-supported restorations: a clinical report,” J. Biol. Regul. Homeost. Agents, vol. 35, no. 2, pp. 211–216, 2021. [CrossRef]
- P. V. B. Da Rocha, M. A. Freitas, and T. De Morais Alves Da Cunha, “Influence of screw access on the retention of cement-retained implant prostheses,” J. Prosthet. Dent., vol. 109, no. 4, pp. 264–268, 2013. [CrossRef]
- Sailer, D. Karasan, A. Todorovic, M. Ligoutsikou, and B. E. Pjetursson, “Prosthetic failures in dental implant therapy,” Periodontol. 2000, vol. 88, no. 1, pp. 130–144, 2022. [CrossRef]
- M. T. Hamed, H. A. Mously, S. K. Alamoudi, A. B. H. Hashem, and G. H. Naguib, “A systematic review of screw versus cement-retained fixed implant supported reconstructions,” Clin. Cosmet. Investig. Dent., vol. 12, pp. 9–16, 2020. [CrossRef]
- R. Shadid and N. Sadaqa, “A comparison between screw-and cement-retained implant prostheses. A literature review,” J. Oral Implantol., vol. 38, no. 3, pp. 298–307, 2012. [CrossRef]
- H. Kenneth and G. C. Reena, “Cement-retained versus screw-retained implant restorations: Achieving optimal occlusion and esthetics in implant dentistry,” J. Prosthet. Dent., vol. 77, no. 1, pp. 28–35, 1997.
- B. Andersson, P. Odman, A. M. Lindvall, and P. I. Brånemark, “Cemented single crowns on osseointegrated implants after 5 years: results from a prospective study on CeraOne.,” Int. J. Prosthodont., vol. 11, no. 3, pp. 212–8, 1998, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/9728114.
- M. J. Gervais, P. Hatzipanagiotis, and P. R. Wilson, “Cross-pinning: The philosophy of retrievability applied practically to fixed, implant-supported prostheses,” Aust. Dent. J., vol. 53, no. 1, pp. 74–82, 2008. [CrossRef]
- R. J. Sambrook, R. B. Judge, and M. A. Abuzaar, “Strategies for restoration of single implants and use of cross-pin retained restorations by Australian prosthodontists,” Aust. Dent. J., vol. 57, no. 4, pp. 409–414, 2012. [CrossRef]
- S. RJ and J. RB, “The cross-pin retained implant supported restoration: a study of gasket placement and leakage.,” Aust. Dent. J., vol. 57, no. 4, pp. 415–420, 2012, [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/23186564/.
- F. Sánchez Lasheras et al., “Does the transversal screw design increase the risk of mechanical complications in dental implants? A finite elements analysis,” Int. j. numer. method. biomed. eng., vol. 35, no. 6, 2019. [CrossRef]
- S. F. Hasan and A. Z. Abood, “Effect of Various Particle Size of Sand-blast on Roughness and Shear Bond Strength of Ips E.max Press With Ceramic Veneer Materials (An in Vitro Study),” Malaysian J. Med. Heal. Sci., vol. 18, pp. 45–52, 2022.
- Haider, S. H. I. Jaffery, A. N. Khan, N. Qadir, and X. Jing, “Effect of Cerium on Mechanical, Metallurgical and Biomedical Properties of NiCrMoB Dental Alloy,” SSRN Electron. J., 2023. [CrossRef]
- Finger, M. Stiesch, M. Eisenburger, B. Breidenstein, S. Busemann, and A. Greuling, “Effect of sandblasting on the surface roughness and residual stress of 3Y-TZP (zirconia),” SN Appl. Sci., vol. 2, no. 10, 2020. [CrossRef]
- W. Yuda, S. Supriadi, and A. S. Saragih, “Surface modification of Ti-alloy based bone implant by sandblasting,” AIP Conf. Proc., vol. 2193, 2019. [CrossRef]
- Y. Sameera and R. Rai, “Tightening torque of implant abutment using hand drivers against torque wrench and its effect on the internal surface of implant,” J. Indian Prosthodont. Soc., vol. 20, no. 2, pp. 180–185, 2020. [CrossRef]
- E. Haack, R. L. Sakaguchi, T. Sun, and J. P. Coffey, “Elongation and preload stress in dental implant abutment screws.,” Int. J. Oral Maxillofac. Implants, vol. 10, no. 5, pp. 529–36, 1995, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/7590997.
- H. H. Mohammed, J. H. Lee, J. M. Bae, and H. W. Cho, “Effect of abutment screw length and cyclic loading on removal torque in external and internal hex implants,” J. Adv. Prosthodont., vol. 8, no. 1, pp. 62–69, 2016. [CrossRef]
- S. Bishti, J. Siouri, S. Wolfart, and T. Tuna, “Retention Forces of Implant-Supported Single Crowns and Fixed Dental Prostheses after Cementation: An In-Vitro Study,” Oral, vol. 2, no. 1, pp. 29–40, 2022. [CrossRef]
- H. Sarfaraz, A. Hassan, K. Kamalakanth Shenoy, and M. Shetty, “An in vitro study to compare the influence of newer luting cements on retention of cement-retained implant-supported prosthesis,” J. Indian Prosthodont. Soc., vol. 19, no. 2, pp. 166–172, 2019. [CrossRef]
- Y. Nagasawa, Y. Hibino, and H. Nakajima, “Retention of crowns cemented on implant abutments with temporary cements,” Dent. Mater. J., vol. 33, no. 6, pp. 835–844, 2014. [CrossRef]
- Rahmania, I. Tanti, and F. Gita, “The association of normal mouth opening with gender and height,” J. Int. Dent. Med. Res., vol. 10, no. Specialissue, 2017.
- P. Anilkumar, D. S. Chokhani, S. K. Mangrulkar, I. Gupta, R. Singh, and S. Kumar, “A comparative study of retention of cement retained implant prosthesis cemented with different luting cements,” Int. J. Health Sci. (Qassim)., pp. 9136–9144, 2022. [CrossRef]
- E. C. Keum and S. Y. Shin, “A comparison of retentive strength of implant cement depending on various methods of removing provisional cement from implant abutment,” J. Adv. Prosthodont., vol. 5, no. 3, pp. 234–240, 2013. [CrossRef]
- F. Dähne, H. Meißner, K. Böning, C. Arnold, R. Gutwald, and E. Prause, “Retention of different temporary cements tested on zirconia crowns and titanium abutments in vitro,” Int. J. Implant Dent., vol. 7, no. 1, 2021. [CrossRef]
- H. Wang, J. H. Wu, H. Y. Li, P. P. Wang, H. E. Lee, and J. K. Du, “Fracture resistance of different metal substructure designs for implant-supported porcelain-fused-to-metal (PFM) crowns,” J. Dent. Sci., vol. 8, no. 3, pp. 314–320, 2013. [CrossRef]
- P. Osak, J. Maszybrocka, M. Zubko, J. Rak, S. Bogunia, and B. Łosiewicz, “Influence of sandblasting process on tribological properties of titanium grade 4 in artificial saliva for dentistry applications,” Materials (Basel)., vol. 14, no. 24, 2021. [CrossRef]
- G. E. Kunt, G. Ceylan, and N. Yilmaz, “Effect of surface treatments on implant crown retention,” J. Dent. Sci., vol. 5, no. 3, pp. 131–135, 2010. [CrossRef]
- Jemat, M. J. Ghazali, M. Razali, and Y. Otsuka, “Surface modifications and their effects on titanium dental implants,” Biomed Res. Int., vol. 2015, 2015. [CrossRef]
- T. N. de Campos et al., “Effect of surface topography of implant abutments on retention of cemented single-tooth crowns.,” Int. J. Periodontics Restorative Dent., vol. 30, no. 4, pp. 409–13, 2010, [Online]. Available: http://www.ncbi.nlm.nih.gov/pubmed/20664843.
- M. A. Erdem et al., “The accuracy of new and aged mechanical torque devices employed in five dental implant systems,” Biomed Res. Int., vol. 2017, 2017. [CrossRef]
- S. Pincha, S. Shetty, and A. Mithra, “Accuracy of Implant Torque Wrenches after Clinical Service,” J. Interdiscip. Dent., vol. 8, no. 1, p. 13, 2018. [CrossRef]
- Y. Sameera and R. Rai, “Tightening torque of implant abutment using hand drivers against torque wrench and its effect on the internal surface of implant,” J. Indian Prosthodont. Soc., vol. 20, no. 2, p. 180, 2020. [CrossRef]
- H. Shiba et al., “Experimental study on the factors affecting torque of beam-type implant torque wrenches,” BMC Oral Health, vol. 21, no. 1, 2021. [CrossRef]
- H. Lee, J. Bin Lee, M. Y. Kim, J. H. Yoon, S. H. Choi, and Y. T. Kim, “Mechanical and biological complication rates of the modified lateral-screw-retained implant prosthesis in the posterior region: An alternative to the conventional Implant prosthetic system,” J. Adv. Prosthodont., vol. 8, no. 2, pp. 150–157, 2016. [CrossRef]
- S. Varalakshmi Reddy, M. Sushender Reddy, C. Rajaneesh Reddy, P. Pithani, R. Santosh Kumar, and G. Kulkarni, “The infuence of implant abutment surface roughness and the type of cement on retention of implant supported crowns,” J. Clin. Diagnostic Res., vol. 9, no. 3, pp. ZC05–ZC07, 2015. [CrossRef]
- Abou Obaid, “Effect of Abutment Height and Cement Thickness on the Retention of Cement-Retained Implant-Supported Restorations,” Adv. Dent. Oral Heal., vol. 9, no. 4, 2018. [CrossRef]
- W. J. Seong, S. Grami, S. C. Jeong, H. J. Conrad, and J. S. Hodges, “Comparison of Push-In versus Pull-Out Tests on Bone-Implant Interfaces of Rabbit Tibia Dental Implant Healing Model,” Clin. Implant Dent. Relat. Res., vol. 15, no. 3, pp. 460–469, 2013. [CrossRef]
- N. F. Oliscovicz, A. C. Shimano, É. Marcantonio Junior, C. P. Lepri, and A. C. Dos Reis, “Analysis of primary stability of dental implants inserted in different substrates using the pullout test and insertion torque,” Int. J. Dent., vol. 2013, 2013. [CrossRef]







| Group | Sample | m) | Retention (N) |
|---|---|---|---|
| Not Sandblasted (NS) |
Sample 1 | 0.04 | 153.82 |
| Sample 2 | 0.04 | 129.28 | |
| Sample 3 | 0.04 | 191.93 | |
| Sample 4 | 0.04 | 177.05 | |
| Sample 5 | 0.04 | 165.02 | |
| Sandblasted 63 m (SB63 T200) |
Sample 1 | 0.35 | 135.36 |
| Sample 2 | 0.44 | 102.20 | |
| Sample 3 | 0.49 | 209.68 | |
| Sample 4 | 0.47 | 179.87 | |
| Sample 5 | 0.44 | 168.42 | |
| Sandblasted 102 m (SB102 T200) | Sample 1 | 0.55 | 251.86 |
| Sample 2 | 0.59 | 259.77 | |
| Sample 3 | 0.51 | 237.29 | |
| Sample 4 | 0.59 | 249.85 | |
| Sample 5 | 0,54 | 250.13 | |
| Sandblasted 254 m (SB254 T200) | Sample 1 | 0.51 | 305.06 |
| Sample 2 | 0.62 | 307.08 | |
| Sample 3 | 0.58 | 350.70 | |
| Sample 4 | 0.60 | 253.86 | |
| Sample 5 | 0.57 | 305,18 | |
| Sandblasted 686 m (SB686 T200) | Sample 1 | 0.73 | 320.07 |
| Sample 2 | 0.68 | 327.69 | |
| Sample 3 | 0.67 | 287.07 | |
| Sample 4 | 0.62 | 343.86 | |
| Sample 5 | 0.67 | 310.67 |
| Gender | Mean | Standard Deviation | Minimum | Maximum |
| Male | 75.28 | 24.94 | 34.67 | 120.67 |
| Female | 62.92 | 18.47 | 35.67 | 100.33 |
| Overall | 69.75 | 22.91 | 34.67 | 120.67 |
| Group | Sample | Retention (N) |
| Cement Retained (CR) | Sample 1 | 153.33 |
| Sample 2 | 145.181 | |
| Sample 3 | 186.66 | |
| Sample 4 | 160.19 | |
| Sample 5 | 133.78 | |
| Lateral Screw (Tightening Torque 69.75 Nmm) (SB686 T69.75) |
Sample 1 | 100.33 |
| Sample 2 | 108.14 | |
| Sample 3 | 110.66 | |
| Sample 4 | 95.23 | |
| Sample 5 | 68.97 | |
| Lateral Screw (Tightening Torque 120 Nmm) (SB686 T120) |
Sample 1 | 161.828 |
| Sample 2 | 187.31 | |
| Sample 3 | 149.676 | |
| Sample 4 | 124.51 | |
| Sample 5 | 169.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
