Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Investigation and Improvement Strategies for Mold Fracture: A Study on the Application of a Double-Pulse Electrodeposition Method for Enhancing Mold Lifespan

Version 1 : Received: 23 October 2023 / Approved: 24 October 2023 / Online: 24 October 2023 (14:44:55 CEST)

A peer-reviewed article of this Preprint also exists.

Jiang, X.; Zeng, X.; Kong, F. Investigation and Improvement Strategies for Mold Fracture: A Study on the Application of a Pulse Electrodeposition Method for Enhancing Mold Lifespan. Materials 2023, 16, 7291. Jiang, X.; Zeng, X.; Kong, F. Investigation and Improvement Strategies for Mold Fracture: A Study on the Application of a Pulse Electrodeposition Method for Enhancing Mold Lifespan. Materials 2023, 16, 7291.

Abstract

We present an investigation on the fracture of a mold, comparing it with a normal part using specific techniques, such as EDX, SEM, and AES. The EDX analysis revealed that the composition of the normal part was consistent with that of low carbon steel, mainly comprising Fe and C. In contrast, the fractured part exhibited cracks due to nonconforming nonmetallic inclusions and reticular carbides, with fractures resulting from microporosity agglomeration and cleavage fracture. The SEM and AES analyses further presented the causes of mold fracture, highlighting the mechanism by which dimples on the specimen edge contributed to the fracture. The EDX analysis confirmed that the mold experienced thermal brittleness during use. To enhance mold durability and extend its lifespan, a double-pulse electrodeposition method was employed to create a NiCo alloy coating as a replacement for the Cr layer on the metal surface. The coating exhibited a smooth and scratch-free surface. The prepared NiCo special coating significantly increased the mold yield strength by approximately 313.8%, facilitated a 13% increase in plastic deformation, and reduced fracture strain by 25%, effectively preventing mold fracture and 3improving its service life.

Keywords

mold; fracture; double-pulse electrodeposition; Nico coating

Subject

Chemistry and Materials Science, Surfaces, Coatings and Films

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0
Metrics 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.