Jeon, K.-M.; Jung, J.; Lee, C.-M.; Yoo, D.-S. Identification of Pre-Emptive Biosecurity Zone Areas for Highly Pathogenic Avian Influenza Based on Machine Learning-Driven Risk Analysis. Animals2023, 13, 3728.
Jeon, K.-M.; Jung, J.; Lee, C.-M.; Yoo, D.-S. Identification of Pre-Emptive Biosecurity Zone Areas for Highly Pathogenic Avian Influenza Based on Machine Learning-Driven Risk Analysis. Animals 2023, 13, 3728.
Jeon, K.-M.; Jung, J.; Lee, C.-M.; Yoo, D.-S. Identification of Pre-Emptive Biosecurity Zone Areas for Highly Pathogenic Avian Influenza Based on Machine Learning-Driven Risk Analysis. Animals2023, 13, 3728.
Jeon, K.-M.; Jung, J.; Lee, C.-M.; Yoo, D.-S. Identification of Pre-Emptive Biosecurity Zone Areas for Highly Pathogenic Avian Influenza Based on Machine Learning-Driven Risk Analysis. Animals 2023, 13, 3728.
Abstract
Over the last decade, highly pathogenic avian influenza (HPAI) has severely affected poultry production systems across the globe. In particular, massive pre-emptive depopulation of all poultry within the certain distance has raised concerns regarding animal welfare and food security. Thus, alternative approaches to reducing unnecessary depopulation, such as risk-based depopulation, are highly demanded. This paper proposes a data-driven method to generate a rule table and risk score for each farm to identify preventive measures against HPAI. To evaluate the proposed method, 105 cases of HPAI occurring in a total of 381 farms in Jeollanam-do from 2014 to 2023 were evaluated. The accuracy of preventive measure identification was assessed for each case using both the conventional culling method and the proposed data-driven method. The evaluation showed that the proposed method achieved an accuracy of 84.19%, significantly surpassing the previous 10.37%. The result was attributed to the proposed method reducing the false-positive rate by 83.61% compared with the conventional method, thereby enhancing the reliability of identification. The proposed method is expected to be utilized in selecting farms for monitoring and management of HPAI.
Biology and Life Sciences, Animal Science, Veterinary Science and Zoology
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.