Submitted:
18 October 2023
Posted:
20 October 2023
You are already at the latest version
Abstract

Keywords:
1. Introduction
2. Coasts monitoring
3. Sea level rise (SLR)
3.1. Coastal flooding
3.2. Salinity intrusion
3.3. Coastal erosion
4. Mediterranean Sea coastal areas
4.1. Mediterranean Sea monitoring
4.2. Mediterranean Sea and migrations
4.3. Risks for world heritages in the Mediterranean area
5. Engineering approaches for coasts protection
5.1. Hard engineering interventions at coasts
5.2. Soft engineering interventions at coasts
6. Conclusions
Acknowledgments
Conflicts of Interest
References
- Toure, S.; Diop, O.; Kpalma, K.; Maiga, A.S. Shoreline Detection using Optical Remote Sensing: A Review. ISPRS Int. J. Geo-Inf. 2019, 8, 75. [Google Scholar] [CrossRef]
- Cantasano, N.; Pellicone, G.; Ietto, F. Integrated coastal zone management in Italy: A gap between science and policy. J. Coast. Conserv. 2017, 21, 317–325. [Google Scholar] [CrossRef]
- González-Dueñas, C.; Padgett, J.E. Performance-Based Coastal Engineering Framework. Front. Built Environ. 2021, 7, 690715. [Google Scholar] [CrossRef]
- Bruno, M.F.; Molfetta, M.G.; Pratola, L.; Mossa, M.; Nutricato, R.; Morea, A.; Nitti, D.O. Chiaradia, M.T. A combined approach of field data and earth observation for coastal risk assessment. Sensors 2019, 19, 1399. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, R.J.; Lincke, D.; Hinkel, J.; Brown, S.; Vafeidis, A.T.; Meyssignac, B.; Hanson, S.E.; Merkens, J.L.; Fang, J. A global analysis of subsidence, relative sea-level change and coastal flood exposure. Nat. Clim. Change 2021, 11, 338–342. [Google Scholar] [CrossRef]
- Sarkar, N.; Rizzo, A.; Vandelli, V.; Soldati, M. A Literature Review of Climate-Related Coastal Risks in the Mediterranean, a Climate Change Hotspot. Sustainability 2022, 14, 15994. [Google Scholar] [CrossRef]
- Toimil, A.; Camus, P.; Losada, I.J.; Le Cozannet, G.; Nicholls, R.J.; Idier, D.; Maspataud, A. Climate change-driven coastal erosion modelling in temperate sandy beaches: Methods and uncertainty treatment. Earth-Sci. Rev. 2020, 202, 103110. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Jevrejeva, S.; Jackson, L.P.; Feyen, L. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat. Commun. 2018, 9, 2360. [Google Scholar] [CrossRef]
- De Serio, F.; Armenio, E.; Mossa, M.; Petrillo, A.F. How to Define Priorities in Coastal Vulnerability Assessment. Geosci. 2018, 8, 415. [Google Scholar] [CrossRef]
- Zanchettin, D.; Bruni, S.; Raicich, F.; Lionello, P.; Adloff, F.; Androsov, A.; Antonioli, F.; et al. Sea-level rise in Venice: historic and future trends (review article). Nat. Hazards Earth Syst. Sci. 2021, 21, 2643–2678. [Google Scholar] [CrossRef]
- CMRC-Coastal & Marine Resource Centre. Methodology for Coastal Monitoring Programme at Portrane; Technical Report for Fingal County Council; Rush Beaches, Co.: Dublin, Ireland. 2009. [Google Scholar]
- NOAA-National Oceanic and Atmospheric Administration What Is Remote Sensing? National Ocean Service Website. 2023. Available online: https://oceanservice. noaa.gov/facts/remotesensing.html (accessed on 24 July 2023).
- Faye, B.N. Dynamique du trait de côte sur les littoraux sableux de la Mauritanie à la Guinée-Bissau (Afrique de l’Ouest): Approches régionale et locale par photo-interprétation, traitement d’images et analyse de cartes anciennes, These de l’universite de Bretagne occidentale. soutenue le 15 février 2010. 2010. Available online: https://tel.archives-ouvertes.fr/tel-00472200/PDF/DYNAMIQUE-DU-TRAIT-DE-COTEEN-AFRIQUE-DE-L_OUEST-MAURITANIE-GUINEE-BISSAU-VOLUME1.pdf (accessed on 26 June 2023).
- Minervino Amodio, A.; Di Paola, G.; Rosskopf, C.M. Monitoring Coastal Vulnerability by Using DEMs Based on UAV Spatial Data. ISPRS Int. J. Geo-Inf. 2022, 11, 155. [Google Scholar] [CrossRef]
- Isha, I.B.; Adib, M.R.M. Shoreline monitoring using Unmanned Aerial Vehicle (UAV) at Regency Beach, Port Dickson. IOP Conf. Ser.: Mater. Sci. 2021, 1144. [Google Scholar] [CrossRef]
- Qi, L.; Wang, M.; Hu, C.; Holt, B. On the capacity of Sentinel-1 synthetic aperture radar in detecting floating macroalgae and other floating matters. Remote Sens. Environ. 2022, 280, 113188. [Google Scholar] [CrossRef]
- Agharroud, K.; Puddu, M.; Ivčević, A.; Satta, A.; Kolker, A.S.; Snoussi, M. Climate risk assessment of the Tangier-Tetouan-Al Hoceima coastal Region (Morocco). Front. Mar. Sci. 2023, 10, 1176350. [Google Scholar] [CrossRef]
- Renzi, M.; Provenza, F.; Pignattelli, S.; Cilenti, L.; Specchiulli, A.; Pepi, M. Mediterranean Coastal Lagoons: The Importance of Monitoring in Sediments the Biochemical Composition of Organic Matter. Int. J. Environ. Res. Public Health 2019, 16, 3466. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Hearty, P.; Ruedy, R.; Kelley, M.; Masson-Delmotte, V.; Russell, G.; Tselioudis, G.; et al. Ice melt, sea level rise and superstorms: Evidence from paleoclimate data, climate modeling, and modern observations that 2 °C global warming could be dangerous. Atmos. Chem. Phys. 2016, 16, 3761–3812. [Google Scholar] [CrossRef]
- Domingues, C.M.; Church, J.A.; White, N.J.; Gleckler, P.J.; Wijffels, S.E.; Barker, P.M.; Dunn, J.R. Improved estimates of upper-ocean warming and multi-decadal sea-level rise. Nature 2008, 453, 1090–1093. [Google Scholar] [CrossRef]
- Micheal, O.; Bruce, G.; Hinkel, J.; Roderik, V.; Frederikse, T. Sea Level Rise and Implications for Low Lying Islands, Coasts and Communities; IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2019. [Google Scholar]
- Kopp, R.E.; DeConto, R.M.; Bader, D.A.; Hay, C.C.; Horton, R.M.; Kulp, S.; Oppenheimer, M.; Pollard, D.; Strauss, B.H. Evolving Understanding of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level Projections. Earth’s Future 2017, 5, 1217–1233. [Google Scholar] [CrossRef]
- Shepherd, A.; Ivins, E.; Rignot, E.; Smith, B.; van den Broeke, M.; Velicogna, I.; Whitehouse, P.; et al. Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature 2020, 579, 233–239. [Google Scholar]
- Edwards, T.L.; Nowicki, S.; Marzeion, B.; Hock, R.; Goelzer, H.; Seroussi, H.; et al. Projected land ice contributions to twenty-first-century sea level rise. Nature 2021, 593, 74–82. [Google Scholar] [CrossRef]
- Antonioli, F.; De Falco, G.; Lo Presti, V.; Moretti, L.; Scardino, G.; Anzidei, M.; et al. Relative Sea-Level Rise and Potential Submersion Risk for 2100 on 16 Coastal Plains of the Mediterranean Sea. Water 2020, 12, 2173. [Google Scholar] [CrossRef]
- Chao, B.F.; Wu, Y.H.; Li, Y.S. Impact of artificial reservoir water impoundment on global sea level. Science 2008, 320, 212–214. [Google Scholar] [CrossRef]
- Dong, L.; Cao, J.; Liu, X. Recent Developments in Sea-Level Rise and Its Related Geological Disasters Mitigation: A Review. J. Mar. Sci. Eng. 2022, 10, 355. [Google Scholar] [CrossRef]
- Griggs, G.; Reguero, B.G. Coastal Adaptation to Climate Change and Sea-Level Rise. Water 2021, 13, 2151. [Google Scholar] [CrossRef]
- Lievin, M.; Kocha, C.; Courcol, B.; Philipps, S.; Denis, I.; Guinle, T.; et al. Reprocessing of Sea Level L2P Products for 28 Years of Altimetry Missions. OSTST. 2020. Available online: https://www.aviso.altimetry.fr/en/data/ucts/ocean indicator products/mean sea level.html (accessed on 19 June 2023).
- DeConto, R.M.; Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 2016, 531, 591–597. [Google Scholar] [CrossRef] [PubMed]
- Focardi, S.; Pepi, M. Sea Level Rise Impacts in Coastal Areas and Possible Mitigation Engineering Approaches. Ann. Civil Environ. Eng. 2023, 7, 030–036. [Google Scholar]
- Enríquez, A.R.; Marcos, M.; Álvarez-Ellacuría, A.; Orfila, A.; Gomis, D. Changes in beach shoreline due to sea level rise and waves under climate change scenarios: application to the Balearic Islands (Western Mediterranean). Nat. Hazards Earth Syst. Sci. Discuss. 2016, 361. [Google Scholar] [CrossRef]
- Li, S.; Wahl, T.; Talke, S.A.; Jay, D.A.; Orton, P.M.; Liang, X.; Wang, G.; Liu, L. Evolving tides aggravate nuisance flooding along the U.S. coastline. Sci. Adv. 2021, 7, eabe2412. [Google Scholar] [CrossRef]
- Rashidi, M.A.H.; Jamal, M.H.; Hassan, M.Z.; Mohd, S.S.; Mohd, S.L.; Abd Hamid, M.R. Coastal Structures as Beach Erosion Control and Sea Level Rise Adaptation in Malaysia: A Review. Water 2021, 13, 1741. [Google Scholar] [CrossRef]
- Sundar, V.; Sannasiraj, S.A.; Babu, S.R. Sustainable hard and soft measures for coastal protection – Case studies along the Indian Coast. Mar. Georesources Geotechnol. 2022, 40(5), 600–615. [Google Scholar] [CrossRef]
- Satta, A.; Puddua, M.; Venturini, S.; Giupponi, C. Assessment of coastal risks to climate change related impacts at the regional scale: The case of the Mediterranean region. Int. J. Disaster Risk Reduct. 2017, 24, 284–296. [Google Scholar] [CrossRef]
- IPCC. Climate change 2013: the physical science basis, in: T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen. J. Boschung, A. Nauels, Y. Xia, V. Bex, P.M. Midgley (eds.), Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York. 2013.
- Guedes Soares, C.; Carretero-Albiach, J.; Weisse, R.; Alvarez-Fanjul, E. A 40 years hindcast of wind, sea level and waves in European waters. In Proceedings of the 21st International Conference on Offshore Mechanics and Arctic Engineering, Oslo, Norway; 2002; pp. 669–675. [Google Scholar]
- UNEP/MAP. Mediterranean Strategy for Sustainable Development 2016-2025. Plan Bleu, Regional Activity Centre, Valbonne, 2016.
- Sánchez-Arcilla, A.; Mösso, C.; Sierra, J.P.; Mestres, M.; Harzallah, A.; Senouci, M.; El Raey, M. Climatic drivers of potential hazards in Mediterranean coasts. Reg. Environ. Change 2011, 11, 617–636. [Google Scholar] [CrossRef]
- Calafat, F.M.; Frederikse, T.; Horsburgh, K. The sources of sea-level changes in the Mediterranean Sea since 1960. J. Geophys. Res. Oceans 2022, 127, e2022JC019061. [Google Scholar] [CrossRef]
- Frederikse, T.; Landerer, F.; Caron, L.; Adhikari, S.; Parkes, D.; Humphrey, V.W.; et al. The causes of sea-level rise since 1900. Nature 2020, 584(7821), 393–397. [Google Scholar] [CrossRef]
- Tsimplis, M.N.; Baker, T.F. Sea level drop in the Mediterranean sea: An indicator of deep water salinity and temperature changes? Geophys. Res. Lett. 2000, 27(12), 1731–1734. [Google Scholar] [CrossRef]
- Tsimplis, M.N.; Josey, S. Forcing the Mediterranean sea by atmospheric oscillations over the North Atlantic. Geophys. Res. Lett. 2001, 28(5), 803–806. [Google Scholar] [CrossRef]
- Mohamed, B.; Abdallah, A.M.; Alam El-Din, K.; Nagy, H.; Shaltout, M. Inter-annual variability and trends of sea level and sea surface temperature in the Mediterranean sea over the last 25 years. Pure Appl. Geophys. 2019, 176, 3787–3810. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Feyen, L. Extreme sea levels on the rise along Europe’s coasts. Earths Future 2017, 5, 304–323. [Google Scholar] [CrossRef]
- Wolff, C.; Vafeidis, A.T.; Muis, S.; Lincke, D.; Satta, A.; Lionello, P.; Jimenez, J.A.; Conte, D.; Hinkel, J. Data Descriptor: A Mediterranean coastal database for assessing the impacts of sea-level rise and associated hazards. Sci. Data 2018, 5, 180044. [Google Scholar] [CrossRef]
- Gualdi, S.; Somot, S.; May, W.; Castellari, S.; Déqué, M.; Adani, M.; Artale, V.; Bellucci, A.; Breitgand, J.S.; Carillo, A.; Cornes, R.; Dell’Aquila, A.; et al. Future Climate Projections, Chapter 3. Volume 1: Air, Sea and Precipitation and Water, Regional Assessment of Climate Change in the Mediterranean, Antonio Navarra and Laurence Tubiana Editors, 2013.
- Amrouni, O.; Abderraouf Hzami, A.; Heggy, E. Photogrammetric assessment of shoreline retreat in North Africa: Anthropogenic and natural drivers. ISPRS J. Photogramm. Remote Sens. 2019, 157, 73–92. [Google Scholar] [CrossRef]
- Mokos, M.; Cheimonopoulou, M.Th.; Koulouri, P.; Previati, M.; Realdon, G.; Santoro, F.; Mogias, A.; Boubonari, T.; Gazo, M.; Satta, A.; et al. Mediterranean Sea Literacy: When Ocean Literacy becomes region- specific. Medit. Mar. Sci. 2020, 21(3), 001–607. [Google Scholar] [CrossRef]
- Global Commission Report. Work for a brighter future – Global Commission on the Future of Work International Labour Office – Geneva ILO, 2019.
- Werz, M.; Hoffman, M. Climate Change and Migration in the Mediterranean: Challenges for the Future. Strategic Sectors, Economy & Territory IEM ed. Mediterranean Yearbook. 2017.
- Hauer, M.E.; Fussell, E.; Mueller, V.; Maxine Burkett, M.; Call, M.; Abel, K.; McLeman, R.; Wrathall, D. Sea-level rise and human migration. Nat. Rev. Earth Environ. 2020, 1, 28–39. [Google Scholar] [CrossRef]
- Lincke, D.; Hinkel, J. Coastal migration due to 21st century sea-level rise. Earth’s Future 2021, 9, e2020EF001965. [Google Scholar] [CrossRef]
- IPCC. Intergovernmental Panel on Climate Change; Global Warming of 1.5 °C—An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. The Intergovernmental Panel on Climate Change. 2018.
- Cattaneo, C.; Beine, M.; Fröhlich, C.J.; Kniveton, D.; Martinez-Zarzoso, I.; Mastrorillo, M.; et al. Human migration in the era of climate change. Rev. Environ. Econ. Policy 2019, 13(2), 189–206. [Google Scholar] [CrossRef]
- Oppenheimer, M.; Glavovic, B.C. Chapter 4: Sea level rise and implications for low lying islands, coasts and communities. In The ocean and cryosphere in a changing climate. IPCC 2019. [Google Scholar]
- UNESCO. Convention Concerning the Protection of the World Cultural and Natural Heritage http://whc.unesco.org/archive/convention-en.pdf. UNESCO, Paris, 1972.
- Reimann, L.; Vafeidis, A.T.; Brown, S.; Hinkel, J.; Tol, R.S.J. Mediterranean UNESCO World Heritage at risk from coastal flooding and erosion due to sea-level rise. Nat. Commun. 2018, 9, 4161. [Google Scholar] [CrossRef]
- Cazenave, A. Anthropogenic global warming threatens world cultural heritage. Environ. Res. Lett. 2014, 9, 51001. [Google Scholar] [CrossRef]
- UNEP/EEA. State and pressures of the marine and coastal Mediterranean environment. 1999.
- World Bank. Adapting vulnerable energy infrastructure to climate change. Climate change projections for Albania 2009, pp 30.
- Sahabi-Abed, S. Future Climate Projections in Algeria Using Statistical DownScaling Model. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Baric, A.; Grbec, B.; Bogner, D. Potential Implications of Sea-Level Rise for Croatia. J. Coast. Res. 2008, 24(2), 299–305. [Google Scholar] [CrossRef]
- El-Raey, M.; Dewidar, Kr.; El-Hattab, M. Adaptation to the impacts of sea level rise in Egypt. Mitig. Adapt. Strateg. Glob. Chang. 1999, 4, 343–361. [Google Scholar] [CrossRef]
- Frihy, O.E. The Nile Delta-Alexandria coast: Vulnerability to Sea-Level Rise, consequences and Adaptation. Mitig. Adapt. Strateg. Glob. Chang. 2003, 8, 115–138. [Google Scholar] [CrossRef]
- Hereher, M.E. Vulnerability of the Nile Delta to sea level rise: an assessment using remote sensing. Geomat. Nat. Hazards Risk 2010, 1(4), 315–321. [Google Scholar] [CrossRef]
- Hassaan, M.A.; Abdrabo, M.A. Vulnerability of the Nile Delta coastal areas to inundation by sea level rise. Environ. Monit. Assess. 2013, 185(8), 6607–6616. [Google Scholar] [CrossRef]
- Hzami, A.; Heggy, E.; Amrouni, O.; Mahé, G.; Maanan, M.; Abdeljaouad, S. Alarming coastal vulnerability of the deltaic and sandy beaches of North Africa. Sci. Rep. 2021, 11, 2320. [Google Scholar] [CrossRef]
- Yousif, M.; Bubenzer, O. Perched groundwater at the northwestern coast of Egypt: a case study of the Fuka Basin. Appl. Water Sci. 2012, 2, 15–28. [Google Scholar] [CrossRef]
- Tol, R.J.; Bohn, M.; Downing, T.E.; Guillerminet, M.L.; Hizsnyik, E.; Kasperson, R.; Lonsdale, K.; Mays, C.; Nicholls, R.J.; Olsthoorn, A.A.; Pfeifle, G.; Poumadere, M.; Toth, F.L.; Vafeidis, A.T.; Van Der Werff, P.E.; Yetkiner, H.I. Adaptation to Five Metres of Sea Level Rise. J. Risk Res. 2006, 9(5), 467–482. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Kalivas, D.P.; Griffiths, H.M.; Dimoub, P.P. Remote sensing and GIS analysis for mapping spatio-temporal changes of erosion and deposition of two Mediterranean river deltas: The case of the Axios and Aliakmonas rivers, Greece. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 217–228. [Google Scholar] [CrossRef]
- IEEP (Institute for European Environmental Policy). Impacts of Climate Change on all European Islands: FinalReport 2012, pp 47.
- Tragaki, A.; Gallousi, C.; Karymbalis, E. Coastal Hazard Vulnerability Assessment Based on Geomorphic, Oceanographic and Demographic Parameters: The Case of the Peloponnese (Southern Greece). Land 2018, 7, 56. [Google Scholar] [CrossRef]
- Poulos, S.E.; Ghionis, G.; Maroukian, H. The consequences of a future eustatic sealevel rise on the deltaic coasts of Inner Thermaikos Gulf (Aegean Sea) and Kyparissiakos Gulf (Ionian Sea), Greece. Geomorphology 2009, 107(1–2), 18–24. [Google Scholar] [CrossRef]
- Pantusa, D.; D’Alessandro, F.; Riefolo, L.; Principato, F.; Tomasicchio, G. Application of a Coastal Vulnerability Index. A Case Study along the Apulian Coastline, Italy. Water 2018, 10, 1218. [Google Scholar] [CrossRef]
- Torresan, S.; Critto, A.; Rizzi, J.; Marcomini, A. Assessment of coastal vulnerability to climate change hazards at the regional scale: the case study of the North Adriatic Sea. Nat. Hazards Earth Syst. Sci. 2012, 12, 2347–2368. [Google Scholar] [CrossRef]
- aramelli, A.; Valentini, E; Righini, M.; Filipponi, F.; Geraldini, S.; Nguyen Xuan, A. Assessing Po River Deltaic Vulnerability Using Earth Observation and a Bayesian Belief Network Model. Water 2020, 12, 2830. [Google Scholar] [CrossRef]
- Furlan, E.; Pozza, P.D.; Michetti, M.; Torresan, S.; Critto, A.; Marcomini, A. Development of a Multi-Dimensional Coastal Vulnerability Index: Assessing vulnerability to inundation scenarios in the Italian coast. Sci. Total Environ. 2021, 772, 144650. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Arcilla, A.; Jiménez, J.A.; Valdemoro, H.I.; Gracia, V. Implications of Climatic Change on Spanish Mediterranean Low-Lying Coasts: The Ebro Delta Case. J. Coast. Res. 2008, 24(2), 306–316. [Google Scholar] [CrossRef]
- Jimenez, J.A.; Sanuy, M.; Ballesteros, C.; Valdemoro, H.I. The Tordera Delta, a hotspot to storm impacts in the coast northwards of Barcelona (NW Mediterranean). Coast. Eng. 2018, 134, 148–158. [Google Scholar] [CrossRef]
- Grases, A.; Gracia, V.; García-León, M.; Lin-Ye, J.; Pau Sierra, J. Coastal Flooding and Erosion under a Changing Climate: Implications at a Low-Lying Coast (Ebro Delta). Water 2020, 12, 346. [Google Scholar] [CrossRef]
- Navarra, A.; Tubiana, L. Regional Assessment of Climate Change in the Mediterranean (RACCM). Adv. Glob. Chang. Res. 2013, 50, 51 and 52. [Google Scholar]
- Gzam, M.; Moncef, S.M.; Ouaja, M.; Jedoui, Y. Coastal progradation in response to the recent sea level rise: a case study of El Grine coast, Gulf of Gabes (Southeastern Tunisia). Arab. J. Geosci. 2013, 6(12), 5007–5016. [Google Scholar] [CrossRef]
- Saidani, L.V.N. Rapport du Centre Hydrographique et Océanographique de la Marine Nationale de la Tunisie. Analysis of the tidal data in the port of Sfax 2007, 1-5, 1–5. [Google Scholar]
- Williams, A.T.; Rangel-Buitrago, N.; Pranzini, E.; Giorgio Anfuso, G. The management of coastal erosion. Ocean Coast. Manag. 2018, 156, 4–20. [Google Scholar] [CrossRef]
- Reguero, B.G.; Storlazzi, C.D.; Gibbs, A.E.; Shope, J.B.; Cole, A.D.; Cumming, K.A.; Beck, M.W. The value of US coral reefs for flood risk reduction. Nat. Sustain. 2021, 1, 11. [Google Scholar] [CrossRef]
- Ghazali, N.H.M.; Awang, N.A.; Mahmud, M.; Mokhtar, A. Impact of Sea Level Rise and Tsunami on Coastal Areas of North-West Peninsular Malaysia. Irrig. Drain. 2018, 67, 119–129. [Google Scholar] [CrossRef]
- IPCC. Intergovernmental Panel on Climate Change; Coastal Zone Management Subgroup. In Intergovernmental Panel on Climate Change; Strategies for Adaptation to Sea Level Rise; Dronkers, J.J., Misdorp, R., Spradley, J.R, Eds.; Ministry of Transport and Public Works, Rijkswaterstaat, Tidal Waters Division: Geneva, Switzerland, 1990. [Google Scholar]
- Sarkar, M.S.K.; Begum, R.; Pereira, J.; Jaafar, A.; Saari, M.Y. Impacts of and Adaptations to Sea Level Rise in Malaysia. Asian J. Water Environ. Pollut. 2014, 11, 29–36. [Google Scholar]
- Gracia, A.; Rangel-Buitrago, N.; Oakley, J.A.; Williams, A.T. Use of ecosystems in coastal erosion management. Ocean. Coast Manag. 2018, 156, 277–289. [Google Scholar] [CrossRef]
- Focardi, S.; Pepi, M. Monitoring of Coastal Areas by Remote Sensing and Engineering Approaches. Current Trends in Eng. Sci. 2023, 3, 1033. [Google Scholar]
- Armenio, E.; Mossa, M. On the Need for an Integrated Large-Scale Methodology of Coastal Management: A Methodological Proposal. J. Mar. Sci. Eng. 2020, 8, 385. [Google Scholar] [CrossRef]
- Singhvi, A.; Luijendijk, A.P.; van Oudenhoven, A.P.E. The grey - green spectrum: A review of coastal protection interventions. J. Environ. Manage. 2022, 311, 114824. [Google Scholar] [CrossRef]
- IPCC. Intergovernmental Panel on Clmate, Change; IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. eds H.-O. Po’lrtner, D. Intergovernmental Panel on Clmate Change; IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. eds H.-O. Po’lrtner, D. Roberts C, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, et al. 2019.
- Sunamura, T. Geomorphology of Rocky Coasts. John Wiley & Sons: Chichester, 1992. [Google Scholar]
- Kogure, T. Rocky coastal cliffs reinforced by vegetation roots and potential collapse risk caused by sea-level rise. Catena 2022, 217, 106457. [Google Scholar] [CrossRef]
- Ma, Q.; Marcondes Moreira, T.; Adcock, T.A.A. The impact of a tidal barrage on coastal flooding due to storm surge in the Severn Estuary. J. Ocean Eng. Mar. Energy 2019, 5, 217–226. [Google Scholar] [CrossRef]
- Etemadi, A.; Emami, Y.; AsefAfshar, O.; Emdadi, A. Electricity Generation by the Tidal Barrages. Energy Procedia 2011, 12, 928–935. [Google Scholar] [CrossRef]
- Ramli, M.; Karasu, T.Jr.; Dawood. E.T. The stability of gabion walls for earth retaining structures. Alex. Eng. J. 2013, 52, 705–710. [Google Scholar] [CrossRef]
- Kristensen, S.E.; Drønen, N.; Deigaard, R.; Fredso, J. Impact of groyne fields on the littoral drift: A hybrid morphological modelling study. Coast. Eng. 2016, 111, 13–22. [Google Scholar] [CrossRef]
- Abd-Elmonem, I.; Abedio, T.I.; Kheireldin, K.A.; Soliman, M.R. Assessment of Coastal Revetment: Case study of Rosetta Revetment. Ain Shams Eng. J. 2022, 13(3), 101623. [Google Scholar] [CrossRef]
- Eldrup, M.R.; Lykke Andersen, T. Extension of shallow water rock armour stability formulae to nonlinear waves. Coast. Eng. 2019, 153, 103536. [Google Scholar] [CrossRef]
- Salauddin, M.; O’Sullivan, J.J.; Abolfathi, S.; Pearson, J.M. Eco-Engineering of Seawalls—An Opportunity for Enhanced Climate Resilience From Increased Topographic Complexity. Front. Mar. Sci. 2021, 8, 674630. [Google Scholar] [CrossRef]
- Bongarts Lebbe, T.; Rey-Valette, H.; Chaumillon, É.; Camus, G.; Almar, R.; Cazenave, A.; Claudet, J.; Rocle, N.; Meur-Férec, C.; et al. Designing Coastal Adaptation Strategies to Tackle Sea Level Rise. Front. Mar. Sci. 2021, 8, 740602. [Google Scholar] [CrossRef]
- Duarte, C.M.; Losada, I.J.; Hendriks, I.E.; Mazarrasa, I.; Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Change. 2013, 3, 961–802. [Google Scholar] [CrossRef]
- European Commission Towards an eu research and innovation policy agenda for nature-based solutions & renaturing cities: Final report of the horizon 2020 expert group on ‘nature-based solutions and re-naturing cities. 2015.
- Cohen-Shacham, E.; Walters, G.; Janzen, C.; Maginnis, S. Nature-based solutions to address global societal challenges. IUCN International Union for Conservation of Nature. [CrossRef]
- Akça, E.; Kapur, S.; Tanaka, Y.; Kaya, Z.; Bedestenci, H.C.; Yaktı, S. Afforestation Effect on Soil Quality of Sand Dunes. Pol. J. Environ. Stud. 2010, 19(6), 1109–1116. [Google Scholar]
- Jackson, D.W.T.; Costas, S.; González-Villanueva, R.; Cooper, A. A global ‘greening’ of coastal dunes: An integrated consequence of climate change? Glob. Planet. Change 2019, 182, 103026. [Google Scholar] [CrossRef]
- de Schipper, M.A.; Ludka, B.C.; Raubenheimer, B.; Luijendijk, A.P.; Schlacher, T.A. Beach nourishment has complex implications for the future of sandy shores. Nat. Rev. Earth Environ. 2021, 2, 71. [Google Scholar] [CrossRef]
- Corral, L.R.; Schling, M. The impact of shoreline stabilization on economic growth in small island developing states. J. Environ. Econ. Manage. 2017, 86, 210–228. [Google Scholar] [CrossRef]
- Escudero, M.; Mendoza, E.; Silva, R. Micro Sand Engine Beach Stabilization Strategy at Puerto Morelos, Mexico. J. Mar. Sci. Eng. 2020, 8, 247. [Google Scholar] [CrossRef]
- Hein, M.Y.; Vardi, T.; Shaver, E.C.; Pioch, S.; Boström-Einarsson, L.; Ahmed, M.; Grimsditch, G.; McLeod, I.M. Perspectives on the Use of Coral Reef Restoration as a Strategy to Support and Improve Reef Ecosystem Services. Front. Mar. Sci. 2021, 8, 618303. [Google Scholar] [CrossRef]
- Arias-González, J.E.; Baums, I.B.; Banaszak, A.T.; Prada, C.; Rossi, S.; Hernández-Delgado, E.A.; Rinkevich, B. Editorial: Coral Reef Restoration in a Changing World: Science-Based Solutions. Front. Mar. Sci. 2022, 9, 919603. [Google Scholar] [CrossRef]
- Lawlor, P.; Jackson, D.W.T. A Nature-Based Solution for Coastal Foredune Restoration: The Case Study of Maghery, County Donegal, Ireland. In Human-Nature Interactions; Ieva Misiune, Daniel Depellegrin, Lukas Egarter Vigl Eds, Ed.; Springer: Switzerland, 2022. [Google Scholar] [CrossRef]
- Tubridy, F.; Scott, M.; Lennon, M. Managed retreat in response to flooding: lessons from the past for contemporary climate change adaptation. Plan. Perspect. 2021, 36(6), 1249–1268. [Google Scholar] [CrossRef]
- Ellison, A.M.; Felson, A.J.; Friess, D.A. Mangrove Rehabilitation and Restoration as Experimental Adaptive Management. Front. Mar. Sci. 2020, 7, 327. [Google Scholar] [CrossRef]
- van Bijsterveldt, C.E.J.; Debrot, A.O.; Bouma, T.J.; Maulana, M.; Pribadi, R.; Schop, J.; Tonneijck, F.H.; van Wesenbeeck, B.K. To Plant or Not to Plant: When can Planting Facilitate Mangrove Restoration? Front. Environ. Sci. 2022, 9, 690011. [Google Scholar] [CrossRef]
- Jordan, P.; Fröhle, P. Bridging the gap between coastal engineering and nature conservation? J. Coast. Conserv. 2022, 26, 4. [Google Scholar] [CrossRef]
- Mancini, F.; Castagnetti, C.; Rossi, P.; Dubbini, M.; Fazio, N.L.; Perrotti, M.; Lollino, P. An Integrated Procedure to Assess the Stability of Coastal Rocky Cliffs: From UAV Close-Range Photogrammetry to Geomechanical Finite Element Modeling. Remote Sens. 2017, 9, 1235. [Google Scholar] [CrossRef]
- Ringwood, J.V.; Faedo, N. Tidal barrage operational optimization using wave energy control techniiques. IFAC PapersOnLine 2022, 55-31, 148–153. [Google Scholar] [CrossRef]
- Vandercruyssen, D.; Baker, S.; Howard, D.; Aggidis, G. Tidal range electricity generation: A comparison between estuarine barrages and coastal lagoons. Heliyon 2022, 8, e11381. [Google Scholar] [CrossRef] [PubMed]
- Cherkasova, L. J. Application of gabions for strengthening marine coastal slopes. Phys.: Conf. Ser. 2019, 1425, 012206. [Google Scholar] [CrossRef]
- Adi, H.P.; Wahyudali, S.I.; Soebagyo, A. Gabion as a coastal protection structure: a case study in Panjang Island Indonesia. IOP Conf. Ser.: Earth Environ. Sci. 2022, 955, 012005. [Google Scholar] [CrossRef]
- Choufu, L.; Abbasi, S.; Pourshahbaz, H.; Taghvaei, P.; Tfwala, S. Investigation of Flow, Erosion, and Sedimentation Pattern around Varied Groynes under Different Hydraulic and Geometric Conditions: A Numerical Study. Water 2019, 11, 235. [Google Scholar] [CrossRef]
- Valsamidis, A.; Reeve, D.E. A new approach to analytical modelling of groyne fields. Cont. Shelf Res. 2020, 211, 104288. [Google Scholar] [CrossRef]
- Crawford, T.W.; Islam, M.S.; Rahman, M.K.; Paul, B.K.; Curtis, S.; Miah, M.G.; Islam, M.R. Coastal Erosion and Human Perceptions of Revetment Protection in the Lower Meghna Estuary of Bangladesh. Remote Sens. 2020, 12, 3108. [Google Scholar] [CrossRef]
- Van der Meer, J.W. Rock Armour Slope Stability under Wave Attack; the Van der Meer Formula revisited. JCHS 2021, 1. [Google Scholar] [CrossRef]
- Dong, S.; Abolfathi, S.; Salauddin, M.; Tan, Z.H.; Pearson, J.M. Enhancing climate resilience of vertical seawall with retrofitting - A physical modelling study. Appl. Ocean Res. 2020, 103, 102331. [Google Scholar] [CrossRef]
- Wu, Y.-T. Breaking Solitary Wave Impact on a Vertical Seawall. Water 2022, 14, 583. [Google Scholar] [CrossRef]
- Valcheva, M.; Sopotlieva, D.; Apostolova, I.; Tsvetkova, N. Vegetation Characteristics and Recent Successional Trends of Sand Dune Habitats at the Bulgarian Black Sea Coast. Coasts 2021, 1, 1–24. [Google Scholar] [CrossRef]
- Staudt, F.; Gijsman, R.; Ganal, C.; Mielck, F.; Wolbring, J.; Hass, H.C.; Goseberg, N.; Schüttrumpf, H.; Schlurmann, T.; Schimmels, S. The sustainability of beach nourishments: a review of nourishment and environmental monitoring practice. J. Coast. Conserv. 2021, 25, 34. [Google Scholar] [CrossRef]
- Chen, W.L.; Muller, P.; Grabowski, R.C.; Dodd, N. Green Nourishment: An Innovative Nature-Based Solution for Coastal Erosion. Front. Mar. Sci. 2022, 8, 814589. [Google Scholar] [CrossRef]
- Manakul, C.; Mohanasundaram, S.; Weesakul, S.; Shrestha, S.; Ninsawat, S.; Chonwattana, S. Classifying Headland-Bay Beaches and Dynamic Coastal Stabilization. J. Mar. Sci. Eng. 2022, 10, 1363. [Google Scholar] [CrossRef]
- Kleypas, J.; Allemand, D.; Anthony, K.; Baker, A.C.; Beck, M.W.; Hale, L.Z.; Hilmi, N.; Hoegh-Guldberg, O.; et al. Designing a blueprint for coral reef survival. Biol. Conserv. 2021, 257, 109107. [Google Scholar] [CrossRef]
- Hilmi, N.; Basu, R.; Crisóstomo, M.; Lebleu, L.; Claudet, J.; Seveso, D. The pressures and opportunities for coral reef preservation and restoration in the Maldives. Front. Environ. Econ. 2023, 2, 1110214. [Google Scholar] [CrossRef]
- Rinaldo, T.; Ramakrishnan, K.A.; Rodriguez-Iturbe, I.; Duran Vinent, O. Probabilistic structure of events controlling the after-storm recovery of coastal dunes. Proc. Natl. Acad. Sci. U.S.A. 2021, 118(1), e2013254118. [Google Scholar] [CrossRef]
- Carey, J. Managed retreat increasingly seen as necessary in response to climate change’s fury. Proc. Natl. Acad. Sci. U.S.A. 2020, 117(24), 13182–13185. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, T. Managed retreat and planned retreat: a systematic literature review. Phil. Trans. R. Soc. B 2022, 377, 20210129. [Google Scholar] [CrossRef] [PubMed]
- Monga, E.; Mangora, M.M.; Trettin, C.C. Impact of mangrove planting on forest biomass carbon and other structural attributes in the Rufiji Delta, Tanzania. Glob. Ecol. Conserv. 2022, 35, e02100. [Google Scholar] [CrossRef]


| Mediterranean coastal hotspots | Specific features | Potential impacts | References |
|---|---|---|---|
| Albania, Albanian coast | Local phenomena such as subsidence and land elevation | Salinization of coastal aquifers and deterioration of the quality of drinking water | [61,62] |
| Algeria, Gulf of Oran | Alien jellyfish species will threaten native Mediterranean species in the Gulf of Oran | Vulnerability of coastal areas to erosion, flooding and salt intrusion | [63] |
| Croatia, Cres-Lolinj | Increased salinization of Lake Vrana | [61,64] | |
| Croatia, Kaštela Bay | Flooding of Pantana spring and Zrnovnica estuary | Increased salinisation of estuaries and groundwater resulting in problems for coastal services and infrastructure. More evident deterioration of historic buildings and increased water needs in homes, industries and agriculture | [61,64] |
| Egypt, Delta of Nile | Dramatic increases in migration rates mainly from coastal areas | Increased coastal erosion and outgrown coastal defences. Increase in floods with damage to port and city infrastructures, with the retreat of the barrier dunes, the decrease in soil humidity, the increase in water salinity in the soils and in lagoon areas and decrease in fish production. Major coastal retreats and alterations to coastal activities are also anticipated | [61,65,66,67,68,69] |
| Egypt, FukaMatrouh | Increase in evapotranspiration and decrease in rainfall, with extension of aridity levels in the summer period and increase in coastal erosion phenomena and decrease in soil fertility. | [61,70] | |
| France, Delta of Rhône | Extraordinary tourism | Coastal erosion and reduction of wetlands and agricultural land. There is therefore a greater impact of the waves and an increase in the salinization of coastal lakes, as well as a destabilization of the dunes | [61,71] |
| Greece, wetland delta environments formed by the Axios and Aliakmonas rivers | The particular conformation of the dynamics of the Mediterranean river delta and their behaviors require the use of Earth Observation technologies and GIS as tools to collect information | [72] | |
| Greece, Island of Rhodes | Soil erosion in the Maltese Islands and groundwater salinisation phenomena in the island of Malta | Increased coastal erosion phenomena, salinization of groundwater, increased soil erosion with loss of freshwater habitat. Additionally, there may be increased risks from pathogens to human health, livestock health, as well as agriculture | [61,73] |
| South Greece | Geomorphological conformations, erosion of the coast, morphology of coastal slope | [74] | |
| Greece, Thermaikos Gulf | Coastal lowland flooding, saline water intrusion into rivers, marsh flooding, increased seawater stratification and bottom anoxia, decreased river runoff levels, groundwater salinization, decreased soil fertility, damage to coastal protection structures, changes in the tourist season | [61,75] | |
| Italy, Apulian Coastline | Geomorphological conformations, erosion of the coast, aspects of the coastal slope, width of beaches and dunesand of vegetation behind the beach | [76] | |
| Italy, Delta of Po | Increased flood events and coastal erosion, dune retreat, damage to coastal infrastructure, soil salinization, altered water distribution regimes, reduced nearshore water mixing and primary production, increased anoxia in deep waters | [61,77,78] | |
| Italy, Italian coast | Shoreline pathways changes, distance from shoreline, elevation, coastal slope, geological coastal type, land roughness, conservation designation, coastal protection structures | [79] | |
| Spain, Delta of Ebro | Increases in coastal erosion rates and coastal reshaping, inundation and loss of wetlands, reductions in fisheries | [61,80] | |
| Spain, Delta of Tordera | Very high “hotspotness” condition, with extensive and frequent damage to the site in recent decades | [81] | |
| Spain, Delta of Ebro | Flooding and erosion phenomena have been detected in the urban area of the study area | [82] | |
| Spain, Gulf of Valencia | Major alterations of the marine environment with sea water level rises, storms and wave surges, coastal vulnerability to erosion, flooding and saline intrusion, marine pollution, biodiversity decrease and spread of invasive species with impacts on fisheries, on industry and tourism | [83] | |
| Syria, Syrian coast | Increase in soil erosion phenomena, groundwater salinization, exceptional storm surges with consequent beach erosion and damage to coastal structures and human settlements | [61] | |
| Tunisia, Gulf of Gabes | The islands on this site could be flooded in the presence of significant sea level rise phenomena | Phenomena of salinization of groundwater and coastal erosion | [83,84] |
| Tunisia, Gulf of Tunis | In recent years, a dramatic increase in population migration has been noted in this area with particular importance for the coastal areas | Important coastal retreat phenomena, with alterations in fishing activities, due to sea level rise | [69] |
| Tunisia, IchkeulBizerte | Increase in evapotranspiration and consequent decrease in soil moisture, decrease in lake fertility and increase in salinity, increase in lake salinity, decrease in wetlands and loss of habitats | [61] | |
| Tunisia, Sfax coastal area | The mean sea level at this site reached a value of 116 cm, with an annual increase of 2.8 ± 0.2 mm yr−1 | The most significant impacts may be groundwater salinization, erosion and possible flooding | [61,85] |
| Intervention type | Intervention features | Relevant advantages | Important disadvantages | References |
|---|---|---|---|---|
| Hard engineering | ||||
| Cliff fixing | Metal bars insertion in cliffs for reinforcement | Improvement of cliffs strength and rocks falling prevention | Possible metal mess | [97,121] |
| Coastal barrage | A partly submerged dam-like structures modulating tidal flow | Originating a higher water level thus allowing the production of hydroelectricity | Possible strong impacts on the environment and high costs for implementation and maintaintenance | [98,122,123] |
| Gabion | Rocks and boulders encased in a wired mesh | Absorbption of the energy from waves | It can be not very effective or attractive | [124,125] |
| Groyne | Insertion of barriers similar to wooden fences arranged at right angles on the beach | Drift along the coast allows for flood and erosion prevention and beach formation | This structure may encompass the possibility of triggering erosion further downstream and, in addition, the need for high maintenance costs | [101,126,127] |
| Revetement | These are sloping structures made of concrete, wood or rocks positioned along a cliff | Waves energy absorption and cliff erosion prevention | Possible strong wave backwash and expensive to implement | [102,128] |
| Rock armour | They consist of large boulders or rocks that are assembled on the beach in front of a cliff or seawall | The absorption of wave energy favors the expansion of beaches | High costs for implementation and maintaintenance | [103,129] |
| Sea wall | Large concrete, steel or stone walls positioned along the shoreline of the beach | Protection of cliffs from erosion and establishment of a flood barrier | These structures can give rise to waves capable of eroding the wall and furthermore maintenance is expensive | [104,130,131] |
| Soft engineering | ||||
| Afforestation of coastal dunes | Dunes stabilization by planting trees | Sand drift and erosion minimization by dunes stabilization | Planting non-native trees can impact soil nutrients deposition | [110,132] |
| Beach nourishment | Rendering beach wider by using sand and shingle | Increasing distances slow down the waves and their energy, preventing coastal erosion | Sand and gravel required for this type of action must be dredged from other sites and their maintenance can be expensive | [111,133,134] |
| Beach stabilization | Introducing dead trees in the sand, stabilizing beaches | Beaches widening waves slowing and erosion prevention | Intervention trees need to be sourced and can their maintenence can be costly | [113,135] |
| Coral reef preservation and enhancement | Protection of existing coral reefs and construction of artificial reefs by placing artificial materials on the seabed | Coral reefs reduce wave length and energy, thus protecting coasts from erosion | The materials used for the construction of the artificial reefs can give rise to a new type of contamination, furthermore the artificial reefs may not be as stable as the natural ones | [115,136,137] |
| Dune regeneration | Construction of new sand dunes or rehabilitation of existing dunes | The dunes act as barriers and absorb the energy of the waves thus reducing their effects that lead to erosion and protecting the coasts from flooding | Dunes can act as barriers to beach access, and new dunes can also cause land loss | [138] |
| Managed retreat | Some coastal areas may experience erosion and natural flooding due to their low value | The natural material originated by erosion can favor the development of beaches and the process is low cost | This approach can be time consuming and costly | [117,139,140] |
| Mangrove preservation and planting | The method involves the planting of mangroves along the coasts | Mangrove roots keep the soil stable, preventing erosion and helping to dissipate wave energy | Non-native mangroves can become invasive and pose a risk to the natural plants of a given area | [118,141] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
