Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Robust Control of An Inverted Pendulum System Based on Policy Iteration in Reinforcement Learning

Version 1 : Received: 16 October 2023 / Approved: 17 October 2023 / Online: 17 October 2023 (13:04:30 CEST)

A peer-reviewed article of this Preprint also exists.

Ma, Y.; Xu, D.; Huang, J.; Li, Y. Robust Control of An Inverted Pendulum System Based on Policy Iteration in Reinforcement Learning. Appl. Sci. 2023, 13, 13181. Ma, Y.; Xu, D.; Huang, J.; Li, Y. Robust Control of An Inverted Pendulum System Based on Policy Iteration in Reinforcement Learning. Appl. Sci. 2023, 13, 13181.

Abstract

This paper is primarily focused on the robust control of an inverted pendulum system based on the policy iteration in reinforcement learning. First, a mathematical model of the single inverted pendulum system is established through a force analysis of the pendulum and trolley. Second, based on the theory of robust optimal control, the robust control of the uncertain linear inverted pendulum system is transformed into an optimal control problem with an appropriate performance index. Moreover, for the uncertain linear and nonlinear systems, two reinforcement-learning control algorithms are proposed using the policy iteration method. Finally, two numerical examples are provided to validate the reinforcement learning algorithms for the robust control of the inverted pendulum systems.

Keywords

robust control; optimal control; inverted pendulum system; reinforcement learning

Subject

Engineering, Control and Systems Engineering

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.