Submitted:
09 October 2023
Posted:
09 October 2023
You are already at the latest version
Abstract
Keywords:
Introduction
- An Overview of Nasopharyngeal Carcinoma (NPC) in the Modern Era
- Redefining target volumes
- Contrasting the international consensus guideline and the Chinese protocol
- Redefining the definition of high-risk anatomical subsites
- Unilateral NPC
- Stepwise pattern of spread
- Redefining the Elective Nodal Regions
- Upper Neck Irradiation (UNI)
- Submandibular (level Ib) LN-Sparing
- Medial RP (level VIIa) LN-Sparing
- Retro-styloid (VIIb) LN-Sparing
Redefining the Borders of Nodal Basins
Submandibular (Level Ib) Contouring
Level IIb Contouring
Level III/IV Contouring
Level V contouring
- Dose and Volume Tailoring to Post-IC Volumes
- Dose and Volume Tailoring to Treatment Response During RT
- Dose Escalation Tailored to Biological Imaging
- 18F-fluorodeoxyglucose (18F-FDG) PET-CT
- 18F-fluoromisonidazole (FMISO) PET-CT
- Diffusion-weighted MRI (DWI)
- Dynamic Decision-Making Guided by EBVDNA
- Pre-Treatment EBVDNA
- Post-IC EBVDNA
- Post-RT EBVDNA
- RT in the era of immunotherapy
Conclusions
Author Contributions
Funding
Informed Consent Statement
Ethics approval
Declarations
Conflicts of Interest
References
- Chua, M.L.K.; Wee, J.T.S.; Hui, E.P.; Chan, A.T.C. Nasopharyngeal carcinoma. Lancet 2016, 387, 1012–1024. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.B.; Edge, S.B.; Greene, F.L.; Byrd, D.R.; Brookland, R.K.; Washington, M.K.; Gershenwald, J.E.; Compton, C.C.; Hess, K.R.; Sullivan, D.C. AJCC Cancer Staging Manual; Springer International Publishing: 2018.
- Blanchard, P.; Lee, A.; Marguet, S.; Leclercq, J.; Ng, W.T.; Ma, J.; Chan, A.T.; Huang, P.Y.; Benhamou, E.; Zhu, G.; et al. Chemotherapy and radiotherapy in nasopharyngeal carcinoma: an update of the MAC-NPC meta-analysis. Lancet Oncol 2015, 16, 645–655. [Google Scholar] [CrossRef] [PubMed]
- Li, W.F.; Chen, N.Y.; Zhang, N.; Hu, G.Q.; Xie, F.Y.; Sun, Y.; Chen, X.Z.; Li, J.G.; Zhu, X.D.; Hu, C.S.; et al. Concurrent chemoradiotherapy with/without induction chemotherapy in locoregionally advanced nasopharyngeal carcinoma: Long-term results of phase 3 randomized controlled trial. Int J Cancer 2019, 145, 295–305. [Google Scholar] [CrossRef]
- Yang, Q.; Cao, S.M.; Guo, L.; Hua, Y.J.; Huang, P.Y.; Zhang, X.L.; Lin, M.; You, R.; Zou, X.; Liu, Y.P.; et al. Induction chemotherapy followed by concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: long-term results of a phase III multicentre randomised controlled trial. Eur J Cancer 2019, 119, 87–96. [Google Scholar] [CrossRef]
- Sun, Y.; Li, W.F.; Chen, N.Y.; Zhang, N.; Hu, G.Q.; Xie, F.Y.; Sun, Y.; Chen, X.Z.; Li, J.G.; Zhu, X.D.; et al. Induction chemotherapy plus concurrent chemoradiotherapy versus concurrent chemoradiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: a phase 3, multicentre, randomised controlled trial. Lancet Oncol 2016, 17, 1509–1520. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, L.; Hu, G.Q.; Zhang, N.; Zhu, X.D.; Yang, K.Y.; Jin, F.; Shi, M.; Chen, Y.P.; Hu, W.H.; et al. Gemcitabine and Cisplatin Induction Chemotherapy in Nasopharyngeal Carcinoma. N Engl J Med 2019, 381, 1124–1135. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, L.; Hu, G.Q.; Zhang, N.; Zhu, X.D.; Yang, K.Y.; Jin, F.; Shi, M.; Chen, Y.P.; Hu, W.H.; et al. Final Overall Survival Analysis of Gemcitabine and Cisplatin Induction Chemotherapy in Nasopharyngeal Carcinoma: A Multicenter, Randomized Phase III Trial. J Clin Oncol 2022, 40, 2420–2425. [Google Scholar] [CrossRef]
- Chen, Y.-P.; Ismaila, N.; Chua, M.L.K.; Colevas, A.D.; Haddad, R.; Huang, S.H.; Wee, J.T.S.; Whitley, A.C.; Yi, J.-L.; Yom, S.S.; et al. Chemotherapy in Combination With Radiotherapy for Definitive-Intent Treatment of Stage II-IVA Nasopharyngeal Carcinoma: CSCO and ASCO Guideline. Journal of Clinical Oncology 2021, 39, 840–859. [Google Scholar] [CrossRef]
- Liu, L.T.; Liu, H.; Huang, Y.; Yang, J.H.; Xie, S.Y.; Li, Y.Y.; Guo, S.S.; Qi, B.; Li, X.Y.; Chen, D.P.; et al. Concurrent chemoradiotherapy followed by adjuvant cisplatin-gemcitabine versus cisplatin-fluorouracil chemotherapy for N2-3 nasopharyngeal carcinoma: a multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol 2023, 24, 798–810. [Google Scholar] [CrossRef]
- Chen, Y.P.; Liu, X.; Zhou, Q.; Yang, K.Y.; Jin, F.; Zhu, X.D.; Shi, M.; Hu, G.Q.; Hu, W.H.; Sun, Y.; et al. Metronomic capecitabine as adjuvant therapy in locoregionally advanced nasopharyngeal carcinoma: a multicentre, open-label, parallel-group, randomised, controlled, phase 3 trial. Lancet 2021, 398, 303–313. [Google Scholar] [CrossRef]
- Miao, J.; Wang, L.; Tan, S.H.; Li, J.G.; Yi, J.; Ong, E.H.W.; Tan, L.L.Y.; Zhang, Y.; Gong, X.; Chen, Q.; et al. Adjuvant Capecitabine Following Concurrent Chemoradiotherapy in Locoregionally Advanced Nasopharyngeal Carcinoma: A Randomized Clinical Trial. JAMA Oncol 2022, 8, 1776–1785. [Google Scholar] [CrossRef] [PubMed]
- Teo, P.; Tsao, S.Y.; Shiu, W.; Leung, W.T.; Tsang, V.; Yu, P.; Lui, C. A clinical study of 407 cases of nasopharyngeal carcinoma in Hong Kong. Int J Radiat Oncol Biol Phys 1989, 17, 515–530. [Google Scholar] [CrossRef] [PubMed]
- Waldron, J.; Tin, M.M.; Keller, A.; Lum, C.; Japp, B.; Sellmann, S.; van Prooijen, M.; Gitterman, L.; Blend, R.; Payne, D.; et al. Limitation of conventional two dimensional radiation therapy planning in nasopharyngeal carcinoma. Radiother Oncol 2003, 68, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Mo, Z.; Du, W.; Wang, Y.; Liu, L.; Wei, Y. Intensity-modulated radiation therapy versus 2D-RT or 3D-CRT for the treatment of nasopharyngeal carcinoma: A systematic review and meta-analysis. Oral Oncol 2015, 51, 1041–1046. [Google Scholar] [CrossRef] [PubMed]
- Du, T.; Xiao, J.; Qiu, Z.; Wu, K. The effectiveness of intensity-modulated radiation therapy versus 2D-RT for the treatment of nasopharyngeal carcinoma: A systematic review and meta-analysis. PLoS One 2019, 14, e0219611. [Google Scholar] [CrossRef]
- Au, K.H.; Ngan, R.K.C.; Ng, A.W.Y.; Poon, D.M.C.; Ng, W.T.; Yuen, K.T.; Lee, V.H.F.; Tung, S.Y.; Chan, A.T.C.; Sze, H.C.K.; et al. Treatment outcomes of nasopharyngeal carcinoma in modern era after intensity modulated radiotherapy (IMRT) in Hong Kong: A report of 3328 patients (HKNPCSG 1301 study). Oral Oncol 2018, 77, 16–21. [Google Scholar] [CrossRef]
- Li, W.Z.; Lv, X.; Hu, D.; Lv, S.H.; Liu, G.Y.; Liang, H.; Ye, Y.F.; Yang, W.; Zhang, H.X.; Yuan, T.Z.; et al. Effect of Induction Chemotherapy With Paclitaxel, Cisplatin, and Capecitabine vs. Cisplatin and Fluorouracil on Failure-Free Survival for Patients With Stage IVA to IVB Nasopharyngeal Carcinoma: A Multicenter Phase 3 Randomized Clinical Trial. JAMA Oncol 2022, 8, 706–714. [Google Scholar] [CrossRef]
- Tang, L.L.; Guo, R.; Zhang, N.; Deng, B.; Chen, L.; Cheng, Z.B.; Huang, J.; Hu, W.H.; Huang, S.H.; Luo, W.J.; et al. Effect of Radiotherapy Alone vs. Radiotherapy With Concurrent Chemoradiotherapy on Survival Without Disease Relapse in Patients With Low-risk Nasopharyngeal Carcinoma: A Randomized Clinical Trial. Jama 2022, 328, 728–736. [Google Scholar] [CrossRef]
- Xia, W.X.; Lv, X.; Liang, H.; Liu, G.Y.; Sun, R.; Zeng, Q.; Li, S.W.; Mo, H.Y.; Han, F.; Luo, D.H.; et al. A Randomized Controlled Trial Comparing Two Different Schedules for Cisplatin Treatment in Patients with Locoregionally Advanced Nasopharyngeal Cancer. Clin Cancer Res 2021, 27, 4186–4194. [Google Scholar] [CrossRef]
- Bauml, J.M.; Vinnakota, R.; Anna Park, Y.-H.; Bates, S.E.; Fojo, T.; Aggarwal, C.; Limaye, S.; Damjanov, N.; Di Stefano, J.; Ciunci, C.; et al. Cisplatin Every 3 Weeks Versus Weekly With Definitive Concurrent Radiotherapy for Squamous Cell Carcinoma of the Head and Neck. JNCI: Journal of the National Cancer Institute 2019, 111, 490–497. [Google Scholar] [CrossRef]
- Fan, C.Y.; Lin, C.S.; Chao, H.L.; Huang, W.Y.; Su, Y.F.; Lin, K.T.; Tsai, I.J.; Kao, C.H. Risk of hypothyroidism among patients with nasopharyngeal carcinoma treated with radiation therapy: A Population-Based Cohort Study. Radiother Oncol 2017, 123, 394–400. [Google Scholar] [CrossRef] [PubMed]
- McDowell, L.; Corry, J.; Ringash, J.; Rischin, D. Quality of Life, Toxicity and Unmet Needs in Nasopharyngeal Cancer Survivors. Front Oncol 2020, 10, 930. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.; McLister, C.; Cardwell, C.; O'Neill, C.; Donnelly, M.; McKenna, G. Dental caries following radiotherapy for head and neck cancer: A systematic review. Oral Oncol 2020, 100, 104484. [Google Scholar] [CrossRef] [PubMed]
- Tan, T.H.; Zheng, H.; Cheo, T.; Tey, J.; Soon, Y.Y. Risk of Stroke in Nasopharyngeal Cancer Survivors: A National Registry-Based Population Cohort Study. Neurology 2022, 98, e115–e124. [Google Scholar] [CrossRef] [PubMed]
- Yip, P.L.; Mok, K.C.J.; Ho, H.S.; Lee, W.Y.V.; Wong, A.C.L.; Lau, C.T.; Wong, F.C.S.; Yeung, K.W.; Lee, S.F. Sensorineural Hearing Loss in Nasopharyngeal Carcinoma Survivors in the Modern Treatment Era — The Early and Late Effects of Radiation and Cisplatin. Clinical Oncology 2022, 34, e160–e167. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, F.; Min, X.; Zhang, Q.; Shen, L.J.; Jiang, Y.; Yan, J. Toxicities of chemoradiotherapy and radiotherapy in nasopharyngeal carcinoma: an updated meta-analysis. J Int Med Res 2019, 47, 2832–2847. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.C.H.; Cheung, K.M.; Au, K.H.; Zee, B.C.Y.; Lee, J.; Ngan, R.K.C.; Lee, A.W.M.; Yiu, H.H.Y.; Li, K.W.S.; Leung, A.K.C.; et al. Radiation-induced hypoglossal nerve palsy after definitive radiotherapy for nasopharyngeal carcinoma: Clinical predictors and dose-toxicity relationship. Radiother Oncol 2019, 138, 93–98. [Google Scholar] [CrossRef]
- King, A.D. MR Imaging of Nasopharyngeal Carcinoma. Magnetic Resonance Imaging Clinics 2022, 30, 19–33. [Google Scholar] [CrossRef]
- Liang, S.B.; Sun, Y.; Liu, L.Z.; Chen, Y.; Chen, L.; Mao, Y.P.; Tang, L.L.; Tian, L.; Lin, A.H.; Liu, M.Z.; et al. Extension of local disease in nasopharyngeal carcinoma detected by magnetic resonance imaging: improvement of clinical target volume delineation. Int J Radiat Oncol Biol Phys 2009, 75, 742–750. [Google Scholar] [CrossRef]
- Xue, F.; Hu, C.; He, X. Long-term Patterns of Regional Failure for Nasopharyngeal Carcinoma following Intensity-Modulated Radiation Therapy. J Cancer 2017, 8, 993–999. [Google Scholar] [CrossRef]
- Chen, S.; Yang, D.; Liao, X.; Lu, Y.; Yu, B.; Xu, M.; Bin, Y.; Zhou, P.; Yang, Z.; Liu, K.; et al. Failure Patterns of Recurrence and Metastasis After Intensity-Modulated Radiotherapy in Patients With Nasopharyngeal Carcinoma: Results of a Multicentric Clinical Study. Front Oncol 2021, 11, 693199. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Jiang, F.; Jin, Q.; Jin, T.; Huang, S.; Hu, Q.; Chen, Y.; Piao, Y.; Hua, Y.; Feng, X.; et al. Locoregional extension and patterns of failure for nasopharyngeal carcinoma with intracranial extension. Oral Oncol 2018, 79, 27–32. [Google Scholar] [CrossRef]
- Liu, X.; Wu, B.; Huang, J.; Qin, Y.; Zhang, Z.; Shi, L.; Hong, X.; Ding, Q.; Peng, G.; Yang, K. Tumor factors associated with in-field failure for nasopharyngeal carcinoma after intensity-modulated radiotherapy. Head Neck 2022, 44, 876–888. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.W.; Ng, W.T.; Pan, J.J.; Poh, S.S.; Ahn, Y.C.; AlHussain, H.; Corry, J.; Grau, C.; Grégoire, V.; Harrington, K.J.; et al. International guideline for the delineation of the clinical target volumes (CTV) for nasopharyngeal carcinoma. Radiother Oncol 2018, 126, 25–36. [Google Scholar] [CrossRef]
- Grégoire, V.; Evans, M.; Le, Q.T.; Bourhis, J.; Budach, V.; Chen, A.; Eisbruch, A.; Feng, M.; Giralt, J.; Gupta, T.; et al. Delineation of the primary tumour Clinical Target Volumes (CTV-P) in laryngeal, hypopharyngeal, oropharyngeal and oral cavity squamous cell carcinoma: AIRO, CACA, DAHANCA, EORTC, GEORCC, GORTEC, HKNPCSG, HNCIG, IAG-KHT, LPRHHT, NCIC CTG, NCRI, NRG Oncology, PHNS, SBRT, SOMERA, SRO, SSHNO, TROG consensus guidelines. Radiother Oncol 2018, 126, 3–24. [Google Scholar] [CrossRef]
- 2010 Nasopharyngeal Carcinoma Intensity Modulated Radiotherapy Target and Dose Design Guidelines. Expert consensus. Chin J Radiat Oncol 2011, 20, 267–269.
- Qiu, Z.; Lin, F.; Wu, Z.; Wu, T.; Wang, M.; Hu, J.; Xie, D.; Lyu, S.; Ma, J.; Tao, Y.; et al. Why subclinical involvement is prescribed the same high dose as gross tumor volume: A study on high-dose clinical target volume in intensity-modulated radiotherapy plan of nasopharyngeal carcinoma. Head Neck 2023, 45, 1206–1214. [Google Scholar] [CrossRef]
- Lin, S.; Pan, J.; Han, L.; Zhang, X.; Liao, X.; Lu, J.J. Nasopharyngeal Carcinoma Treated With Reduced-Volume Intensity-Modulated Radiation Therapy: Report on the 3-Year Outcome of a Prospective Series. International Journal of Radiation Oncology, Biology, Physics 2009, 75, 1071–1078. [Google Scholar] [CrossRef]
- Lin, S.; Pan, J.; Han, L.; Guo, Q.; Hu, C.; Zong, J.; Zhang, X.; Lu, J.J. Update report of nasopharyngeal carcinoma treated with reduced-volume intensity-modulated radiation therapy and hypothesis of the optimal margin. Radiother Oncol 2014, 110, 385–389. [Google Scholar] [CrossRef]
- Huang, H.; Miao, J.; Xiao, X.; Hu, J.; Zhang, G.; Peng, Y.; Lu, S.; Liang, Y.; Huang, S.; Han, F.; et al. Impact on xerostomia for nasopharyngeal carcinoma patients treated with superficial parotid lobe-sparing intensity-modulated radiation therapy (SPLS-IMRT): A prospective phase II randomized controlled study. Radiother Oncol 2022, 175, 1–9. [Google Scholar] [CrossRef]
- Mao, Y.P.; Wang, S.X.; Gao, T.S.; Zhang, N.; Liang, X.Y.; Xie, F.Y.; Zhang, Y.; Zhou, G.Q.; Guo, R.; Luo, W.J.; et al. Medial retropharyngeal nodal region sparing radiotherapy versus standard radiotherapy in patients with nasopharyngeal carcinoma: open label, non-inferiority, multicentre, randomised, phase 3 trial. Bmj 2023, 380, e072133. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.L.; Huang, C.L.; Zhang, N.; Jiang, W.; Wu, Y.S.; Huang, S.H.; Mao, Y.P.; Liu, Q.; Li, J.B.; Liang, S.Q.; et al. Elective upper-neck versus whole-neck irradiation of the uninvolved neck in patients with nasopharyngeal carcinoma: an open-label, non-inferiority, multicentre, randomised phase 3 trial. Lancet Oncol 2022, 23, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, C.; He, S.; Bai, L.; Kong, F.; Wang, S.; Cui, L.; Qin, Q.; Yang, Y.; Xiao, W.; et al. Induction chemotherapy regimen of docetaxel plus cisplatin versus docetaxel, cisplatin plus fluorouracil followed by concurrent chemoradiotherapy in locoregionally advanced nasopharyngeal carcinoma: Preliminary results of an open-label, noninferiority, multicentre, randomised, controlled phase 3 trial. EClinicalMedicine 2022, 53, 101625. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yang, S.; Xu, P.; Xu, Y.; Zhou, G.; Ou, X.; Wu, R.; Lan, M.; Fontanarosa, D.; Dowling, J.; et al. Variations of Clinical Target Volume Delineation for Primary Site of Nasopharyngeal Cancer Among Five Centers in China. Front Oncol 2020, 10, 1572. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Yu, X.L.; Zhang, G.S.; Liu, Y.M.; Tao, C.J.; Guo, R.; Tang, L.L.; Zhang, R.; Guo, Y.; Ma, J. Reduction of clinical target volume in patients with lateralized cancer of the nasopharynx and without contralateral lymph node metastasis receiving intensity-modulated radiotherapy. Head Neck 2016, 38 Suppl 1, E468–472. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, L.; He, Q.; Li, F.; Ma, H.; Zhou, Y.; Wang, H.; Han, Y. Characteristics of locoregional extension of unilateral nasopharyngeal carcinoma and suggestions for clinical target volume delineation. Radiation Oncology 2022, 17, 52. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Qi, B.; Lin, F.F.; Zhang, L.; He, Q.; Li, F.P.; Wang, H.; Han, Y.Q.; Yin, W.J. Characteristics of local extension based on tumor distribution in nasopharyngeal carcinoma and proposed clinical target volume delineation. Radiother Oncol 2023, 183, 109595. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Yao, J.J.; Zhou, G.Q.; Guo, R.; Zhang, F.; Zhang, Y.; Xu, L.; Zhang, L.L.; Lin, A.H.; Ma, J.; et al. The efficacy and toxicity of individualized intensity-modulated radiotherapy based on the tumor extension patterns of nasopharyngeal carcinoma. Oncotarget 2016, 7, 20680–20690. [Google Scholar] [CrossRef]
- Sanford, N.N.; Lau, J.; Lam, M.B.; Juliano, A.F.; Adams, J.A.; Goldberg, S.I.; Lu, H.M.; Lu, Y.C.; Liebsch, N.J.; Curtin, H.D.; et al. Individualization of Clinical Target Volume Delineation Based on Stepwise Spread of Nasopharyngeal Carcinoma: Outcome of More Than a Decade of Clinical Experience. Int J Radiat Oncol Biol Phys 2019, 103, 654–668. [Google Scholar] [CrossRef]
- Miao, J.; Di, M.; Chen, B.; Wang, L.; Cao, Y.; Xiao, W.; Wong, K.H.; Huang, L.; Zhu, M.; Huang, H.; et al. A Prospective 10-Year Observational Study of Reduction of Radiation Therapy Clinical Target Volume and Dose in Early-Stage Nasopharyngeal Carcinoma. Int J Radiat Oncol Biol Phys 2020, 107, 672–682. [Google Scholar] [CrossRef]
- Xie, D.H.; Wu, Z.; Li, W.Z.; Cheng, W.Q.; Tao, Y.L.; Wang, L.; Lv, S.W.; Lin, F.F.; Cui, N.J.; Zhao, C.; et al. Individualized clinical target volume delineation and efficacy analysis in unilateral nasopharyngeal carcinoma treated with intensity-modulated radiotherapy (IMRT): 10-year summary. J Cancer Res Clin Oncol 2022, 148, 1931–1942. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.-l.; Chen, L.; Shen, G.-z.; Li, Y.-n.; Yao, J.-j.; Xiao, W.-w.; Yang, L.; Zhou, S.; Li, J.-x.; Cheng, W.-q.; et al. Interobserver variations in the delineation of target volumes and organs at risk and their impact on dose distribution in intensity-modulated radiation therapy for nasopharyngeal carcinoma. Oral Oncology 2018, 82, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Huang, H.; Zhu, C.; Gan, Q.; Jiang, H.; Liu, P.; Qi, X.; Fan, F.; Xiao, J.; Pang, Q.; et al. Interobserver Variations in Target Delineation in Intensity-Modulated Radiation Therapy for Nasopharyngeal Carcinoma and its Impact on Target Dose Coverage. Technol Cancer Res Treat 2023, 22, 15330338231169592. [Google Scholar] [CrossRef] [PubMed]
- Individualized treatment in treating patients with stage II-IVB nasopharyngeal cancer based on EBV DNA. Available online: https://clinicaltrials.gov/ct2/show/NCT02135042 (accessed on.
- Tang, L.; Mao, Y.; Liu, L.; Liang, S.; Chen, Y.; Sun, Y.; Liao, X.; Lin, A.; Liu, M.; Li, L.; et al. The volume to be irradiated during selective neck irradiation in nasopharyngeal carcinoma: analysis of the spread patterns in lymph nodes by magnetic resonance imaging. Cancer 2009, 115, 680–688. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.S.; Yan, C.; Hu, C.S.; Ying, H.M.; He, X.Y.; Zhou, Z.R.; Ding, J.H. Study of the medial group retropharyngeal node metastasis from nasopharyngeal carcinoma based on 3100 newly diagnosed cases. Oral Oncol 2014, 50, 1109–1113. [Google Scholar] [CrossRef]
- Tang, L.L.; Huang, C.L.; Ma, J. Elective upper-neck versus whole-neck irradiation of the uninvolved neck in patients with nasopharyngeal carcinoma - Authors' reply. Lancet Oncol 2022, 23, e241. [Google Scholar] [CrossRef]
- Wang, G.; Huang, C.; Yang, K.; Guo, R.; Qiu, Y.; Li, W.; Mao, Y.; Tang, L.; Ma, J. Neck level Ib-sparing versus level Ib-irradiation in intensity-modulated radiotherapy for the treatment of nasopharyngeal carcinoma with high-risk factors: A propensity score-matched cohort study. Radiother Oncol 2022, 177, 205–213. [Google Scholar] [CrossRef]
- Li, M.; Huang, X.G.; Yang, Z.N.; Lu, J.Y.; Zhan, Y.Z.; Xie, W.J.; Zhou, D.J.; Wang, L.; Zhu, D.X.; Lin, Z.X. Effects of omitting elective neck irradiation to nodal Level IB in nasopharyngeal carcinoma patients with negative Level IB lymph nodes treated by intensity-modulated radiotherapy: a Phase 2 study. Br J Radiol 2016, 89, 20150621. [Google Scholar] [CrossRef]
- Guo, Q.; Xiao, N.; Xu, H.; Zong, J.; Xiao, Y.; Lu, T.; Xu, Y.; Wang, B.; Chen, B.; Pan, J.; et al. Level Ib sparing intensity-modulated radiation therapy in selected nasopharyngeal carcinoma patients based on the International Guideline. Radiother Oncol 2022, 167, 239–243. [Google Scholar] [CrossRef]
- Wang, X.S.; Yan, C.; Hu, C.S.; Ying, H.M.; He, X.Y.; Zhou, Z.R.; Ding, J.H. Study of the medial group retropharyngeal node metastasis from nasopharyngeal carcinoma based on 3100 newly diagnosed cases. Oral Oncology 2014, 50, 1109–1113. [Google Scholar] [CrossRef]
- Grégoire, V.; Ang, K.; Budach, W.; Grau, C.; Hamoir, M.; Langendijk, J.A.; Lee, A.; Le, Q.T.; Maingon, P.; Nutting, C.; et al. Delineation of the neck node levels for head and neck tumors: a 2013 update. DAHANCA, EORTC, HKNPCSG, NCIC CTG, NCRI, RTOG, TROG consensus guidelines. Radiother Oncol 2014, 110, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Lu, Y.; Wang, X.J.; Chen, H.; Yu, S.; Tian, J.; Zhou, G.Q.; Zhang, L.L.; Qi, Z.Y.; Hu, J.; et al. Delineation of Neck Clinical Target Volume Specific to Nasopharyngeal Carcinoma Based on Lymph Node Distribution and the International Consensus Guidelines. Int J Radiat Oncol Biol Phys 2018, 100, 891–902. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Hu, C.; Ying, H.; He, X.; Zhu, G.; Kong, L.; Ding, J. Patterns of lymph node metastasis from nasopharyngeal carcinoma based on the 2013 updated consensus guidelines for neck node levels. Radiother Oncol 2015, 115, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Grégoire, V.; Levendag, P.; Ang, K.K.; Bernier, J.; Braaksma, M.; Budach, V.; Chao, C.; Coche, E.; Cooper, J.S.; Cosnard, G.; et al. CT-based delineation of lymph node levels and related CTVs in the node-negative neck: DAHANCA, EORTC, GORTEC, NCIC,RTOG consensus guidelines. Radiother Oncol 2003, 69, 227–236. [Google Scholar] [CrossRef]
- Zhao, Y.; Liao, X.; Wang, Y.; Lan, W.; Ren, J.; Yang, N.; Li, C.; Lang, J.; Zhang, S. Level Ib CTV delineation in nasopharyngeal carcinoma based on lymph node distribution and topographic anatomy. Radiotherapy and Oncology 2022, 172, 10–17. [Google Scholar] [CrossRef]
- Wang, X.; Li, L.; Hu, C.; Zhou, Z.; Ying, H.; Ding, J.; Feng, Y. Patterns of level II node metastasis in nasopharyngeal carcinoma. Radiotherapy and Oncology 2008, 89, 28–32. [Google Scholar] [CrossRef]
- Jiang, C.; Gao, H.; Zhang, L.; Li, H.; Zhang, T.; Ma, J.; Liu, B. Distribution pattern and prognosis of metastatic lymph nodes in cervical posterior to level V in nasopharyngeal carcinoma patients. BMC Cancer 2020, 20, 667. [Google Scholar] [CrossRef]
- Jiang, C.; Gong, B.; Gao, H.; Zhang, T.; Li, Z.; Wang, J.; Zhang, L. Correlation analysis of neck node levels in 960 cases of Nasopharyngeal carcinoma (NPC). Radiother Oncol 2021, 161, 23–28. [Google Scholar] [CrossRef]
- (NCCN), N.C.C.N. NCCN Guidelines Head and Neck Cancers. 2023, Version 2. 2023. [Google Scholar]
- Bossi, P.; Chan, A.T.; Licitra, L.; Trama, A.; Orlandi, E.; Hui, E.P.; Halámková, J.; Mattheis, S.; Baujat, B.; Hardillo, J.; et al. Nasopharyngeal carcinoma: ESMO-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up(†). Ann Oncol 2021, 32, 452–465. [Google Scholar] [CrossRef]
- Li, Y.; Bi, J.; Pi, G.; He, H.; Li, Y.; Zheng, D.; Wei, Z.; Han, G. Optimizing induction chemotherapy regimens for radiotherapy in patients with locoregionally advanced nasopharyngeal carcinoma. Cancer Med 2023, 12, 9449–9457. [Google Scholar] [CrossRef]
- Xiang, L.; Rong, J.-F.; Xin, C.; Li, X.-Y.; Zheng, Y.; Ren, P.-R.; Lin, S.; Wen, Q.-L.; He, L.-J.; Zhang, J.-W.; et al. Reducing Target Volumes of Intensity Modulated Radiation Therapy After Induction Chemotherapy in Locoregionally Advanced Nasopharyngeal Carcinoma: Long-Term Results of a Prospective, Multicenter, Randomized Trial. International Journal of Radiation Oncology, Biology, Physics. [CrossRef]
- Zhao, C.; Miao, J.J.; Hua, Y.J.; Wang, L.; Han, F.; Lu, L.X.; Xiao, W.W.; Wu, H.J.; Zhu, M.Y.; Huang, S.M.; et al. Locoregional Control and Mild Late Toxicity After Reducing Target Volumes and Radiation Doses in Patients With Locoregionally Advanced Nasopharyngeal Carcinoma Treated With Induction Chemotherapy (IC) Followed by Concurrent Chemoradiotherapy: 10-Year Results of a Phase 2 Study. Int J Radiat Oncol Biol Phys 2019, 104, 836–844. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-L.; Sun, Z.-Q.; Guo, R.; Liu, X.; Mao, Y.-P.; Peng, H.; Tian, L.; Lin, A.-H.; Li, L.; Shao, J.-Y.; et al. Plasma Epstein-Barr Virus DNA Load After Induction Chemotherapy Predicts Outcome in Locoregionally Advanced Nasopharyngeal Carcinoma. International Journal of Radiation Oncology, Biology, Physics 2019, 104, 355–361. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.-T.; Chen, K.-H.; Yang, J.; Liang, Z.-G.; Qu, S.; Li, L.; Zhu, X.-D. Establishment of a Prognostic Nomogram for Patients With Locoregionally Advanced Nasopharyngeal Carcinoma Incorporating TNM Stage, Post-Induction Chemotherapy Tumor Volume and Epstein-Barr Virus DNA Load. Frontiers in Oncology 2021, 11. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Z.Z.; He, T.; Zeng, Y.Y.; Liu, F.; Shao, B.F.; Yang, T.; Ma, J.C.; Wang, X.R.; Yu, S.T.; Liu, L. Epstein-Barr virus DNA change level combined with tumor volume reduction ratio after inductive chemotherapy as a better prognostic predictor in locally advanced nasopharyngeal carcinoma. Cancer Med 2023, 12, 1102–1113. [Google Scholar] [CrossRef]
- Li, X.Y.; Luo, D.H.; Guo, L.; Mo, H.Y.; Sun, R.; Guo, S.S.; Liu, L.T.; Yang, Z.C.; Yang, J.H.; Qiu, F.; et al. Deintensified Chemoradiotherapy for Pretreatment Epstein-Barr Virus DNA-Selected Low-Risk Locoregionally Advanced Nasopharyngeal Carcinoma: A Phase II Randomized Noninferiority Trial. J Clin Oncol 2022, 40, 1163–1173. [Google Scholar] [CrossRef]
- Luo, W.J.; Zou, W.Q.; Liang, S.B.; Chen, L.; Zhou, G.Q.; Peng, H.; Li, W.F.; Liu, X.; Sun, Y.; Lin, A.H.; et al. Combining tumor response and personalized risk assessment: Potential for adaptation of concurrent chemotherapy in locoregionally advanced nasopharyngeal carcinoma in the intensity-modulated radiotherapy era. Radiother Oncol 2021, 155, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Mai, H.-Q.; Yang, J.-H.; Guo, S.-S.; Sun, X.-S.; Liu, L.-Z.; Yang, Z.-C.; Liu, L.; Liu, S.-L.; Li, X.Y.; Luo, D.-H.; et al. Reduced-dose radiotherapy for pretreatment EBV DNA selected low-risk stage III nasopharyngeal carcinoma: A single-arm, phase II trial. Journal of Clinical Oncology 2022, 40, 6002–6002. [Google Scholar] [CrossRef]
- Gai, X.; Wei, Y.; Tao, H.; Zhu, J.; Li, B. Clinical study of the time of repeated computed tomography and replanning for patients with nasopharyngeal carcinoma. Oncotarget 2017, 8, 27529–27540. [Google Scholar] [CrossRef]
- Brouwer, C.L.; Steenbakkers, R.J.H.M.; Langendijk, J.A.; Sijtsema, N.M. Identifying patients who may benefit from adaptive radiotherapy: Does the literature on anatomic and dosimetric changes in head and neck organs at risk during radiotherapy provide information to help? Radiotherapy and Oncology 2015, 115, 285–294. [Google Scholar] [CrossRef]
- Cheng, H.C.; Wu, V.W.; Ngan, R.K.; Tang, K.W.; Chan, C.C.; Wong, K.H.; Au, S.K.; Kwong, D.L. A prospective study on volumetric and dosimetric changes during intensity-modulated radiotherapy for nasopharyngeal carcinoma patients. Radiother Oncol 2012, 104, 317–323. [Google Scholar] [CrossRef]
- Li, Y.; Wei, Z.; Liu, Z.; Teng, J.; Chang, Y.; Xie, Q.; Zhang, L.; Shi, J.; Chen, L. Quantifying the dosimetric effects of neck contour changes and setup errors on the spinal cord in patients with nasopharyngeal carcinoma: establishing a rapid estimation method. Journal of Radiation Research 2022, 63, 443–451. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wan, Q.; Zhou, Y.; Deng, X.; Xie, C.; Wu, S. The role of replanning in fractionated intensity modulated radiotherapy for nasopharyngeal carcinoma. Radiother Oncol 2011, 98, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Wang, W.; Zhou, C.; Zhu, J.; Ding, W.; Chen, M.; Chen, K.; Shi, Y.; Chen, X.; Kong, F.M.; et al. Long-term outcomes of replanning during intensity-modulated radiation therapy in patients with nasopharyngeal carcinoma: An updated and expanded retrospective analysis. Radiother Oncol 2022, 170, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Castelli, J.; Thariat, J.; Benezery, K.; Hasbini, A.; Gery, B.; Berger, A.; Liem, X.; Guihard, S.; Chapet, S.; Thureau, S.; et al. Weekly Adaptive Radiotherapy vs. Standard Intensity-Modulated Radiotherapy for Improving Salivary Function in Patients With Head and Neck Cancer: A Phase 3 Randomized Clinical Trial. JAMA Oncol 2023. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Lu, H.; Feng, G.; Jiang, H.; Chen, J.; Cheng, J.; Pang, Q.; Lu, Z.; Gu, J.; Peng, L.; et al. Determining appropriate timing of adaptive radiation therapy for nasopharyngeal carcinoma during intensity-modulated radiation therapy. Radiation Oncology 2015, 10, 192. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Cheng, W.; Lv, S.; Zhong, R.; Wang, L.; Hu, J.; Wang, M.; Huang, S.; Su, Y.; Xia, Y. Target delineation and dose prescription of adaptive replanning intensity-modulated radiotherapy for nasopharyngeal carcinoma. Cancer Commun (Lond) 2019, 39, 18. [Google Scholar] [CrossRef] [PubMed]
- Alterio, D.; D'Ippolito, E.; Vischioni, B.; Fossati, P.; Gandini, S.; Bonora, M.; Ronchi, S.; Vitolo, V.; Mastella, E.; Magro, G.; et al. Mixed-beam approach in locally advanced nasopharyngeal carcinoma: IMRT followed by proton therapy boost versus IMRT-only. Evaluation of toxicity and efficacy. Acta Oncol 2020, 59, 541–548. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, Y.; Ishikura, S.; Shibata, T.; Kodaira, T.; Ito, Y.; Tsuchiya, K.; Murakami, Y.; Saitoh, J.I.; Akimoto, T.; Nakata, K.; et al. A phase II study of adaptive two-step intensity-modulated radiation therapy (IMRT) with chemotherapy for loco-regionally advanced nasopharyngeal cancer (JCOG1015). Int J Clin Oncol 2020, 25, 1250–1259. [Google Scholar] [CrossRef]
- Glide-Hurst, C.K.; Lee, P.; Yock, A.D.; Olsen, J.R.; Cao, M.; Siddiqui, F.; Parker, W.; Doemer, A.; Rong, Y.; Kishan, A.U.; et al. Adaptive Radiation Therapy (ART) Strategies and Technical Considerations: A State of the ART Review From NRG Oncology. Int J Radiat Oncol Biol Phys 2021, 109, 1054–1075. [Google Scholar] [CrossRef]
- Bertholet, J.; Anastasi, G.; Noble, D.; Bel, A.; van Leeuwen, R.; Roggen, T.; Duchateau, M.; Pilskog, S.; Garibaldi, C.; Tilly, N.; et al. Patterns of practice for adaptive and real-time radiation therapy (POP-ART RT) part II: Offline and online plan adaption for interfractional changes. Radiotherapy and Oncology 2020, 153, 88–96. [Google Scholar] [CrossRef]
- Lin, L.; Dou, Q.; Jin, Y.M.; Zhou, G.Q.; Tang, Y.Q.; Chen, W.L.; Su, B.A.; Liu, F.; Tao, C.J.; Jiang, N.; et al. Deep Learning for Automated Contouring of Primary Tumor Volumes by MRI for Nasopharyngeal Carcinoma. Radiology 2019, 291, 677–686. [Google Scholar] [CrossRef]
- Costea, M.; Zlate, A.; Serre, A.A.; Racadot, S.; Baudier, T.; Chabaud, S.; Grégoire, V.; Sarrut, D.; Biston, M.C. Evaluation of different algorithms for automatic segmentation of head-and-neck lymph nodes on CT images. Radiother Oncol 2023, 188, 109870. [Google Scholar] [CrossRef]
- Teo, P.M.; Leung, S.F.; Tung, S.Y.; Zee, B.; Sham, J.S.; Lee, A.W.; Lau, W.H.; Kwan, W.H.; Leung, T.W.; Chua, D.; et al. Dose-response relationship of nasopharyngeal carcinoma above conventional tumoricidal level: a study by the Hong Kong nasopharyngeal carcinoma study group (HKNPCSG). Radiother Oncol 2006, 79, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Ling, C.C.; Humm, J.; Larson, S.; Amols, H.; Fuks, Z.; Leibel, S.; Koutcher, J.A. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 2000, 47, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Yan, O.; Wang, H.; Han, Y.; Fu, S.; Chen, Y.; Liu, F. Prognostic Relevance of 18F-FDG-PET/CT-Guided Target Volume Delineation in Loco-Regionally Advanced Nasopharyngeal Carcinomas: A Comparative Study. Front Oncol 2021, 11, 709622. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Xi, X.P.; Wang, H.; Han, Y.Q.; Xiao, F.; Hu, Y.; He, Q.; Zhang, L.; Xiao, Q.; Liu, L.; et al. PET/CT-guided dose-painting versus CT-based intensity modulated radiation therapy in locoregional advanced nasopharyngeal carcinoma. Radiat Oncol 2017, 12, 15. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, J.; Tang, T.; Zhu, F.; Yao, Y.; Xu, J.; Wang, A.Z.; Zhang, L. A Randomized Pilot Trial Comparing Position Emission Tomography (PET)-Guided Dose Escalation Radiotherapy to Conventional Radiotherapy in Chemoradiotherapy Treatment of Locally Advanced Nasopharyngeal Carcinoma. PLOS ONE 2015, 10, e0124018. [Google Scholar] [CrossRef]
- Lee, S.T.; Scott, A.M. Hypoxia positron emission tomography imaging with 18f-fluoromisonidazole. Semin Nucl Med 2007, 37, 451–461. [Google Scholar] [CrossRef]
- Qiu, J.; Lv, B.; Fu, M.; Wang, X.; Zheng, X.; Zhuo, W. (18) F-Fluoromisonidazole positron emission tomography/CT-guided volumetric-modulated arc therapy-based dose escalation for hypoxic subvolume in nasopharyngeal carcinomas: A feasibility study. Head Neck 2017, 39, 2519–2527. [Google Scholar] [CrossRef]
- Sommat, K.; Tong, A.K.T.; Ong, A.L.K.; Hu, J.; Sin, S.Y.; Lam, W.W.C.; Xie, W.; Khor, Y.M.; Lim, C.; Lim, T.W.; et al. 18F-FMISO PET-guided dose escalation with multifield optimization intensity-modulated proton therapy in nasopharyngeal carcinoma. Asia Pac J Clin Oncol 2023. [Google Scholar] [CrossRef]
- Razek, A.A.K.A.; Megahed, A.S.; Denewer, A.; Motamed, A.; Tawfik, A.; Nada, N. Role of diffusion-weighted magnetic resonance imaging in differentiation between the viable and necrotic parts of head and neck tumors. Acta Radiologica 2008, 49, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Li, Y.; Han, Y.; Wang, H.; Chen, Y.; Yan, O.; He, Q.; Ma, H.; Liu, L.; Liu, F. Diffusion-Weighted Magnetic Resonance Imaging-Guided Dose Painting in Patients With Locoregionally Advanced Nasopharyngeal Carcinoma Treated With Induction Chemotherapy Plus Concurrent Chemoradiotherapy: A Randomized, Controlled Clinical Trial. International Journal of Radiation Oncology, Biology, Physics 2022, 113, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Yang, P.; Xu, Y.; Niu, T.; Hu, Q.; Chen, X. Feasibility of multiparametric imaging with PET/MR in nasopharyngeal carcinoma: A pilot study. Oral Oncology 2019, 93, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Berwouts, D.; Madani, I.; Duprez, F.; Olteanu, A.L.; Vercauteren, T.; Boterberg, T.; Deron, P.; Bonte, K.; Huvenne, W.; De Neve, W.; et al. Long-term outcome of (18) F-fluorodeoxyglucose-positron emission tomography-guided dose painting for head and neck cancer: Matched case-control study. Head Neck 2017, 39, 2264–2275. [Google Scholar] [CrossRef] [PubMed]
- Olteanu, L.A.M.; Duprez, F.; De Neve, W.; Berwouts, D.; Vercauteren, T.; Bauters, W.; Deron, P.; Huvenne, W.; Bonte, K.; Goethals, I.; et al. Late mucosal ulcers in dose-escalated adaptive dose-painting treatments for head-and-neck cancer. Acta Oncol 2018, 57, 262–268. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, K.; Hou, Z.; Yang, J.; Ren, W.; Gao, S.; Meng, F.; Wu, P.; Liu, B.; Liu, J.; et al. Use of Radiomics Combined With Machine Learning Method in the Recurrence Patterns After Intensity-Modulated Radiotherapy for Nasopharyngeal Carcinoma: A Preliminary Study. Front Oncol 2018, 8, 648. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wang, X.; Wang, J.; Wang, J.; Liu, X.; Huang, R.; Chen, C.; Deng, M.; Wang, H.; Han, F. Key radioresistance regulation models and marker genes identified by integrated transcriptome analysis in nasopharyngeal carcinoma. Cancer Med 2021, 10, 7404–7417. [Google Scholar] [CrossRef]
- Li, K.; Zhu, X.; Li, L.; Ning, R.; Liang, Z.; Zeng, F.; Su, F.; Huang, S.; Yang, X.; Qu, S. Identification of non-invasive biomarkers for predicting the radiosensitivity of nasopharyngeal carcinoma from serum microRNAs. Scientific Reports 2020, 10, 5161. [Google Scholar] [CrossRef]
- Niedobitek, G.; Young, L.S.; Sam, C.K.; Brooks, L.; Prasad, U.; Rickinson, A.B. Expression of Epstein-Barr virus genes and of lymphocyte activation molecules in undifferentiated nasopharyngeal carcinomas. Am J Pathol 1992, 140, 879–887. [Google Scholar]
- Lam, W.K.J.; Chan, K.C.A.; Lo, Y.M.D. Plasma Epstein-Barr virus DNA as an archetypal circulating tumour DNA marker. J Pathol 2019, 247, 641–649. [Google Scholar] [CrossRef]
- Lee, A.W.M.; Lee, V.H.F.; Ng, W.T.; Strojan, P.; Saba, N.F.; Rinaldo, A.; Willems, S.M.; Rodrigo, J.P.; Forastiere, A.A.; Ferlito, A. A systematic review and recommendations on the use of plasma EBV DNA for nasopharyngeal carcinoma. Eur J Cancer 2021, 153, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.C.A.; Woo, J.K.S.; King, A.; Zee, B.C.Y.; Lam, W.K.J.; Chan, S.L.; Chu, S.W.I.; Mak, C.; Tse, I.O.L.; Leung, S.Y.M.; et al. Analysis of Plasma Epstein-Barr Virus DNA to Screen for Nasopharyngeal Cancer. N Engl J Med 2017, 377, 513–522. [Google Scholar] [CrossRef]
- Tang, S.Q.; Chen, L.; Li, W.F.; Chan, A.T.C.; Huang, S.H.; Chua, M.L.K.; O'Sullivan, B.; Lee, A.W.M.; Lee, N.Y.; Zhang, Y.; et al. Identifying optimal clinical trial candidates for locoregionally advanced nasopharyngeal carcinoma: Analysis of 9468 real-world cases and validation by two phase 3 multicentre, randomised controlled trial. Radiother Oncol 2022, 167, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Lee, V.H.; Adham, M.; Ben Kridis, W.; Bossi, P.; Chen, M.Y.; Chitapanarux, I.; Gregoire, V.; Hao, S.P.; Ho, C.; Ho, G.F.; et al. International recommendations for plasma Epstein-Barr virus DNA measurement in nasopharyngeal carcinoma in resource-constrained settings: lessons from the COVID-19 pandemic. Lancet Oncol 2022, 23, e544–e551. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.F.; Lin, L.; Mao, Y.P.; Deng, B.; Lv, J.W.; Zheng, W.H.; Wen, D.W.; Kou, J.; Chen, F.P.; Yang, X.L.; et al. Liquid biopsy posttreatment surveillance in endemic nasopharyngeal carcinoma: a cost-effective strategy to integrate circulating cell-free Epstein-Barr virus DNA. BMC Med 2021, 19, 193. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.Y.; Le, Q.T.; Yom, S.S.; Pinsky, B.A.; Bratman, S.V.; Ng, R.H.; El Mubarak, H.S.; Chan, K.C.; Sander, M.; Conley, B.A. Current State of PCR-Based Epstein-Barr Virus DNA Testing for Nasopharyngeal Cancer. J Natl Cancer Inst 2017, 109. [Google Scholar] [CrossRef]
- Zhang, J.; Shu, C.; Song, Y.; Li, Q.; Huang, J.; Ma, X. Epstein-Barr virus DNA level as a novel prognostic factor in nasopharyngeal carcinoma: A meta-analysis. Medicine (Baltimore) 2016, 95, e5130. [Google Scholar] [CrossRef]
- Chan, A.T.C.; Hui, E.P.; Ngan, R.K.C.; Tung, S.Y.; Cheng, A.C.K.; Ng, W.T.; Lee, V.H.F.; Ma, B.B.Y.; Cheng, H.C.; Wong, F.C.S.; et al. Analysis of Plasma Epstein-Barr Virus DNA in Nasopharyngeal Cancer After Chemoradiation to Identify High-Risk Patients for Adjuvant Chemotherapy: A Randomized Controlled Trial. J Clin Oncol 2018, Jco2018777847. [Google Scholar] [CrossRef]
- Mai, H.-Q.; Chen, Q.-Y.; Chen, D.; Hu, C.; Yang, K.; Wen, J.; Li, J.; Shi, Y.-R.; Jin, F.; Xu, R.; et al. Toripalimab or placebo plus chemotherapy as first-line treatment in advanced nasopharyngeal carcinoma: a multicenter randomized phase 3 trial. Nature Medicine 2021, 27, 1536–1543. [Google Scholar] [CrossRef]
- Yang, Y.; Pan, J.; Wang, H.; Zhao, Y.; Qu, S.; Chen, N.; Chen, X.; Sun, Y.; He, X.; Hu, C.; et al. Tislelizumab plus chemotherapy as first-line treatment for recurrent or metastatic nasopharyngeal cancer: A multicenter phase 3 trial (RATIONALE-309). Cancer Cell 2023, 41, 1061–1072. [Google Scholar] [CrossRef]
- Yang, Y.; Qu, S.; Li, J.; Hu, C.; Xu, M.; Li, W.; Zhou, T.; Shen, L.; Wu, H.; Lang, J.; et al. Camrelizumab versus placebo in combination with gemcitabine and cisplatin as first-line treatment for recurrent or metastatic nasopharyngeal carcinoma (CAPTAIN-1st): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol 2021, 22, 1162–1174. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.W.-T.; Kao, H.-F.; Suteja, L.; Li, C.H.; Quah, H.S.; Tan, D.S.-W.; Tan, S.-H.; Tan, E.-H.; Tan, W.-L.; Lee, J.N.; et al. Clinical efficacy and biomarker analysis of dual PD-1/CTLA-4 blockade in recurrent/metastatic EBV-associated nasopharyngeal carcinoma. Nature Communications 2023, 14, 2781. [Google Scholar] [CrossRef] [PubMed]
- Hui, E.P.; Ma, B.; Lim, D.W.-T.; Lam, W.K.J.; Soong, Y.L.; Li, L.; Wong, K.C.W.; Lam, D.; Mok, F.; Tong, M.; et al. NEOSPACE trial: Neoadjuvant pembrolizumab-gemcitabine-cisplatin followed by concurrent pembrolizumab-chemoradiation and maintenance pembrolizumab for stage IVA nasopharyngeal cancer (NPC). Journal of Clinical Oncology 2023, 41, 6010–6010. [Google Scholar] [CrossRef]
- Chen, Q.-Y.; Mai, H.-Q.; Tang, L.-Q.; Luo, M.; Zhao, C.; Mo, H.-Y.; Sun, R.; Luo, D.-H.; Wang, L.; Guo, S.-S.; et al. Neoadjuvant chemotherapy plus tislelizumab followed by concurrent chemoradiotherapy in patients with locoregionally advanced nasopharyngeal carcinoma: A single-arm, phase II trial. Journal of Clinical Oncology 2022, 40, 6068–6068. [Google Scholar] [CrossRef]
- Ma, J.; Sun, Y.; Liu, X.; Yang, K.-Y.; Zhang, N.; Jin, F.; Zou, G.; Zhu, X.; Xie, F.; He, Z.; et al. PD-1 blockade with sintilimab plus induction chemotherapy and concurrent chemoradiotherapy (IC-CCRT) versus IC-CCRT in locoregionally-advanced nasopharyngeal carcinoma (LANPC): A multicenter, phase 3, randomized controlled trial (CONTINUUM). Journal of Clinical Oncology 2023, 41, LBA6002–LBA6002. [Google Scholar] [CrossRef]
- Xu, C.; Ma, J. TIRA study: A phase III, multicenter, randomized controlled study of toripalimab plus radical chemoradiotherapy with or without concurrent cisplatin in patients with high-risk locoregionally advanced nasopharyngeal carcinoma. Journal of Clinical Oncology 2022, 40, TPS6101–TPS6101. [Google Scholar] [CrossRef]
- Qian, X.; Chen, H.; Tao, Y. Biomarkers predicting clinical outcomes in nasopharyngeal cancer patients receiving immune checkpoint inhibitors: A systematic review and meta-analysis. Front Immunol 2023, 14, 1146898. [Google Scholar] [CrossRef]
- Sautès-Fridman, C.; Petitprez, F.; Calderaro, J.; Fridman, W.H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nature Reviews Cancer 2019, 19, 307–325. [Google Scholar] [CrossRef]
- Chen, Y.-P.; Lv, J.-W.; Mao, Y.-P.; Li, X.-M.; Li, J.-Y.; Wang, Y.-Q.; Xu, C.; Li, Y.-Q.; He, Q.-M.; Yang, X.-J.; et al. Unraveling tumour microenvironment heterogeneity in nasopharyngeal carcinoma identifies biologically distinct immune subtypes predicting prognosis and immunotherapy responses. Molecular Cancer 2021, 20, 14. [Google Scholar] [CrossRef]
- Yeo, E.L.L.; Li, Y.Q.; Soo, K.-C.; Wee, J.T.S.; Chua, M.L.K. Combinatorial strategies of radiotherapy and immunotherapy in nasopharyngeal carcinoma. Chinese Clinical Oncology 2018, 7, 15. [Google Scholar] [CrossRef]
- Galluzzi, L.; Aryankalayil, M.J.; Coleman, C.N.; Formenti, S.C. Emerging evidence for adapting radiotherapy to immunotherapy. Nature Reviews Clinical Oncology 2023, 20, 543–557. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.Y.; Ferris, R.L.; Psyrri, A.; Haddad, R.I.; Tahara, M.; Bourhis, J.; Harrington, K.; Chang, P.M.; Lin, J.C.; Razaq, M.A.; et al. Avelumab plus standard-of-care chemoradiotherapy versus chemoradiotherapy alone in patients with locally advanced squamous cell carcinoma of the head and neck: a randomised, double-blind, placebo-controlled, multicentre, phase 3 trial. Lancet Oncol 2021, 22, 450–462. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Yu, Z.; Chen, D.; Verma, V.; Yuan, C.; Wang, M.; Wang, F.; Fan, Q.; Wang, X.; Li, Y.; et al. Pivotal roles of tumor-draining lymph nodes in the abscopal effects from combined immunotherapy and radiotherapy. Cancer Commun (Lond) 2022, 42, 971–986. [Google Scholar] [CrossRef] [PubMed]
- Darragh, L.B.; Gadwa, J.; Pham, T.T.; Van Court, B.; Neupert, B.; Olimpo, N.A.; Nguyen, K.; Nguyen, D.; Knitz, M.W.; Hoen, M.; et al. Elective nodal irradiation mitigates local and systemic immunity generated by combination radiation and immunotherapy in head and neck tumors. Nature Communications 2022, 13, 7015. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).