Ren, W.; Wang, B.; Xie, Z.; Wang, H.; Zhu, X.; Zhao, W. An Unmanned Vehicle-Based Remote Raman System for Real-Time Trace Detection and Identification. Photonics2023, 10, 1230.
Ren, W.; Wang, B.; Xie, Z.; Wang, H.; Zhu, X.; Zhao, W. An Unmanned Vehicle-Based Remote Raman System for Real-Time Trace Detection and Identification. Photonics 2023, 10, 1230.
Ren, W.; Wang, B.; Xie, Z.; Wang, H.; Zhu, X.; Zhao, W. An Unmanned Vehicle-Based Remote Raman System for Real-Time Trace Detection and Identification. Photonics2023, 10, 1230.
Ren, W.; Wang, B.; Xie, Z.; Wang, H.; Zhu, X.; Zhao, W. An Unmanned Vehicle-Based Remote Raman System for Real-Time Trace Detection and Identification. Photonics 2023, 10, 1230.
Abstract
Raman spectroscopy is a type of inelastic scattering that provides rich information about a sub-stance based on the coupling of the energy levels of their vibrational and rotational modes with incident light. It has been applied extensively in many fields. As there is an increasing need for remote detection of chemicals in planetary exploration and anti-terrorism, it is urgent to develop a compact and easily transportable fully automated remote Raman detection system for trace detection and identification of information with high-level confidence about the target’s compo-sition and conformation in real-time and for real field scenarios. Here, we present an unmanned vehicle-based remote Raman system, which includes a 266 nm air-cooling passive Q-switched nanosecond pulsed laser of high-repetition frequency, a gated ICMOS, and an unmanned vehicle. This system obtains good spectral signals from remote distances ranging from 3 m to 10 m for simulating realistic scenarios, such as aluminum plate, woodblock, paperboard, black cloth, and leaves, and even for detected amounts as low as 0.1 mg. Furthermore, a CNN-based algorithm is implemented and packaged into the recognition software to achieve fast and more accurate de-tection and identification. This prototype provides a proof-of-concept for an unmanned vehicle with accurate remote substance detection in real-time, which can be helpful for remote detection and identification of hazardous gas, explosives, their precursors, and so forth.
Keywords
Remote Raman; Time-Gated; Traces Detection and Identification.
Subject
Physical Sciences, Applied Physics
Copyright:
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.