Preprint Article Version 1 Preserved in Portico This version is not peer-reviewed

Constraint Qualifications for Vector Optimization Problemsin Real Topological Spaces

Version 1 : Received: 15 September 2023 / Approved: 19 September 2023 / Online: 20 September 2023 (04:51:56 CEST)

How to cite: Zeng, R. Constraint Qualifications for Vector Optimization Problemsin Real Topological Spaces. Preprints 2023, 2023091330. https://doi.org/10.20944/preprints202309.1330.v1 Zeng, R. Constraint Qualifications for Vector Optimization Problemsin Real Topological Spaces. Preprints 2023, 2023091330. https://doi.org/10.20944/preprints202309.1330.v1

Abstract

. In this paper, we introduce a series of definitions of generalized affine functions for vector-valued functions. We prove that our generalized affine functions have some similar properties with generalized convex functions. We present examples to show that our generalized affinenesses are different from one another, and also provide an example to show that our definition of presubaffinelikeness is non-trivial; presubaffinelikeness is the weakest generalized affineness introduced in this article. We work with optimization problems that are defined and taking values in linear topological spaces. We devote to the study of constraint qualifications, and derive some optimality conditions as well as a strong duality theorem. Our optimization problems have inequality constraints, equality constrains and abstract constraints; our inequality constraints are generalized convex functions and equality constraints are generalized affine functions.

Keywords

real linear topological spaces; affine functions; generalized affine functions; convex functions; generalized convex functions; constraint qualifications

Subject

Computer Science and Mathematics, Applied Mathematics

Comments (0)

We encourage comments and feedback from a broad range of readers. See criteria for comments and our Diversity statement.

Leave a public comment
Send a private comment to the author(s)
* All users must log in before leaving a comment
Views 0
Downloads 0
Comments 0


×
Alerts
Notify me about updates to this article or when a peer-reviewed version is published.
We use cookies on our website to ensure you get the best experience.
Read more about our cookies here.