Submitted:
18 September 2023
Posted:
19 September 2023
You are already at the latest version
Abstract
Keywords:
1. Physical examination
2. Recommendations for injectable administration
3. Anatomical features
4. Sedation and premedication
| Agent | Dose | Route | Considerations, References |
| Azaperone | 1-8 mg/kg (2-5 mg/kg mean) | IM | 20 minutes to effect, sedative [21] |
| Acepromazine | 0.03 - 1.1 mg/kg | IM, IV | tranquilizer [22,23] |
| Alfaxalone | 5 mg/kg | IM | sedation [24] |
| Diazepam | 0.2-1 mg/kg | IV | mild sedative [23,24] |
| Midazolam | 0.1-0.5 mg/kg | IM, IV | sedation [23,24] |
| Xylazine | 1- 2mg/kg | IM, IV | pigs are the least sensitive to xylazine [11] |
| Medetomidine | 0.03-0.08 mg/kg | IM, IV | sedation and muscle relaxation [11,22] |
| Ketamine | 2-30 mg/kg | IM, IV | poor muscle relaxation and analgesia [23,24] |
| Buprenorphine | 0.01-0.05 mg/kg q 8-12 hrs. | IM, SC | significant respiratory depression [14,26] |
| Butorphanol | 0.1-0.3 mg/kg q 4-6 hrs. | IM, IV | analgesia, short duration [23] |
| Tiletamine/Zolazepam Telazol® | 2-8.8 mg/kg | IM, IV | sedation or anesthesia for minor surgery, 20-30 minutes, reversed with flumazenil 0.08 mg/kg [23] |
| Naloxone | 0.5-2 mg/kg | IV | [8,23] |
| Maropitant | 1 mg/kg q 24 hrs. | IM | [25] |
| Glycopyrrolate | 0.005-0.01 mg/kg | IM, IV | correct bradycardia, decrease salivation [9,15] |
| Atropine | 0.02-0.04 mg/kg | IM, IV | correct bradycardia, decrease salivation [9,26] |
| Combinations | |||
| Azaperone Midazolam |
4 mg/kg azaperone | IM | [27] |
| 1 mg/kg midazolam | |||
| Azaperone Xylazine |
2 mg/kg azaperone | IM | [28] |
| 2 mg/kg xylazine | |||
| Azaperone Butorphanol Ketamine |
5 mg azaperone, | IM | [29] |
| 0.2 mg butorphanol | |||
| 15 mg ketamine | |||
| Azaperone Xylazine Ketamine |
6 mg/kg azaperone | IM | [30] |
| 2mg/kg xylazine | |||
| 15 mg/kg ketamine | |||
| Azaperone Midazolam Ketamine |
2 mg/kg azaperone | IM | [23] |
| 0.3 mg/kg midazolam | |||
| 15 mg/kg ketamine | |||
| Acepromazine Ketamine |
1.1 mg/kg acepromazine | IM | [23] |
| 33 mg/kg ketamine | |||
| Alfaxalone Butorphanol Medetomidine |
4 mg/ kg alfaxalone | IM | [31] |
| 0.4 mg/ kg butorphanol | |||
| 40 μg/kg medetomidine | |||
| Dexmedetomidine Ketamine Methadone |
10 μg/kg dexmedetomidine | IM | Premedication, minor surgery [32] |
| 10 mg/kg ketamine | |||
| 0.25–0.4 mg/kg methadone | |||
| Xylazine Ketamine |
1-2 mg/kg xylazine | IM | Premedication, short-term anesthesia [12,33] |
| 10-20 mg/kg ketamine | |||
| Medetomidine Ketamine |
0.04 mg/kg medetomidine | IV | Premedication, short-term anesthesia [34] |
| 10 mg/kg ketamine | |||
| Medetomidine Ketamine |
0.08 mg/kg medetomidine | IM | Premedication, short-term anesthesia [34] |
| 10 mg/kg ketamine |
4.1. Butyrophenones
4.2. Phenothiazines
4.3. Benzodiazepines
4.4. Alpha 2-Adrenergic Agonists
4.5. Ketamine
4.6. Tiletamine
4.7. Opioids
4.8. Alfaxalone
4.9. Local anesthetics
4.10. Neurokinin-1 (NK-1) receptor antagonists- Maropitant
5. Induction
6. Endotracheal intubation
7. Maintenance
8. Peri anesthetic monitoring and complications
Peri anesthetic complications
Malignant Hyperthermia
9. Recovery
9. Conclusions
Author Contributions
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
References
- Flecknell, P. Laboratory Animal Anaesthesia; Academic press, 2015; pp. 238–239. [Google Scholar]
- Sullivan, T.P.; Eaglstein, W.H.; Davis, S.C.; Mertz, P. The Pig as a Model for Human Wound Healing. Wound repair and regeneration 2001, 9, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Kuzmuk, K.N.; Schook, L.B. Pigs as a Model for Biomedical Sciences. In The genetics of the pig; CABI: Wallingford UK, 2011; pp. 426–444. [Google Scholar]
- Lunney, J.K.; Van Goor, A.; Walker, K.E.; Hailstock, T.; Franklin, J.; Dai, C. Importance of the Pig as a Human Biomedical Model. Science Translational Medicine 2021, 13, eabd5758. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.C.; Sudarshan, C.D.; Khanna, R.; Roughan, J.V.; Flecknell, P.A.; Dark, J.H. A New Porcine Model of Reperfusion Injury after Lung Transplantation. Laboratory animals 1999, 33, 135–142. [Google Scholar] [CrossRef]
- Staicu, E.; Mitranescu, E.; Oraseanu, A.; Tudor, L.; Furnaris, F. Research on monitoring microclimate physical and chemical factors and their influence on the welfare of intensive swine rearing system. Lucrari Stiintifice-Universitatea de Stiinte Agricole a Banatului Timisoara, Medicina Veterinara 2008, 41, 918–921. [Google Scholar]
- Grandin, T. Minimizing Stress in Pig Handling in the Research Lab. Lab Anim 1986, 15, 15–20. [Google Scholar]
- Costea, R. Anesteziologie. 2017; 127–131. [Google Scholar]
- Anderson, D.E.; Mulon, P.Y. Anesthesia and Surgical Procedures in Swine. Diseases of Swine 2019, 171–196. [Google Scholar]
- DeRouchey, J.; Goodband, B.; Tokach, M.; Dritz, S.; Nelssen, J. Digestive System of the Pig: Anatomy and Function. In Proceedings of the North Am. Vet. Commun. Conf; 2009; pp. 375–376. [Google Scholar]
- Lin, H. Perioperative Monitoring and Management of Complications. Farm animal anesthesia: cattle, small ruminants, camelids, and pigs 2022, 135–158. [Google Scholar]
- Costea, R.; Tudor, R.; Degan, A.; Girdan, G. Anesthesia Complications Related to Swine Experimental Invasive Surgical Procedures. Scientific Works. Series C. Veterinary Medicine 2019, 65, 2065–1295. [Google Scholar]
- Portier, K.; Ida, K.K. The ASA Physical Status Classification: What Is the Evidence for Recommending Its Use in Veterinary Anesthesia? —A Systematic Review. Frontiers in Veterinary Science 2018, 5. [Google Scholar] [CrossRef]
- Kaiser, G.M.; Heuer, M.M.; Frühauf, N.R.; Kühne, C.A.; Broelsch, C.E. General Handling and Anesthesia for Experimental Surgery in Pigs. Journal of Surgical Research 2006, 130, 73–79. [Google Scholar] [CrossRef]
- Smith, A.C.; Ehler, W.J.; Swindle, M.M. Anesthesia and Analgesia in Swine. In Anesthesia and analgesia in laboratory animals; Elsevier, 1997; pp. 313–336. [Google Scholar]
- Hedenqvist, P. Laboratory animal analgesia, anesthesia, and euthanasia. In Handbook of laboratory animal science; CRC press, 2021; pp. 343–378. [Google Scholar]
- Xanthos, T.; Bassiakou, E.; Koudouna, E.; Tsirikos-Karapanos, N.; Lelovas, P.; Papadimitriou, D.; Dontas, I.; Papadimitriou, L. Baseline Hemodynamics in Anesthetized Landrace–Large White Swine: Reference Values for Research in Cardiac Arrest and Cardiopulmonary Resuscitation Models. Journal of the American Association for Laboratory Animal Science 2007, 46, 21–25. [Google Scholar] [PubMed]
- Theisen, M.M.; Maas, M.; Hartlage, M.A.G.; Ploner, F.; Niehues, S.M.; Van Aken, H.K.; Weber, T.P.; Unger, J.K. Ventral Recumbency Is Crucial for Fast and Safe Orotracheal Intubation in Laboratory Swine. Lab Anim 2009, 43, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Dyce, K.M.; Sack, W.O.; Wensing, C.J.G. Textbook of Veterinary Anatomy. Saunders Company 2002, 400–401. [Google Scholar]
- Singh, B. Dyce, Sack, and Wensing’s Textbook of Veterinary Anatomy; Saunders: St. Louis, Missouri, 2018. [Google Scholar]
- Swindle, M.M. Swine in the Laboratory: Surgery, Anesthesia, Imaging, and Experimental Techniques; CRC press, 2007. [Google Scholar]
- Hodgkinson, O. Practical Sedation and Anaesthesia in Pigs. In practice 2007, 29, 34–39. [Google Scholar] [CrossRef]
- Swindle, M.M.; Sistino, J.J. And Perioperative Care. Swine in the Laboratory: Surgery, Anesthesia, Imaging, and Experimental Techniques 2015, 39. [Google Scholar]
- Clarke, K.W.; Trim, C.M. Veterinary Anaesthesia E-Book; Elsevier Health Sciences, 2013. [Google Scholar]
- Smith, J.S.; Gebert, J.E.; Ebner, L.S.; Bennett, K.O.; Collins, R.J.; Hampton, C.E.; Kleine, S.A.; Mulon, P.-Y.; Smith, C.K.; Seddighi, R. Pharmacokinetics of Intramuscular Maropitant in Pigs (Sus Scrofa Domesticus). Journal of Veterinary Pharmacology and Therapeutics 2023, 46, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.C.; Ehler, W.J.; Swindle, M.M. Anesthesia and Analgesia in Swine. In Anesthesia and analgesia in laboratory animals; Elsevier, 1997; pp. 313–336. [Google Scholar]
- Bollen, P.J.; Hansen, A.K.; Alstrup, A.K.O. The Laboratory Swine; CRC Press, 2010. [Google Scholar]
- Flôres, F.N.; Tavares, S.G.; Moraes, A.N. de; Oleskovicz, N.; Santos, L.C.P.; Minsky, V.; Keshen, E. Azaperone and its association with xylazine or dexmedetomidine in pigs. Ciência Rural 2009, 39, 1101–1107. [Google Scholar] [CrossRef]
- Nussbaumer, I.; Indermühle, N.; Zimmermann, W.; Leist, Y. Piglet Castration by Injection Anaesthesia: Experience with the Azaperone, Butorphanol and Ketamine Combination. SAT, Schweizer Archiv für Tierheilkunde 2011, 153, 33–35. [Google Scholar] [CrossRef]
- Kowalik, M.M.; Siondalski, P.; Ko\laczkowska, M.; Zając, W.; Pa\lczyńska, P.; Cackowska, E.; Jab\loński, G.; Borman, A. Challenges in Using Anesthesia for Open Chest and Aorta Surgery in Swine. Medycyna Weterynaryjna 2020, 76. [Google Scholar] [CrossRef]
- Bigby, S.E.; Carter, J.E.; Bauquier, S.; Beths, T. The Use of Alfaxalone for Premedication, Induction and Maintenance of Anaesthesia in Pigs: A Pilot Study. Veterinary anaesthesia and analgesia 2017, 44, 905–909. [Google Scholar] [CrossRef]
- Kat, I.; Ahern, B.J.; Dhanani, J.; Whitten, G.; Cowling, N.; Goodwin, W. Long Duration Anaesthesia in Pigs with an Infusion of Alfaxalone and Dexmedetomidine. Veterinary Medicine and Science 2022, 8, 2418–2421. [Google Scholar] [CrossRef] [PubMed]
- Thurmon, J.C.; Benson, G.J. Anesthesia in Ruminants and Swine. Current veterinary therapy 1993, 3, 58–76. [Google Scholar]
- NISHIMURA, R.; KIM, H.; MATSUNAGA, S.; SAKAGUCHI, M.; SASAKI, N.; TAMURA, H.; TAKEUCHI, A. Antagonism of Medetomidine Sedation by Atipamezole in Pigs. Journal of Veterinary Medical Science 1992, 54, 1237–1240. [Google Scholar] [CrossRef] [PubMed]
- Gruen, M.E.; Sherman, B.L.; Papich, M.G. Drugs Affecting Animal Behavior; John Willey & Sons Hoboken, 2018. [Google Scholar]
- Lin, H. Injectable Anesthetics and Field Anesthesia. In Farm Animal Anesthesia; John Wiley & Sons, Ltd, 2022; pp. 60–100. ISBN 978-1-119-67266-1. [Google Scholar]
- Golan, D.E.; Tashjian, A.H.; Armstrong, E.J. Principles of Pharmacology: The Pathophysiologic Basis of Drug Therapy; Lippincott Williams & Wilkins, 2011. [Google Scholar]
- Svoboda, M.; Fajt, Z.; Mruvčinská, M.; Vašek, J.; Blahová, J. The Effects of Buccal Administration of Azaperone on the Sedation Level and Biochemical Variables of Weaned Piglets. Acta Veterinaria Brno 2021, 90, 47–56. [Google Scholar] [CrossRef]
- Svoboda, M.; Blahova, J.; Jarkovsky, J.; Zacharda, A.; Hajkova, S.; Vanhara, J.; Vasek, J. Efficacy of the Intranasal Application of Azaperone for Sedation in Weaned Piglets. Veterinární medicína 2023, 68, 145–151. [Google Scholar] [CrossRef]
- Malavasi, L.M. Swine. Veterinary anesthesia and analgesia: the fifth edition of Lumb and Jones 2015, 928–940. [Google Scholar]
- Moon, P.F.; Smith, L.J. General Anesthetic Techniques in Swine. Veterinary clinics of North America: Food animal practice 1996, 12, 663–691. [Google Scholar] [CrossRef]
- McGrath, C.J.; Rempel, W.E.; Addis, P.B.; Crimi, A.J. Acepromazine and Droperidol Inhibition of Halothane-Induced Malignant Hyperthermia (Porcine Stress Syndrome) in Swine. American Journal of Veterinary Research 1981, 42, 195–198. [Google Scholar]
- Lacoste, L.; Bouquet, S.; Ingrand, P.; Caritez, J.C.; Carretier, M.; Debaene, B. Intranasal Midazolam in Piglets: Pharmacodynamics (0.2 vs 0.4 Mg/Kg) and Pharmacokinetics (0.4 Mg/Kg) with Bioavailability Determination. Laboratory Animals 2000, 34, 29–35. [Google Scholar] [CrossRef]
- de Souza Dantas, L.M.; Crowell-Davis, S.L. Overview of Indications. Veterinary Psychopharmacology 2019, 67. [Google Scholar]
- Lee, J.Y.; Kim, M.C. Anesthesia of Growing Pigs with Tiletamine-Zolazepam and Reversal with Flumazenil. Journal of Veterinary Medical Science 2012, 74, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Lumb, W.V.; Tranquilli, W.J.; Jones, E.W.; Thurmon, J.C.; Grimm, K.A. Lumb & Jones’ Veterinary Anesthesia and Analgesia; Blackwell, 2007. [Google Scholar]
- Cattle, S.R.; Lin, H. Farm Animal Anesthesia.
- Bettschart-Wolfensberger, R.; Stauffer, S.; Hässig, M.; Flaherty, D.; Ringer, S.K. Racemic Ketamine in Comparison to S-Ketamine in Combination with Azaperone and Butorphanol for Castration of Pigs. Schweiz Arch Tierheilkd 2013, 155, 669–675. [Google Scholar] [CrossRef]
- Lester, P.A.; Moore, R.M.; Shuster, K.A.; Myers, D.D. Anesthesia and Analgesia. In The laboratory rabbit, guinea pig, hamster, and other rodents; Elsevier, 2012; pp. 33–56. [Google Scholar]
- Kumar, A.; Mann, H.J.; Remmel, R.P. Pharmacokinetics of Tiletamine and Zolazepam (Telazol®) in Anesthetized Pigs. Journal of veterinary pharmacology and therapeutics 2006, 29, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Keates, H. Induction of Anaesthesia in Pigs Using a New Alphaxalone Formulation. The veterinary record 2003, 153, 627–628. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.; de Lis, B.T.B.; Tendillo, F.J. Effects of Intramuscular Dexmedetomidine in Combination with Ketamine or Alfaxalone in Swine. Veterinary Anaesthesia and Analgesia 2016, 43, 81–85. [Google Scholar] [CrossRef]
- Lervik, A.; Toverud, S.F.; Krontveit, R.; Haga, H.A. A Comparison of Respiratory Function in Pigs Anaesthetised by Propofol or Alfaxalone in Combination with Dexmedetomidine and Ketamine. Acta Veterinaria Scandinavica 2020, 62, 1–9. [Google Scholar] [CrossRef]
- Satas, S.; Johannessen, S.I.; Hoem, N.-O.; Haaland, K.; Sorensen, D.R.; Thoresen, M. Lidocaine Pharmacokinetics and Toxicity in Newborn Pigs. Anesthesia & Analgesia 1997, 85, 306. [Google Scholar]
- Smith, J.S.; Gebert, J.E.; Ebner, L.S.; Bennett, K.O.; Collins, R.J.; Hampton, C.E.; Kleine, S.A.; Mulon, P.-Y.; Smith, C.K.; Seddighi, R. Pharmacokinetics of Intramuscular Maropitant in Pigs (Sus Scrofa Domesticus). Journal of Veterinary Pharmacology and Therapeutics 2023, 46, 158–164. [Google Scholar] [CrossRef]
- Pehböck, D.; Dietrich, H.; Klima, G.; Paal, P.; Lindner, K.H.; Wenzel, V. Anesthesia in Swine. Anaesthesist 2015, 64. [Google Scholar] [CrossRef]
- Amornyotin, S. Ketofol: A Combination of Ketamine and Propofol. J Anesth Crit Care Open Access 2014, 1, 00031. [Google Scholar]
- Chum, H.; Pacharinsak, C. Endotracheal Intubation in Swine. Lab animal 2012, 41, 309–311. [Google Scholar] [CrossRef]
- Janiszewski, A.; Pas\lawski, R.; Skrzypczak, P.; Pas\lawska, U.; Szuba, A.; Nicpoń, J. The Use of a Plastic Guide Improves the Safety and Reduces the Duration of Endotracheal Intubation in the Pig. Journal of Veterinary Medical Science 2014, 76, 1317–1320. [Google Scholar] [CrossRef]
- Steinbacher, R.; Von Ritgen, S.; Moens, Y.P.S. Laryngeal Perforation during a Standard Intubation Procedure in a Pig. Laboratory animals 2012, 46, 261–263. [Google Scholar] [CrossRef]
- Beths, T. TIVA/TCI in Veterinary Practice. Total Intravenous Anesthesia and Target Controlled Infusions: A Comprehensive Global Anthology 2017, 589–618. [Google Scholar]
- Costea, R.; Tanase, A.; Ioniță, L.; Copaescu, C.; Girjoaba, I.; Mocanu, J.; Drugociu, D.S. Inhalatory anaesthesia in pigs for laparascopic surgery. Lucrări Științifice - Medicină Veterinară, Universitatea de Științe Agricole și Medicină Veterinară “Ion Ionescu de la Brad” Iași 2009, 52, 503–505. [Google Scholar]
- Rosenberg, H.; Pollock, N.; Schiemann, A.; Bulger, T.; Stowell, K. Malignant Hyperthermia: A Review. Orphanet journal of rare diseases 2015, 10, 1–19. [Google Scholar] [CrossRef]
- Suckow, M.A.; Stevens, K.A.; Wilson, R.P. The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents; Academic Press, 2012. [Google Scholar]
- Bindu, S.; Mazumder, S.; Bandyopadhyay, U. Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) and Organ Damage: A Current Perspective. Biochemical pharmacology 2020, 180, 114147. [Google Scholar] [CrossRef]
- Sutherland, M.A.; Davis, B.L.; Brooks, T.A.; Coetzee, J.F. The Physiological and Behavioral Response of Pigs Castrated with and without Anesthesia or Analgesia. Journal of Animal Science 2012, 90, 2211–2221. [Google Scholar] [CrossRef]
- Holman, S.D.; Gierbolini-Norat, E.M.; Lukasik, S.L.; Campbell-Malone, R.; Ding, P.; German, R.Z. Duration of Action of Bupivacaine Hydrochloride Used for Palatal Sensory Nerve Block in Infant Pigs. Journal of veterinary dentistry 2014, 31, 92–95. [Google Scholar] [CrossRef]
- Costea, R.; DEGAN, A.; TUDOR, R. Crystalloids/Colloids Ratio for Fluid Resuscitation during Anesthesia. Scientific Works. Series C. Veterinary Medicine 2017, 63, 65–66. [Google Scholar]
- Malavasi, L.M.; Jensen-Waern, M.; Augustsson, H.; Nyman, G. Changes in Minimal Alveolar Concentration of Isoflurane Following Treatment with Medetomidine and Tiletamine/Zolazepam, Epidural Morphine or Systemic Buprenorphine in Pigs. Laboratory animals 2008, 42, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Allaouchiche, B.; Duflo, F.; Tournadre, J.-P.; Chassard, D. Influence of Sepsis on Sevoflurane (SEV) Minimum Alveolar Concentration (MAC) in a Swine Model. European Journal of Anaesthesiology| EJA 2000, 17, 57. [Google Scholar] [CrossRef]
- Sakaguchi, M.; Nishimura, R.; Sasaki, N.; Ishiguro, T.; Tamura, H.; Takeuchi, A. Anesthesia Induced in Pigs by Use of a Combination of Medetomidine, Butorphanol, and Ketamine and Its Reversal by Administration of Atipamezole. American journal of veterinary research 1996, 57, 529–534. [Google Scholar] [PubMed]
- SAKAGUCHI, M.; NISHIMURA, R.; SASAKI, N.; ISHIGURO, T.; TAMURA, H.; TAKEUCHI, A. Sedative Effects of Medetomidine in Pigs. Journal of Veterinary Medical Science 1992, 54, 643–647. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.S.; Seddighi, R. Miniature Companion Pig Sedation and Anesthesia. Veterinary Clinics: Exotic Animal Practice 2022, 25, 297–319. [Google Scholar] [CrossRef] [PubMed]
- Lin, H. Comparative Anesthesia and Analgesia of Ruminants and Swine. Veterinary Anesthesia and Analgesia: the Fifth Edition of Lumb and Jones 2015, 743–753. [Google Scholar]
- Stadlbauer, K.H.; Wagner-Berger, H.G.; Raedler, C.; Voelckel, W.G.; Wenzel, V.; Krismer, A.C.; Klima, G.; Rheinberger, K.; Nussbaumer, W.; Pressmar, D. Vasopressin, but Not Fluid Resuscitation, Enhances Survival in a Liver Trauma Model with Uncontrolled and Otherwise Lethal Hemorrhagic Shock in Pigs. The Journal of the American Society of Anesthesiologists 2003, 98, 699–704. [Google Scholar] [CrossRef]
- Swindle, M.M.; Smith, A.C. Best Practices for Performing Experimental Surgery in Swine. Journal of Investigative Surgery 2013, 26, 63–71. [Google Scholar] [CrossRef]
- Tanwar, P.; Naagar, M.; Malik, G.; Alam, M.S.; Singh, T.; Singh, O.; Maity, M.K. A Review on Malignant Hyperthermia: Epidemiology, Etiology, Risk Factors, Diagnosis, Clinical Management and Treatment Modalities. 2023.
- O’Brien, P.J.; Shen, H.; Cory, C.R.; Zhang, X. Use of a DNA-Based Test for the Mutation Associated with Porcine Stress Syndrome (Malignant Hyperthermia) in 10,000 Breeding Swine. J Am Vet Med Assoc 1993, 203, 842–851. [Google Scholar]
- El-Hayek, R.; Parness, J.; Valdivia, H.H.; Coronado, R.; Hogan, K. Dantrolene and Azumolene Inhibit [3H] PN200-110 Binding to Porcine Skeletal Muscle Dihydropyridine Receptors. Biochemical and biophysical research communications 1992, 187, 894–900. [Google Scholar] [CrossRef]
- Do Carmo, P.L.; Zapata-Sudo, G.; Trachez, M.M.; Antunes, F.; Guimarães, S.E.F.; Debom, R.; Rizzi, M.D.R.; Sudo, R.T. Intravenous Administration of Azumolene to Reverse Malignant Hyperthermia in Swine. Journal of veterinary internal medicine 2010, 24, 1224–1228. [Google Scholar] [CrossRef] [PubMed]
- Schütte, J.K.; Becker, S.; Burmester, S.; Starosse, A.; Lenz, D.; Kröner, L.; Wappler, F.; Gerbershagen, M.U. Comparison of the Therapeutic Effectiveness of a Dantrolene Sodium Solution and a Novel Nanocrystalline Suspension of Dantrolene Sodium in Malignant Hyperthermia Normal and Susceptible Pigs. European Journal of Anaesthesiology| EJA 2011, 28, 256–264. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Kochanek, P.M.; Cochran, K.; Nozari, A.; Henchir, J.; Stezoski, S.W.; Wagner, R.; Wisniewski, S.; Tisherman, S.A. Mild Hypothermia Improves Survival after Prolonged, Traumatic Hemorrhagic Shock in Pigs. Journal of Trauma and Acute Care Surgery 2005, 59, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Couto, M.; Cates, C. Laboratory Guidelines for Animal Care. Vertebrate Embryogenesis: Embryological, Cellular, and Genetic Methods 2019, 407–430. [Google Scholar]
- Hubrecht, R.C.; Carter, E. The 3Rs and Humane Experimental Technique: Implementing Change. Animals 2019, 9, 754. [Google Scholar] [CrossRef] [PubMed]
| Agent | Dose | Route | Considerations, References |
|---|---|---|---|
| Propofol | 2-5 mg/kg | IV | [37,56] |
| Propofol Fentanyl |
2 mg/kg 5 ug/kg |
IV | allows intubation [14] |
| Dexmedetomidine Propofol |
20-40ug/kg dexmedetomidine 2-4 mg/kg propofol |
[46] | |
| Propofol Ketamine |
1-1.5 mg/kg propofol 0.5-1 mg/kg ketamine |
IV | sedation, induction, no respiratory depression, good recovery [56,57] |
| Alfaxalone | 0.6-1.1 mg/kg | IV, IM | [46] |
| Etomidate | 2-4 mg/kg | IV | provides cardiovascular stability [46,57] |
| Thiopental | 10-20 mg/kg | IV | apnea, prolonged recovery [40] |
| Agent | Dose | Route | Considerations, References |
|---|---|---|---|
| Isoflurane | 1.6-1.9% MAC | ETT | [69] |
| Sevoflurane | 2.4-2.66% MAC | ETT | [70] |
| Propofol | 2-3 mg/kg, followed by 0.1-0.2 mg/kg/min |
IV | [24] |
| Alfaxalone | 4.8 mg/kg/h | IV | [31] |
| Fentanyl | 50 ug/kg, followed by CRI 30-100 ug/kg/hrs. |
IV | [23] |
| Alfaxalone Dexmedetomidine |
5.3 mg/kg/h alfaxalone 3.0μg/kg/h dexmedetomidine |
IV | [32] |
| Alfaxalone Dexmedetomidine Ketamine |
5 mg/kg/h alfaxalone 4μg/kg/h dexmedetomidine 5 mg/kg/h ketamine |
IV | [53] |
| Medetomidine Butorphanol Ketamine |
0.03-0.08 mg/kg medetomidine 0.2 mg/kg butorphanol 10 mg/kg ketamine |
IM | Longer sedation than Xylazine-Butorphanol-Ketamine [71,72] |
| Xylazine Ketamine Midazolam |
2 mg/kg xylazine 0.25 mg/kg midazolam 10-20 mg/kg ketamine |
IM | Immobilization in 2 minutes, effect for 50-90 minutes [8] |
| Tiletamine/Zolazepam Telazol® Xylazine |
4.4-6 mg/kg tiletamine/zolazepam 2- 2.2 mg/kg xylazine |
IM | Provides rapid sedation and can be used for sedation and induction [45,47] |
| Tiletamine/Zolazepam Telazol® Medetomidine |
5 mg/kg tiletamine/zolazepam 0.005 mg/kg medetomidine |
IM | Provides rapid sedation and can be used for sedation and induction [45,47,56] |
| Guaifenesin Ketamine Xylazine “Triple drip” |
50 mg Guaifenesin 2 mg Ketamine 1 mg Xylazine CRI 2.2 ml/kg/h |
IV | Recovery in 30-45 minutes, Guaifenesin- centrally acting muscle relaxant [23,47] |
| Flunixin Meglumine | 1-4 mg/kg q 24 hrs. | IV | managing postoperative pain [23] |
| Meloxicam | 0.4 mg/kg | IM | managing postoperative pain [8] |
| Carprofen | 1-4 mg/kg q 12 hrs. 2 mg/kg q 24 hrs. | IM, IV | managing postoperative pain [8] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
